
OS/390

C/C++
Programming Guide

SC09-2362-06

���

OS/390

C/C++
Programming Guide

SC09-2362-06

���

Note!
Before using this information and the product it supports, be sure to read the information in “Notices” on page 839.

Seventh Edition (September 2000)

This edition applies to Version 2 Release 10 Modification 0 of OS/390 C/C++ (5647-A01) and to all subsequent
releases and modifications until otherwise indicated in new editions. This edition replaces SC09-2362-04. Make sure
that you use the correct edition for the level of the program listed above. Also, ensure that you apply all necessary
PTFs for the program.

Technical changes in the text since the last release of this book are indicated by a vertical line (|) to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. Note that the OS/390 C/C++ publications are available through the OS/390 Library
page at: http://www.ibm.com/s390/os390/bkserv/

IBM welcomes your comments. You can send your comments in any one of the following methods:
v Electronically to the network ID listed below. Be sure to include your entire network address if you want a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)

v By FAX, use the following number:

United States and Canada: (416) 448-6161
Other countries: (+1) 416-448-6161

v By mail, to the following address:

IBM Canada Ltd. Laboratory
Information Development
2G/KB7/1150/TOR
1150 Eglinton Avenue East
Toronto, Ontario, Canada M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to your
comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. Introduction . 1

Chapter 1. About This Book . 3
Who Should Use This Book . 3
A Note about Examples . 3
IBM OS/390 C/C++ and Related Publications 4
Hardcopy Books . 8
PDF Books. 8
Softcopy Books . 9
Softcopy Examples . 9
OS/390 C/C++ on the World Wide Web 10
How to Read the Syntax Diagrams 10

Chapter 2. About IBM OS/390 C/C++ 13
Changes for Version 2 Release 10 13

OS/390 Language Environment® Downward Compatibility 14
The C/C++ Compilers . 15

The C Language . 15
The C++ Language . 15
Common Features of the OS/390 C and C++ Compilers. 15
OS/390 C Compiler Specific Features 16
OS/390 C++ Compiler Specific Features 17

Utilities . 17
Class Libraries . 18

Class Library Source. 19
The Debug Tool . 19
IBM C/C++ Productivity Tools for OS/390 20
OS/390 Language Environment 20
The Program Management Binder 21
OS/390 UNIX System Services (OS/390 UNIX) 22
OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions 24
Input and Output . 24

I/O Interfaces . 24
File Types. 25
Additional I/O Features . 25

The System Programming C Facility 26
Interaction with Other IBM Products 26
Additional Features of OS/390 C/C++ 27

Part 2. Input and Output . 31

Chapter 3. Introduction to C and C++ Input and Output. 33
Types of C and C++ Input and Output 33

Text Streams . 33
Binary Streams . 34
Record I/O . 34

Chapter 4. Understanding Models of C I/O 35
The Record Model for C I/O . 35

Record Formats . 35
The Byte Stream Model for C I/O 44

Mapping the C Types of I/O to the Byte Stream Model 44

© Copyright IBM Corp. 1996, 2000 iii

||
||

Chapter 5. Using the I/O Stream Class Library in C++ 47
Advantages to Using the C++ I/O Stream Class Library 47
Predefined Streams for C++ . 47
How C++ I/O Streams Relate to C Streams 48
Specifying File Attributes . 48
Related Information . 48

Chapter 6. Opening Files . 49
Prototypes of functions . 49
Categories of I/O . 50
Specifying What Kind of File to Use 52

OS Files . 52
HFS Files . 52
VSAM Data Sets . 52
Terminal Files . 52
Memory Files and Hiperspace Memory Files 52
CICS Data Queues . 53
OS/390 Language Environment Message File 54
How to Specify RECFM, LRECL, and BLKSIZE 54
fopen() Defaults . 55
DDnames . 57

How OS/390 C/C++ Determines What Kind of File to Open 59
MAP 0010: Under TSO, MVS Batch, IMS — POSIX(ON) 60
MAP 0020: Under TSO, MVS Batch, IMS — POSIX(OFF) 64
MAP 0030: Under CICS . 67

Chapter 7. Buffering of C Streams 69

Chapter 8. Using ASA Text Files 71
Example of Writing to an ASA File 71

CBC3GAS1 . 71
ASA File Control . 72

Chapter 9. OS/390 C Support for the Double-Byte Character Set 75
Opening Files . 76
Reading Streams and Files . 76
Writing Streams and Files . 77

Writing Text Streams . 78
Writing Binary Streams . 79

Flushing Buffers . 79
Flushing Text Streams . 79
Flushing Binary Streams . 80
ungetwc() Considerations . 80

Setting Positions within Files . 81
Repositioning within Text Streams 81
Repositioning within Binary Streams 81
ungetwc() Considerations . 81

Closing Files. 82
Manipulating Wide Character Array Functions 82

Chapter 10. Using C and C++ Standard Streams and Redirection 83
Default Open Modes . 84
Interleaving the Standard Streams I/O with sync_with_stdio() 84
Interleaving the Standard Streams I/O without sync_with_stdio() 86
Redirecting Standard Streams 88
Redirecting Streams from the Command Line 88

iv OS/390 V2R10.0 C/C++ Programming Guide

Using the Redirection Symbols 89
Assigning the Standard Streams 90
Using the freopen() Library Function 90
Redirecting Streams with the MSGFILE Option 90

MSGFILE Considerations . 90
Redirecting Streams under OS/390 92

Under MVS Batch . 92
Under TSO . 93
Under IMS . 94
Under CICS . 94

Passing C and C++ Standard Streams Across a system() Call 95
Passing Binary Streams . 95
Passing Text Streams . 96
Passing Record I/O Streams 97

Using Global Standard Streams. 98
Command Line Redirection 99
Direct Assignment . 101
freopen(). 101
MSGFILE() Run-Time Option 101
fclose() . 101
File Position and Visible Data 101
C++ I/O Stream Class Library 101

Chapter 11. Performing OS I/O Operations 103
Opening Files . 103

Using fopen() or freopen() 103
Generation Data Group I/O 106
Regular and Extended Partitioned Data Sets 110
Partitioned and Sequential Concatenated Data Sets 111
In-stream Data Sets . 113
SYSOUT Data sets . 113
Tapes . 114
Multivolume Data Sets. 115
Striped Data Sets . 115
Other Devices . 115
fopen() and freopen() Parameters 116

Buffering . 119
Multiple Buffering . 120

DCB (Data Control Block) Attributes. 121
Reading from Files . 123

Reading from Binary Files 123
Reading from Text Files . 124
Reading from Record I/O Files 124

Writing to Files . 125
Writing to Binary Files . 125
Writing to Text Files. 126
Writing to Record I/O Files 129

Flushing Buffers . 129
Updating Existing Records 129
Reading Updated Records 129
Writing New Records . 130
ungetc() Considerations . 131

Repositioning within Files . 132
ungetc() Considerations . 132
How Long fgetpos() and ftell() Values Last 133
Using fseek() and ftell() in Binary Files. 133

Contents v

Using fseek() and ftell() in Text Files (ASA and Non-ASA). 134
Using fseek() and ftell() in Record Files 135
Porting Old C Code That Uses fseek() or ftell() 135

Closing Files . 135
Renaming and Removing Files 136
fldata() Behavior . 136

Chapter 12. Performing Hierarchical File System I/O Operations 139
Creating Files . 139

Regular Files . 139
Link and Symbolic Link Files 140
Directory Files. 140
Character Special Files . 140
FIFO Files . 140

Opening Files . 140
Using fopen() or freopen() 141

Reading from HFS Files . 145
Opening and Reading from HFS Directory Files 145
Writing to HFS Files . 145
Flushing Records . 146
Setting Positions within Files 146
Closing Files . 146
Deleting Files . 147
Pipe I/O . 147

Using Unnamed Pipes. 147
Using Named Pipes . 149
Character Special File I/O 152

Low-Level OS/390 UNIX I/O 152
Example of HFS I/O Functions 152

CBC3GHF3 . 153
CBC3GHF4 . 156

fldata() Behavior . 158

Chapter 13. Performing VSAM I/O Operations 161
VSAM Types (Data Set Organization) 161

Access Method Services . 162
Choosing VSAM Data Set Types 162

Keys, RBAs and RRNs . 164
Summary of VSAM I/O Operations 165

Opening VSAM Data Sets . 167
Using fopen() or freopen() 167
Buffering . 171

Record I/O in VSAM . 171
RRDS Record Structure . 171
Reading Record I/O Files 172
Writing to Record I/O Files 173
Updating Record I/O Files 174
Deleting Records . 175
Repositioning within Record I/O Files 175
Flushing Buffers . 177
Summary of VSAM Record I/O Operations 178

VSAM Record Level Sharing 178
Error Reporting . 180

Text and Binary I/O in VSAM 180
Reading from Text and Binary I/O Files 180
Writing to and Updating Text and Binary I/O Files. 180

vi OS/390 V2R10.0 C/C++ Programming Guide

||

Deleting Records in Text and Binary I/O Files 181
Repositioning within Text and Binary I/O Files 181
Flushing Buffers . 183
Summary of VSAM Text I/O Operations 183
Summary of VSAM Binary I/O Operations 184

Closing VSAM Data Sets. 185
VSAM Return Codes . 186
VSAM Examples . 186

KSDS Example . 186
RRDS Example . 194

fldata() Behavior . 197

Chapter 14. Performing Terminal I/O Operations 199
Opening Files . 199

Using fopen() and freopen(). 199
Buffering . 201

Reading from Files . 201
Reading from Binary Files 202
Reading from Text Files . 203
Reading from Record I/O Files 203

Writing to Files . 203
Writing to Binary Files . 204
Writing to Text Files. 204
Writing to Record I/O Files 205

Flushing Records . 205
Text Streams . 205
Binary Streams . 205
Record I/O . 205

Repositioning within Files . 206
Closing Files . 206
fldata() Behavior . 206

Chapter 15. Performing Memory File and Hiperspace I/O Operations 209
Using Hiperspace Operations 209
Opening Files . 210

Using fopen() or freopen() 210
Simulating Partitioned Data Sets 213
Buffering . 215

Reading from Files . 216
Writing to Files . 217
Flushing Records . 217

ungetc() Considerations . 217
Repositioning within Files . 218
Closing Files . 218

Performance Tips . 218
Removing Memory Files . 219
fldata() Behavior . 219
Example Program . 220

CBC3GMF3 . 220
CBC3GMF4 . 221

Chapter 16. Performing CICS I/O Operations 223

Chapter 17. Language Environment Message File Operations 225
Opening Files . 225
Reading from Files . 225

Contents vii

Writing to Files . 225
Flushing Buffers . 226
Repositioning within Files . 226
Closing Files . 226

Chapter 18. Debugging I/O Programs 227
Using the __amrc Structure . 227

CBC3GDI1 . 229
Using the __amrc2 Structure 230
Using __last_op Codes . 231
Using the SIGIOERR Signal 234

CBC3GDI2 . 234

Part 3. Interlanguage Calls with OS/390 C/C++ 237

Chapter 19. Using Linkage Specifications in C or C++ 239
Syntax for Linkage in C or C++ 239

Syntax for Linkage in C . 239
Syntax for Linkage in C++ 240

Kinds of Linkage used by C or C++ Interlanguage Programs 240
Using Linkage Specifications in C++ 242

Chapter 20. Combining C or C++ and Assembler 245
Establishing the OS/390 C/C++ Environment 245
Specifying Linkage for C or C++ to Assembler 245
Parameter List for OS Linkage. 246
XPLINK Assembler . 247
Using Standard Macros . 249

Non-XPLINK Assembler Prolog 249
Non-XPLINK Assembler Epilog 250
XPLINK Assembler Prolog 250
XPLINK Assembler Epilog 251
Accessing Automatic Memory in the Non-XPLINK Stack 251

Calling Run-Time Library Routines from Assembler — C Example 252
CBC3GCA4 . 252
CBC3GCA2 . 253
CBC3GCA5 . 253

Calling Run-Time Library Routines from Assembler — C++ Example 254
CBC3GCA1 . 254
CBC3GCA2 . 254
CBC3GCA3 . 255

Register Content at Entry to a Non-XPLINK ASM Routine Using OS linkage 255
Register Content at Exit from a Non-XPLINK ASM Routine to OS/390 C/C++ 255
Retaining the C Environment Using Preinitialization 256

Setting Up the Interface for Preinitializable Programs 257
Preinitializing a C Program 260
Multiple Preinitialization Compatibility Interface C Environments 267
Using the Service Vector and Associated Routines 270

Part 4. Coding: Advanced Topics . 277

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 279
Support for DLLs. 280
DLL Concepts and Terms . 280
Loading a DLL . 281

viii OS/390 V2R10.0 C/C++ Programming Guide

||
||
||
||
||
||

||

||
||

||

Loading a DLL Implicitly . 281
Loading a DLL Explicitly . 282

Managing the Use of DLLs When Running DLL Applications. 284
Loading DLLs . 284
Sharing DLLs . 286
Freeing DLLs . 286

Creating a DLL or a DLL Application 286
Building a Simple DLL. 286

Writing Your C Code . 286
Writing Your C++ Code . 287

Compiling Your Code . 288
Binding Your Code . 289
Building a Simple DLL Application 290
Creating and Using DLLs . 291
DLL Restrictions . 292

Improving Performance . 293

Chapter 22. Building Complex DLLs 295
Rules for Compiling Source Code 296

XPLINK Applications . 296
Non-XPLINK Applications 296

Compatibility Issues Between DLL and Non-DLL Code 299
Pointer Assignment . 300
Function Pointers . 300

DLL Function Pointer Call in Non-DLL Code. 302
C Example . 303
Non-DLL Function Pointer Call in DLL(CBA) Code 305
Non-DLL Function Pointer Call in DLL Code. 307
Function Pointer Comparison in Non-DLL Code 308
Function Pointer Comparison in DLL Code 311

Using DLLs That Call Each Other 313

Chapter 23. Using Threads in an OS/390 UNIX Application 321
Models and Requirements . 321

Functions . 321
Creating a Thread . 321
Synchronization Primitives 322
Thread-specific Data . 326
Signals . 327
Generating a Signal . 328
Thread Cancellation . 329
Cleanup for Threads . 330

Behaviors and Restrictions in an OS/390 UNIX Application 331
Using Threads with MVS Files. 331
Thread-Scoped Functions 332
Unsafe Thread Functions 332
Fetched Functions and Writable Statics 332
MTF and OS/390 UNIX Threading 333
Thread Queuing Function 333
Thread Scheduling . 333
iconv() Family of Functions 333

Chapter 24. Reentrancy in OS/390 C/C++ 335
Natural or Constructed Reentrancy 336

Limitations of Constructed Reentrancy for C Programs 336
Controlling External Static in C Programs. 336

Contents ix

||

||

Controlling Writable Strings 337
Controlling the Memory Area in C++ 338

Controlling Where String Literals Exist in C++ Code 339
CBC3GRE2 . 339

Using Writable Static in Assembler Code 339
CBC3GRE3 . 340
CBC3GRE4 . 341

Chapter 25. Using the Decimal Data Type in C 343
Declaring Decimal Types . 343

Declaring Fixed-Point Decimal Constants 344
Declaring Decimal Variables 344

Defining Decimal-Related Constants 345
Using Operators . 345

Arithmetic Operators . 346
Assignment Operators. 349
Unary Operators . 349
Cast Operator . 350
Summary of Operators Used With Decimal Types 350

Converting Decimal Types . 350
Converting Decimal Types to Decimal Types 350
Converting Decimal Types to and from Integer Types 352
Converting Decimal Types to and from Floating Types 353

Calling Functions . 354
Using Library Functions . 354

Using Variable Arguments with Decimal Types 354
Formatting Input and Output Operations 354
Validating Values. 355
Fix Sign . 355
Decimal Absolute Value . 356
Programming Example . 357

CBC3GDC3 . 357
Output from Programming Example One 358
CBC3GDC4 . 359
Output from Programming Example Two 359

Decimal Exception Handling 359
System Programming Calls Restrictions 360
printf() and scanf() Restrictions 360
Additional Considerations 360
Error Messages . 361

Chapter 26. Using the Decimal Data Type in C++ 363
The IBinaryCodedDecimal Class 363
Header File and Constants for IBinaryCodedDecimal 363

Constants Defined in idecimal.hpp 363
Constructing IBinaryCodedDecimal Objects 364
IBinaryCodedDecimal Input and Output 364
Arithmetic Operators for IBinaryCodedDecimal 364

Relational Operators . 364
Equality Operators . 364

Converting IBinaryCodedDecimal Objects 364
An IBinaryCodedDecimal Object to an IBinaryCodedDecimal Object 365

Number of Digits in an IBinaryCodedDecimal Object 365
Precision of a IBinaryCodedDecimal Object 366
IBinaryCodedDecimal Object Exceptions 366
The Decimal Class . 366

x OS/390 V2R10.0 C/C++ Programming Guide

Header File for the Decimal Class 366
Constructing Decimal Objects 366
Decimal Class Input and Output 367
Operators for Decimal Class 367
Converting Decimal Objects. 368
Number of Digits in an Decimal Object. 369
Precision of a Decimal Object 369
Decimal Object Exceptions 369

Chapter 27. Handling Exceptions, Error Conditions, and Signals 371
Handling C Software Exceptions under C++. 371
Handling Hardware Exceptions under C++ 372
Tracebacks under C++ . 372

CBC3GCH1 . 373
CBC3GCH2 . 374

Handling Signals with POSIX(OFF) Using signal() and raise() 375
Handling Signals Using Language Environment Callable Services. 375
Handling Signals Using OS/390 UNIX with POSIX(ON) 376
Asynchronous Signal Delivery under OS/390 UNIX 378
C Signal Handling Features under OS/390 C/C++ 379

Establishing a Signal Handler 379
Enabling a Signal . 380
Interrupting a Program . 380
Raising a Signal . 380
Identifying Hardware and Software Signals 380
SIGABND Considerations 383
SIGIOERR Considerations 383
Default Handling of Signals 383

MAP 0040: Summary of C Error Handling 387
Example of C Signal Handling under OS/390 C or OS/390 C++ 389

Chapter 28. Optimizing Code 391
Input/Output Considerations 391

When Accessing MVS Data Sets 391
When Accessing HFS Files 393
When Using the I/O Stream Class Library with C++ 394
Using Library Extensions . 394

Programming Recommendations 395
Using Variables . 395
Passing Function Arguments 396
Coding Expressions . 396
Coding Conversions . 397
Arithmetic Considerations 397
Using Loops and Control Constructs 397
Choosing a Data Type. 398
Using Built-In Library Functions and Macros. 399
Using pragmas to Improve Performance 401

Compiler Options to Improve Performance 402
Using the OPTIMIZE Option 402
Inlining . 404
Additional Compiler Options that Affect Performance 407

Memory Optimization . 408
Using XPLINK. 409

When You Should Not Use XPLINK 409
Compile Time Considerations 410

Programmer Tips . 410

Contents xi

||
||

System Programmer Tips 411

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 413
Types of Procedural Analysis 413
Compiler Processing Flow . 414

Regular Compiler Execution 414
Compiler Execution with IPA 415
Invoking IPA from the c89 Utility 422

Controlling IPA Execution . 423
Specifying Compiler Options with IPA 423
Specifying Pragmas under IPA 424

Effects of IPA on Your Program 425
Restrictions. 426
Locale Support . 426
Date and Time Stamps Within IPA Objects 427

Chapter 30. Network Communications under UNIX System Services . . . 429
Understanding OS/390 UNIX Sockets and Internetworking 429
The Basics of Network Communication 430

Transport Protocols for Sockets 430
What Is a Socket? . 431

OS/390 UNIX Socket Families 432
OS/390 UNIX Socket Types. 432
Guidelines for Using Socket Types 433
Addressing within Sockets 433

The Conversation . 435
The Server Perspective . 436
The Client Perspective . 437
A Typical TCP Socket Session. 438

A Typical UDP Socket Session 439
A Typical Datagram Socket Session. 440

Locating the Server’s Port . 440
Network Application Example 440
Using Common INET . 446
Compiling and Binding . 447
Using TCP/IP APIs . 449

Restrictions for Using MVS TCP/IP API with OS/390 UNIX 449
Using OS/390 UNIX Sockets 451

Compiling under MVS Batch for Berkeley Sockets 452
Compiling under MVS Batch for X/Open Sockets 453

Understanding The X/Open Transport Interface (XTI) 454
Transport endpoints . 454
Transport providers for X/Open Transport Interface 455
General Restrictions for OS/390 UNIX 455

Chapter 31. Interprocess Communication Using OS/390 UNIX. 457
Message Queues . 457
Semaphores . 458
Shared Memory . 458
Memory Mapping . 458
TSO Commands from a Shell 459

Chapter 32. Structuring a Program That Uses C++ Templates 461
Template Terms . 461
Generating Template Functions 461

Class Template Example . 462

xii OS/390 V2R10.0 C/C++ Programming Guide

Using TEMPINC . 464
Organizing Source Code for the TEMPINC option 464
Instantiating the Functions 464

Using the NOTEMPINC Option 467
Organizing Source Code for the NOTEMPINC Option 468

Using TEMPINC or NOTEMPINC 468
Example of a Multipurpose Header File 468
Example of Source Code with Multipurpose Header File 469

Template Considerations for Shared Libraries 469

Chapter 33. Using Environment Variables 471
Working with Environment Variables 474

Naming Conventions . 475
Environment Variables Specific to the OS/390 C/C++ Library 476

_EDC_ADD_ERRNO2. 476
_EDC_ANSI_OPEN_DEFAULT 476
_EDC_BYTE_SEEK . 477
_EDC_CLEAR_SCREEN. 477
_EDC_COMPAT . 477
_EDC_GLOBAL_STREAMS 478
_EDC_IP_CACHE_ENTRIES 479
_EDC_RRDS_HIDE_KEY 479
_EDC_STOR_INCREMENT. 479
_EDC_STOR_INITIAL . 480
_EDC_ZERO_RECLEN . 480
_CEE_DMPTARG . 481
_CEE_ENVFILE . 481

Example . 481
CBC3GEV1 . 482
CBC3GEV2 . 483

Part 5. OS/390 C/C++ Environments . 485

Chapter 34. Using the System Programming C Facilities 487
Using Functions in the System Programming C Environment 488
System Programming C Facility Considerations and Restrictions 489
Creating Freestanding Applications 490

Creating Modules without CEESTART 490
Including an Alternative Initialization Routine under OS/390 491
Initializing a Freestanding Application without Language Environment. . . . 491
Initializing a Freestanding Application Using C Functions 491
Setting up a C Environment with Preallocated Stack and Heap. 492
Determining ISA requirements 493
Building Freestanding Applications to Run under OS/390 493
Parts Used for Freestanding Applications 495

Creating System Exit Routines 496
Building System Exit Routines under OS/390 497
An Example of a System Exit 497

Creating and Using Persistent C Environments 500
Building Applications That Use Persistent C Environments 501
An Example of Persistent C Environments 501

Developing Services in the Service Routine Environment 505
Using Application Service Routine Control Flow 506
Understanding the Stub Perspective 512
Establishing a Server Environment 521
Initiating a Server Request 521

Contents xiii

Accepting a Request for Service 522
Returning Control from Service 522
Constructing User-Server Stub Routines 522
Building User-Server Environments 522

Tailoring the System Programming C Environment 523
Generating Abends . 523
Getting Storage . 524
Getting Page-Aligned Storage 525
Freeing Storage . 526
Loading a Module . 527
Deleting a Module . 528

Including a Run-Time Message File 528
Additional Library Routines . 529
Summary of Application Types. 529

Chapter 35. Library Functions for System Programming C 531
__xhotc() — Set Up a Persistent C Environment (No Library) 531

Format . 531
Description . 531
Returned Value . 531
Example . 532
__xhotl() — Set Up a Persistent C Environment (With Library) 532
__xhott() — Terminate a Persistent C Environment 532
__xhotu() — Run a Function in a Persistent C Environment 533
__xregs() — Get Registers on Entry 533
__xsacc() — Accept Request for Service 534
__xsrvc() — Return Control from Service 534
__xusr() - __xusr2() — Get Address of User Word 535
__24malc() — Allocate Storage below 16MB Line 535
__4kmalc() — Allocate Page-Aligned Storage 535

Chapter 36. Using Run-Time User Exits 537
Using Run-Time User Exits in OS/390 Language Environment 537

Understanding the Basics 537
PL/I and C/370 Compatibility 537
User Exits Supported under OS/390 Language Environment. 538
Order of Processing of User Exits 538
Using Installation-Wide or Application-Specific User Exits 539
Using the Assembler User Exit 540
Using Sample Assembler User Exits 540
Assembler User Exit Interface 542
Parameter Values in the Assembler User Exit 546
PL/I and C/370 Compatibility 551
High Level Language User Exit Interface 551

Chapter 37. Using The OS/390 C MultiTasking Facility 555
Organizing a Program with MTF 555

Ensuring Computational Independence 556
Running a C Program without MTF 557
Running a C Program with MTF 558
Running a C Program with One Parallel Function. 558
Running a C Program with Two Different Parallel Functions 560
OS/390 C with Multiple Instances of the Same Parallel Function 561

Designing and Coding Applications for MTF 563
Step 1: Identifying Computationally-Independent Code 563
Step 2: Creating Parallel Functions 563

xiv OS/390 V2R10.0 C/C++ Programming Guide

Step 3: Inserting Calls to Parallel Functions 567
Changing an Application to Use MTF 567

Compiling and Linking Programs That Use MTF 572
Creating the Main Task Program Load Module 572
Creating the Parallel Functions Load Module 573
Specifying the Linkage-Editor Option 574
Modifying Run-Time Options 574

Running Programs That Use MTF 574
STEPLIB DD Statement . 574
DD Statements for Standard Streams 575
Example of JCL . 575
Debugging Programs That Use MTF 575
Avoiding Undesirable Results when Using MTF 575

Part 6. Programming with Other Products 579

Chapter 38. Using the Customer Information Control System (CICS) 581
Developing C and C++ Programs for the CICS Environment. 581
Preparing CICS for Use with OS/390 Language Environment 581
Designing and Coding for CICS 582

Using the CICS Command-Level Interface 582
Using Input and Output . 586
Using OS/390 C/C++ Library Support 588
Storage Management . 590
Using Interlanguage Support 591
Exception Handling . 591

MAP 0050: Error Handling in CICS 592
Example of Error Handling in CICS 592
ABEND Codes and Error Messages under OS/390 C/C++ 595
Coding Hints and Tips . 595

Translating and Compiling for Reentrancy 596
Translating . 596
Translating Example . 596
Compiling . 601
Sample JCL to Translate and Compile 601

Prelinking and Linking All Object Modules 602
Defining and Running the CICS Program 603

Program Processing . 603
Link Considerations for C Programs. 603
CSD Considerations . 604
Sample JCL to Install OS/390 C/C++ Application Programs 604

Chapter 39. Using Cross System Product (CSP) 605
Common Data Types . 605
Passing Control . 605
Running CSP under MVS . 606

Calling CSP Applications from OS/390 C 606
Examples . 606
Calling OS/390 C from CSP 609
Examples . 609

Running under CICS Control 613
Examples . 613

Chapter 40. Using Data Window Services (DWS) 619
CBC3GDW2 . 619

Example . 620

Contents xv

CBC3GDW1 . 620

Chapter 41. Using DB2 Universal Database 621
C++ Example . 621

CBC3GDB1 . 621
CBC3GDB2 . 622

C Example . 624
CBC3GDB4 . 624

Chapter 42. Using Graphical Data Display Manager (GDDM) 627
Example . 627

CBC3GGD1 . 628
CBC3GGD2 . 630

Chapter 43. Using the Information Management System (IMS) 633
Handling Errors . 633
Other Considerations . 634

Examples . 635

Chapter 44. Using the Interactive System Productivity Facility (ISPF) 643
Examples . 643

CBC3GIS1 . 644
CBC3GIS2 . 644
CBC3GIS3 . 645
CBC3GIS4 . 645
CBC3GIS5 . 646
CBC3GIS6 . 646
CBC3GIS7 . 647
CBC3GIS8 . 647
CBC3GIS9 . 647
CBC3GISA . 648
CBC3GISB . 648
CBC3GIS4 . 649
CBC3GIS5 . 649

Chapter 45. Using the Query Management Facility (QMF) 651
Example . 651

CBC3GQM1 . 651
CBC3GQM2 . 654
CBC3GQM3 . 655

Part 7. Internationalization: Locales and Character Sets 659

Chapter 46. Introduction to Locale 661
Internationalization in Programming Languages 661
Elements of Internationalization 661
OS/390 C/C++ Support for Internationalization 662
Locales and Localization . 662

Locale-Sensitive Interfaces 662

Chapter 47. Building a Locale 665
Using the charmap File . 665

The CHARMAP Section . 670
The CHARSETID Section 672

Locale Source Files. 673
LC_CTYPE Category . 676

xvi OS/390 V2R10.0 C/C++ Programming Guide

LC_COLLATE Category . 679
LC_MONETARY Category 686
LC_NUMERIC Category . 689
LC_TIME Category . 690
LC_MESSAGES Category 692
LC_TOD Category . 693
LC_SYNTAX Category . 695

Using the localedef Utility . 697
Locale Naming Conventions 698

Chapter 48. Customizing a Locale 705
Using the Customized Locale 706
Referring Explicitly to a Customized Locale 707

CBC3GCL1. 708
Referring Implicitly to a Customized Locale 709

CBC3GCL2. 709

Chapter 49. Customizing a Time Zone 711
Using the TZ or _TZ Environment Variable to Specify Time Zone 711
Relationship Between TZ or _TZ and LC_TOD. 712

Chapter 50. Definition of S370 C, SAA C, and POSIX C Locales 713
Differences between SAA C and POSIX C Locales 719

CBC3GDL1. 719

Chapter 51. Code Set Conversion Utilities 721
The genxlt Utility . 721
The iconv Utility . 721
Code Conversion Functions. 722
Code Set Converters Supplied. 722
Universal Coded Character Set Converters 741

Codeset Conversion Using UCS-2 745
UCMAP Source Format . 746

Chapter 52. Coded Character Set Considerations with Locale Functions 749
Variant Character Detail . 749

Mappings of 13 PPCS Variant Characters 750
Alternate Code Points . 751
Coding without Locale Support 751
Converting Existing Work 753
Writing Source Code in Coded Character Set IBM-1047 754
Coded Character Set Independence in Developing Applications 755
Coded Character Set of Source Code and Header Files 756
Converting Coded Character Sets at Compile Time 757
Working With Listings and Output Files 762
Considerations With Other Products and Tools 764

Part 8. Appendixes . 765

Appendix A. POSIX Character Set 767

Appendix B. Mapping Variant Characters for OS/390 C/C++ 771
Displaying Hexadecimal Values 771

Example . 771
CBC3GMV1 . 772

Using pragma Filetag To Specify Code Page in C 774

Contents xvii

Displaying Square Brackets When Using ISPF. 774
CBC3GMV2 . 775
Using The CBC3GMV2 Macro 775

Procedure for Mapping on 3279 776

Appendix C. OS/390 C/C++ Code Point Mappings 777

Appendix D. Locales Supplied with OS/390 C/C++ 779
Compiled Locales . 779
Locale Source Files. 782

Appendix E. Charmap Files Supplied with OS/390 C/C++. 787

Appendix F. Examples of Charmap and Locale Definition Source 789
Charmap File . 789
Locale Definition Source File 796

Appendix G. Converting Code from Coded Character Set IBM-1047 . . . 801
CBC3GHC1 . 801

Appendix H. Additional Examples 811
Memory Management . 811

CBC3GMI1 . 811
CBC3GMI2 . 812

Calling MVS WTO routines from C 821
CBC3GWT1 . 822
CBC3GWT2 . 823

Listing Partitioned Data Set Members 823
CBC3GIP1 . 824
CBC3GIP2 . 829

Appendix I. Using Built-In Functions 831

Appendix J. Application Considerations for OS/390 UNIX C/C++ 833
Relationship to DB2 Universal Database 833
Application Programming Environments Not Supported. 833
Support for the Curses Library. 833

Appendix K. External Variables. 835
errno . 835
daylight . 835
getdate_err . 835
h_errno . 836
__loc1 . 836
loc1 . 836
loc2 . 836
locs . 836
optarg. 836
opterr . 836
optind . 837
optopt . 837
signgam . 837
stdin . 837
stderr . 837
stdout . 837
t_errno . 837

xviii OS/390 V2R10.0 C/C++ Programming Guide

timezone. 837
tzname . 838

Notices . 839
Programming Interface Information 840
Trademarks. 840
Standards . 841

Glossary . 843

Bibliography . 871
OS/390 . 871
OS/390 C/C++ . 871
OS/390 Language Environment 871
Assembler . 871
COBOL . 872
PL/I . 872
VS FORTRAN. 872
CICS . 872
DB2 . 872
IMS/ESA. 873
QMF . 873
DFSMS . 873

INDEX . 875

Contents xix

||
||
||
||

xx OS/390 V2R10.0 C/C++ Programming Guide

Part 1. Introduction

© Copyright IBM Corp. 1996, 2000 1

2 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 1. About This Book

This book provides information about implementing programs that are written in C
and C++. It contains advanced guidelines and information for developing C and
C++ programs to run under OS/390.

Who Should Use This Book
To use this book, or any other books in the library of OS/390 C/C++ publications,
you must have a working knowledge of the C/C++ programming language. In
addition, you must have knowledge of the OS/390 operating system, and where
appropriate, the related products.

A Note about Examples
Examples that illustrate the use of the OS/390 C/C++ compiler use a simple style.
They are instructional examples, and do not attempt to minimize run time, conserve
storage, or check for errors. The examples do not demonstrate all the uses of C
and C++ language constructs. Some examples are only code fragments and will not
compile without additional code.

© Copyright IBM Corp. 1996, 2000 3

IBM OS/390 C/C++ and Related Publications
This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

Table 1. OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ Programming Guide,
SC09-2362

Guidance information for:
v C/C++ input and output
v Debugging OS/390 C programs that use input/output
v Using linkage specifications in C++
v Combining C and assembler
v Creating and using DLLs
v Using threads in an OS/390 UNIX application
v Reentrancy
v Using the decimal data type in C and C++
v Handling exceptions, error conditions, and signals
v Optimizing code
v Optimizing your C/C++ code with Interprocedural Analysis
v Network communications under OS/390 UNIX
v Interprocess communications using OS/390 UNIX
v Structuring a program that uses C++ templates
v Using environment variables
v Using System Programming C facilities
v Library functions for the System Programming C facilities
v Using runtime user exits
v Using the OS/390 C multitasking facility
v Using other IBM® products with OS/390 C/C++ (CICS, CSP, DWS, DB2,

GDDM, IMS, ISPF, QMF)
v Internationalization: locales and character sets, code set conversion utilities,

mapping variant characters
v POSIX character set
v Code point mappings
v Locales supplied with OS/390 C/C++
v Charmap files supplied with OS/390 C/C++
v Examples of charmap and locale definition source files
v Converting code from coded character set IBM-1047
v Using built-in functions
v Programming considerations for OS/390 UNIX C/C++

OS/390 C/C++ User’s Guide,
SC09-2361

Guidance information for:
v OS/390 C/C++ examples
v Compiler options
v Binder options and control statements
v Specifying OS/390 Language Environment runtime options
v Compiling, IPA Linking, binding, and running OS/390 C/C++ programs
v Using precompiled headers
v Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code

Set and Locale, ar and make, BPXBATCH)
v Diagnosing problems
v Cataloged procedures and REXX EXECs supplied by IBM
v Error messages and return codes

4 OS/390 V2R10.0 C/C++ Programming Guide

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ Language Reference,
SC09-2360

Reference information for:
v The C and C++ languages
v Lexical elements of OS/390 C and OS/390 C++
v Declarations, expressions, and operators
v Implicit type conversions
v Functions and statements
v Preprocessor directives
v C++ classes, class members, and friends
v C++ overloading, special member functions, and inheritance
v C++ templates and exception handling
v OS/390 C and OS/390 C++ compatibility

OS/390 C/C++ Run-Time Library
Reference, SC28-1663

Reference information for:
v C header files
v C Library functions

OS/390 C Curses, SC28-1907 Reference information for:
v Curses concepts
v Key data types
v General rules for characters, renditions, and window properties
v General rules of operations and operating modes
v Use of macros
v Restrictions on block-mode terminals
v Curses functional interface
v Contents of headers
v The terminfo database

OS/390 C/C++ Compiler and
Run-Time Migration Guide,
SC09-2359

Guidance and reference information for:
v Common migration questions
v Application executable program compatibility
v Source program compatibility
v Input and output operations compatibility
v Class library migration considerations
v Changes between releases of OS/390®

v C/370 to current compiler migration
v Other migration considerations

OS/390 C/C++ Reference Summary,
SX09-1313

Summary tables for:
v Character set, trigraphs, digraphs, and keywords
v Escape sequences, storage classes
v Predefined and derived types, type qualifiers
v Operator precedence, redirection symbols
v fprintf() format, type characters, and flag characters
v fscanf() format and type characters
v __amrc structure
v Hardware exceptions and signals
v Compiler return codes
v Compiler options
v #pragma directives
v Library functions
v Utilities

Chapter 1. About This Book 5

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ IBM Open Class
Library User’s Guide, SC09-2363

Guidance information for:
v Using the Complex Mathematics Class Library: Review of complex

numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

v Using the I/O Stream Class Library: Introduction, getting started, advanced
topics, and manipulators

v Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception handling,
tutorials, problem solving, compatibility with previous releases, thread safety

v Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads
and protecting data, the IBM Open Class* notification framework, Binary
Coded (Packed) Decimal classes

OS/390 C/C++ IBM Open Class
Library Reference, SC09-2364

Reference information for:
v Complex Mathematics Class Library
v I/O Stream Class Library
v Collection Class Library
v Application Support Class Library

Debug Tool User’s Guide and
Reference, SC09-2137

Guidance and reference information for:
v Preparing to debug programs
v Debugging programs
v Using Debug Tool in different environments
v Language-specific information
v Debug Tool reference

APAR and BOOKS files (Shipped with
Program materials)

Partitioned data set CBC.SCBCDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the IBM OS/390 C/C++ licensed program, including:
v Isolating reportable problems
v Keywords
v Preparing an Authorized Program Analysis Report (APAR)
v Problem identification worksheet
v Maintenance on OS/390
v Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to OS/390 Language Environment Programming Guide,
SC28-1939. For complete and detailed information on using interlanguage calls, refer to OS/390 Language
Environment Writing Interlanguage Applications, SC28-1943.

The following table lists the OS/390 C/C++ and related publications. The table
groups the publications according to the tasks they describe.

Table 2. Publications by Task

Tasks Books

Planning, preparing, and migrating to OS/390
C/C++

v OS/390 C/C++ Compiler and Run-Time Migration Guide,
SC09-2359

v OS/390 Language Environment Customization, SC28-1941
v OS/390 UNIX System Services Planning, SC28-1890
v OS/390 Planning for Installation, GC28-1726
v OS/390 Task Atlas, available on the OS/390 Library page on the

World Wide Web (http://www.ibm.com/s390/os390/bkserv/)

6 OS/390 V2R10.0 C/C++ Programming Guide

Table 2. Publications by Task (continued)

Tasks Books

Installing v OS/390 Program Directory
v OS/390 Planning for Installation, GC28-1726
v OS/390 Language Environment Customization, SC28-1941

Coding programs v OS/390 C/C++ Run-Time Library Reference, SC28-1663
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 C/C++ Reference Summary, SX09-1313
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 Language Environment Concepts Guide, GC28-1945
v OS/390 Language Environment Programming Guide, SC28-1939
v OS/390 Language Environment Programming Reference,

SC28-1940
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
v OS/390 C/C++ IBM Open Class Library Reference, SC09-2364

Coding and binding programs with
interlanguage calls

v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 Language Environment Programming Guide, SC28-1939
v OS/390 Language Environment Writing Interlanguage Applications,

SC28-1943
v OS/390 DFSMS Program Management, SC27-0806

Compiling, binding, and running programs v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 Language Environment Programming Guide, SC28-1939
v OS/390 Language Environment Debugging Guide and Run-Time

Messages, SC28-1942
v OS/390 DFSMS Program Management, SC27-0806
v OS/390 Messages Database, available on the OS/390 Library page

on the World Wide Web (http://www.ibm.com/s390/os390/bkserv/)

Compiling and binding applications in the
OS/390 UNIX environment

v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 UNIX System Services User’s Guide, SC28-1891
v OS/390 UNIX System Services Command Reference, SC28-1892
v OS/390 DFSMS Program Management, SC27-0806

Debugging programs v README file
v Debug Tool User’s Guide and Reference, SC09-2137
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 Language Environment Programming Guide, SC28-1939
v OS/390 Language Environment Debugging Guide and Run-Time

Messages, SC28-1942
v OS/390 UNIX System Services Messages and Codes, SC28-1908
v OS/390 UNIX System Services User’s Guide, SC28-1891
v OS/390 UNIX System Services Command Reference, SC28-1892
v OS/390 UNIX System Services Programming Tools, SC28-1904

Using shells and utilities in the OS/390 UNIX
environment

v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 UNIX System Services Command Reference, SC28-1892
v OS/390 UNIX System Services Messages and Codes, SC28-1908

Using sockets library functions in the OS/390
UNIX environment

v OS/390 C/C++ Run-Time Library Reference, SC28-1663

Chapter 1. About This Book 7

Table 2. Publications by Task (continued)

Tasks Books

Porting a UNIX® Application to OS/390 v OS/390 UNIX System Services Porting Guide

This guide contains useful information about supported header files
and C functions, sockets in an OS/390 UNIX environment, process
management, compiler optimization tips, and suggestions for
improving the application’s performance after it has been ported.
The Porting Guide is available as a PDF file which you can
download, or as web pages which you can browse, at the following
web address: http://www.ibm.com/s390/unix/bpxa1por.html

Working in the OS/390 UNIX System Services
Parallel Environment

v OS/390 UNIX System Services Parallel Environment: Operation
and Use, SC33-6697

v OS/390 UNIX System Services Parallel Environment: MPI
Programming and Subroutine Reference, SC33-6696

Performing diagnosis and submitting an
Authorized Program Analysis Report (APAR)

v OS/390 C/C++ User’s Guide, SC09-2361
v CBC.SCBCDOC(APAR) on OS/390 C/C++ product tape

Tuning Large C/C++ Applications on OS/390
UNIX System Services

v IBM Redbook called Tuning Large C/C++ Applications on OS/390
UNIX System Services, which is available at:
http://www.redbooks.ibm.com/abstracts/sg245606.html

Quick reference v OS/390 C/C++ Reference Summary, SX09-1313

Note: For information on using the prelinker, see the appendix on prelinking and linking OS/390 C/C++ programs in
OS/390 C/C++ User’s Guide. As of Release 4, this appendix contains information that was previously in the chapter on
prelinking and linking OS/390 C/C++ programs in OS/390 C/C++ User’s Guide. It also contains prelinker information
that was previously in OS/390 C/C++ Programming Guide.

Hardcopy Books
The following OS/390 C/C++ books are available in hardcopy:
v OS/390 C/C++ Run-Time Library Reference, SC28-1663
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Reference Summary, SX09-1313
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
v OS/390 C Curses, SC28-1907
v OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359
v Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive
OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359 at no charge.
Feature code 8009 includes the remaining books.

PDF Books
All of the OS/390 C/C++ publications are supplied in PDF format. The books are
available on a CD-ROM called OS/390 PDF Library Collection, SK2T-6718. They
are also available at the following Web Site:
http://www.ibm.com/software/ad/c390/cmvsdocs.html

To read a PDF file, use the Adobe Acrobat Reader. If you do not have the Adobe
Acrobat Reader, you can download it for free from the Adobe Web Site:
http://www.adobe.com

8 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|

Softcopy Books
All of the OS/390 C/C++ publications (except for OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on the
tape that accompanies the OS/390 product, and on a CD-ROM called IBM Online
Library Omnibus Edition OS/390 Collection, SK2T-6700.

To read the softcopy books, use BookManager® READ/MVS Version 1 Release 3
(5695-046) or the Library Reader™ for DOS, OS/2® or Windows® supplied on the
CD-ROMs containing BookManager books.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If you
know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The Library"
link on the OS/390 home page. The web address for this page is:
http://www.ibm.com/s390/os390

Softcopy Examples
Most of the larger examples in the following books are available in
machine-readable form:
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
v OS/390 C/C++ IBM Open Class Library Reference, SC09-2364

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
x refers to a publication:
v R and X refer to OS/390 C/C++ Language Reference, SC09-2360
v G refers to OS/390 C/C++ Programming Guide, SC09-2362
v U refers to OS/390 C/C++ User’s Guide, SC09-2361
v A refers to OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Examples labelled as CBCxyyy appear in OS/390 C/C++ Language Reference,
OS/390 C/C++ Programming Guide, and OS/390 C/C++ User’s Guide. Examples
labelled as CLBxyyy appear in OS/390 C/C++ IBM Open Class Library User’s
Guide.

An exception applies to the example names for the Collection Class Library which
do not follow a naming convention. These examples are in OS/390 C/C++ IBM
Open Class Library Reference, SC09-2364.

Chapter 1. About This Book 9

|
|
|

OS/390 C/C++ on the World Wide Web
Additional information on OS/390 C/C++ is available on the World Wide Web on the
OS/390 C/C++ home page at:
http://www.ibm.com/software/ad/c390

This page contains late-breaking information about the OS/390 C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The OS/390 C/C++ home page also
contains samples that you can download, and links to other related Web sites.

How to Read the Syntax Diagrams
This book describes the syntax for commands, directives, and statements, using the
following structure:

v Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

A double right arrowhead indicates the beginning of a command, directive, or
statement. A single right arrowhead indicates that it is continued on the next line.
In the following diagrams, "statement" represents a command, directive, or
statement.

%% statement %&

v Required items are on the horizontal line (the main path).

%% statement required_item %&

v Optional items are below the main path.

%% statement
optional_item

%&

v If you can choose from two or more items, they are vertical in a stack.

If you must choose one of the items, one item of the stack is on the main path.

%% statement required_choice1
required_choice2

%&

If choosing one of the items is optional, the entire stack is below the main path.

%% statement
optional_choice1
optional_choice2

%&

v An arrow that returns to the left above the main line indicates an item that you
can repeat.

10 OS/390 V2R10.0 C/C++ Programming Guide

%% 'statement repeatable_item %&

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

v Keywords are not italicized, and should be entered exactly as shown (for
example, pragma). You must spell keywords exactly as shown in the syntax
diagram. Variables are in lowercase italics (in hardcopy), for example, identifier.
They represent user-supplied names or values.

v If the syntax diagram shows punctuation marks, parentheses, arithmetic
operators, or other nonalphanumeric characters, you must enter them as part of
the syntax.

Note: You do not always require the white space between tokens. You should,
however, include at least one blank space between tokens unless otherwise
specified.

The following syntax diagram example shows the syntax for the #pragma comment
directive.

%%
(1) (2) (3)

pragma
(4)

comment %

%
(5) (6) (9) (10)

(compiler)
date
timestamp

copyright
user (7) (8)

, " token_sequence "

%&

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must follow the # symbol.

4 The keyword comment must follow the keyword pragma.

5 An opening parenthesis must follow the keyword comment.

6 The comment type must be entered only as one of the following: compiler,
date, timestamp, copyright, or user.

7 If the comment type is copyright or user, and an optional character string is
following, a comma must be present after the comment type.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram above:

Chapter 1. About This Book 11

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

12 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 2. About IBM OS/390 C/C++

The C/C++ feature of the IBM OS/390 licensed program provides support for C and
C++ application development on the OS/390 platform. The C/C++ feature is based
on the C/C++ for MVS/ESA product.

IBM OS/390 C/C++ includes:
v A C compiler (referred to as the OS/390 C compiler)
v A C++ compiler (referred to as the OS/390 C++ compiler)
v Support for a set of C++ class libraries that are available with the base OS/390

operating system
v Application Support Class and Collection Class Library source
v A mainframe interactive Debug Tool (optional)
v Performance Analyzer host component, which supports the C/C++ Productivity

Tools for OS/390 product
v A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX®, OS/2, OS/400®,
VM/ESA®, VSE/ESA, and Windows operating systems. The AIX, OS/2, OS/400, and
Windows operating systems also offer the C++ language.

Changes for Version 2 Release 10
OS/390 C/C++ has made the following performance and usability enhancements for
this release:

Extra Performance Linkage (XPLINK)
Extra Performance Linkage (XPLINK) is a new call linkage between
functions that has the potential for a significant performance
increase when used in an environment of frequent calls between
small functions. XPLINK makes subroutine calls more efficient by
removing nonessential instructions from the main path. When all
functions are compiled with the XPLINK option, pointers can be
used without restriction, which makes it easier to port new
applications to S/390®.

GOFF The Generalized Object File Format (GOFF) is the strategic object
module format for S/390. It extends the capabilities of object
modules to contain more information than current object modules. It
removes the limitations of the previous object module format and
supports future enhancements. GOFF makes re-binding easier and
more efficient. It is required for XPLINK.

IPA Level 2 Under IPA Level 1, many optimizations such as constant
propagation and pointer analysis are performed at the
intraprocedural (subprogram) level. With IPA Level 2, these
optimizations are performed across the entire program, which can
result in significant improvement in the generated code.

Addition of @STATIC Map into Compiler Listing
The @STATIC Map displays offset information for file scope
read/write static variables.

This release has introduced the following compiler option:

COMPACT During optimizations performed during code generation, for both
NOIPA and IPA, choices must be made between those

© Copyright IBM Corp. 1996, 2000 13

|

|
|

|
|
|
|
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|

|
|
|

|

||
|

optimizations which tend to result in faster but larger code and
those which tend to result in smaller but slower code. The COMPACT
| NOCOMPACT option controls these choices. When the COMPACT
option is used, the compiler favors those optimizations which tend
to limit the growth of the code. This feature gives you the flexibility
to choose between faster but larger code or slower and smaller
code.

For details on how to use this compiler option, see the chapter Compiler Options in
OS/390 C/C++ User’s Guide.

The IBM System Object Model™ (SOM) is no longer supported in the C++ compiler
and the IBM Open Class™ Library. The SOM-enabled class library DLLs have been
stabilized at the V2R9 level and continue to be shipped as a run-time environment
only. You cannot use the V2R10 Compiler to build SOM® applications.

The Model Tool is no longer available.

The option_override #pragma directive defines function-specific options that
override those specified by the command line options when performing optimization
for code and data in that subprogram. This enables finer control of program
optimization. In V2R10 we have added support for the COMPACT and SPILL options.
The subprogram-specific SPILL option is not a new option, however, the maximum
spill area size has been increased for this release to 1073741823 bytes or 230–1
bytes.

OS/390 Language Environment® Downward Compatibility
OS/390 Release 10 Language Environment provides downward compatibility
support. Assuming that you have met the required programming guidelines and
restrictions, described in OS/390 Language Environment Programming Guide, this
support enables you to develop applications on higher release levels of OS/390 for
use on platforms that are running lower release levels of OS/390. In C and C++,
downward compatibility support is provided through the C/C++ TARGET compiler
option. See the OS/390 C/C++ User’s Guide for details on this compiler option.

For example, a company may use OS/390 Release 10 with Language Environment
on a development system where applications are coded, link-edited, and tested,
while using any supported lower release of OS/390 Language Environment on their
production systems where the finished application modules are used.

Downward compatibility support is not the roll-back of new function to prior releases
of OS/390. Applications developed that exploit the downward compatibility support
must not use any Language Environment function that is unavailable on the lower
release of OS/390 where the application will be used.

The downward compatibility support includes toleration PTFs for lower releases of
OS/390 to assist in diagnosing applications that do not meet the programming
requirements for this support. (Specific PTF numbers can be found in the PSP
buckets.)

The downward compatibility support provided by OS/390 Release 10 and by the
toleration PTFs does not change Language Environment’s upward compatibility.
That is, applications coded and link-edited with one release of OS/390 Language
Environment will continue to run on later releases of OS/390 Language

14 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

Environment without the need to recompile or re-link edit the application,
independent of the downward compatibility support.

Downward compatibility is supported in earlier releases of OS/390 C/C++ (from
Release 6), but in earlier releases of OS/390 the user is required to copy header
files and link-edit syslib datasets from the deployment release of OS/390. With
Release 10, the Release 10 header files and syslib datasets can be used.

The C/C++ Compilers
The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language
The C language is a general purpose, versatile, and functional programming
language that allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language
The C++ language is based on the C language, but incorporates support for
object-oriented concepts. For a detailed description of the differences between
OS/390 C++ and OS/390 C, refer to the OS/390 C/C++ Language Reference.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

Common Features of the OS/390 C and C++ Compilers
The C and C++ compilers offer many features to help your work:

v Optimization support:

– Algorithms to take advantage of S/390 architecture to get better optimization
for speed and use of computer resources through the OPTIMIZE and IPA
compiler options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the
machine instructions it generates to produce faster-running object code to
improve application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

v DLLs (dynamic link libraries) to share parts among applications or parts of
applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use
a definition located in another executable at run time. You can use both
load-on-reference and load-on-demand DLLs. When your program refers to a

Chapter 2. About IBM OS/390 C/C++ 15

|
|

|
|
|
|

|
|

function or variable which resides in a DLL, OS/390 C/C++ generates code to
load the DLL and access the functions and variables within it. This is called
load-on-reference. Alternatively, your program can use OS/390 C library functions
to load a DLL and look up the address of functions and variables within it. This is
called load-on-demand. Your application code explicitly controls load-on-demand
DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve system
memory usage. DLLs also offer more flexibility for building, packaging, and
redistributing applications.

v Full program reentrancy.

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. OS/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The OS/390
C++ compiler always ensures that C++ programs are reentrant.

v Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification, System
Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to
use locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,
PL/1, compiled Java™, and Fortran, to enable programmers to integrate OS/390
C/C++ code with existing applications.

v Exploitation of OS/390 and OS/390 UNIX technology.

OS/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

v When used with OS/390 UNIX and OS/390 Language Environment, support for
the following standards at the system level:

– A subset of the extended multibyte and wide character functions as defined by
the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), as applicable to the S/390 environment.

– X/Open CAE Specification, Network Services, Issue 4

v Year 2000 support

v Support for the Euro currency.

OS/390 C Compiler Specific Features
In addition to the features common to OS/390 C and C++, the OS/390 C compiler
provides you with the following capabilities:

16 OS/390 V2R10.0 C/C++ Programming Guide

v The ability to write portable code that supports the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Language Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use OS/390 C in place of
assembler

v Additional optimization capabilities through the INLINE compile-time option

v Extensions of the standard definitions of the C language to provide programmers
with support for the OS/390 environment, such as fixed-point (packed) decimal
data support

OS/390 C++ Compiler Specific Features
In addition to the features common to OS/390 C and C++, the OS/390 C++
compiler provides you with the following:

v An implementation based on the definition of the language that is contained in
the Draft Proposal International Standard for Information Systems – Programming
Language C++ (X3J16/92-00091). The OS/390 C++ compiler also supports a
subset of the International Standard for the C++ Programming Language
(ISO/IEC 14882-1998) specification. The following items in the standard are not
supported by OS/390 C++:

– New cast syntax and semantics

- dynamic_cast

- static_cast

- reinterpret_cast

- const_cast

– Explicit specifier

– Mutable specifier

– Namespace

– Run-Time Type Identification (RTTI)

– ANSI Template (supports the specification in X3J16/92-00091 as mentioned
above)

– The bool built-in boolean data type

– Run-time standard exceptions

- bad_alloc

- bad_exception

- bad_cast

– Universal Character Names

– ANSI C++ Standard Class Library (which includes the Standard Template
Library)

v C++ template support and exception handling.

Utilities
The OS/390 C/C++ compilers provide the following utilities:

v The CXXFILT Utility to map OS/390 C++ mangled names to the original source.

v The localedef Utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use.

Chapter 2. About IBM OS/390 C/C++ 17

|

|
|

v The DSECT Conversion Utility to convert descriptive assembler DSECTs into
OS/390 C/C++ data structures.

OS/390 Language Environment provides the following utilities:

v The Object Library Utility (C370LIB) to update partitioned data set (PDS and
PDS/E) libraries of object modules and Interprocedural Analysis (IPA) object
modules.

v The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged. The DLL Rename Utility does not
support XPLINK.

v The prelinker which combines object modules that comprise an OS/390 C/C++
application, to produce a single object module. The prelinker supports only object
and extended object format input files, and does not support GOFF.

Class Libraries
IBM OS/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge®

C++ Version 3.0 product family. These class libraries are:

v The I/O Stream Class Library

The I/O Stream Class Library lets you perform input and output (I/O) operations
independent of physical I/O devices or data types that are used. You can code
sophisticated I/O statements easily and clearly, and define input and output for
your own data types. You can improve the maintainability of programs that use
input and output by using the I/O Stream Class Library.

v The Complex Mathematics Class Library

The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

v The Application Support Class Library

The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date,
Time, and Decimal.

v The Collection Class Library

The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every collection.
Programmers can start programming by using a high level of abstraction, and
later replace an abstract data type with the appropriate concrete implementation.
Each abstract data type has a common interface for all of its implementations.
The Collection Class Library provides programmers with a consistent set of
building blocks from which they can derive application objects. The library design
exploits features of the C++ language such as exception handling and template
support.

All of the libraries that are described above are thread-safe.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in addition
to the side-deck available for the combined library.

18 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|

|
|
|

|
|
|

|

|

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

The DLLs for the Open Class libraries are compiled without XPLINK. If you use
these DLLs with XPLINK applications, the performance gain you realize in your
application code by using XPLINK may be offset partially or completely (depending
on the frequency of use of DLL functions) by the cost of switching to the non-XPLINK
environment when crossing the boundary between your application code and the
class library code in the DLL. If you use these DLLs with XPLINK applications, you
may notice reduced performance. There are two ways to avoid this problem:

v Use the static library instead of the DLL. This static library has both the XPLINK
and NOXPLINK versions of the objects.

v For the Application Support Class Library or Collection Class Library, recompile
the source code that is shipped with OS/390 C/C++. For build instructions, refer
to the CBC.SCLDBLD readme file.

Class Library Source
The Class Library Source consists of the following:

v Application Support Class Library source code

v Collection Class Library source code (C++ native)

v Instructions for building the Application Support Class and Collection Class
Libraries in C++ native (static and DLL) versions

v Class Library Language Environment message file source

v Instructions for building the Class Library Language Environment message files

The Debug Tool
IBM OS/390 C/C++ supports program development by using theDebug Tool. This
optionally available tool allows you to debug applications in their native host
environment, such as CICS/ESA®, IMS/ESA, DB2®, and so on. The Debug Tool
provides the following support and function:
v Step mode
v Breakpoints
v Monitor
v Frequency analysis
v Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

Note: You can also use the dbx shell command to debug programs, as described in
OS/390 UNIX System Services Command Reference, SC28-1892.

For further information, see “IBM C/C++ Productivity Tools for OS/390” on page 20.

Chapter 2. About IBM OS/390 C/C++ 19

|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

|
|

|

IBM C/C++ Productivity Tools for OS/390
With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your
OS/390 application development environment out to the workstation, while
remaining close to your familiar host environment. IBM C/C++ Productivity Tools for
OS/390 includes the following workstation-based tools to increase your productivity
and code quality:

v A Performance Analyzer to help you analyze, understand, and tune your C and
C++ applications for improved performance

v A Distributed Debugger that allows you to debug C or C++ programs from the
convenience of the workstation

v A workstation-based editor to improve the productivity of your C and C++ source
entry

v Advanced online help, with full text search and hypertext topics as well as
printable, viewable, and searchable Portable Document Format (PDF) documents

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host
components:

v Debug Tool

v Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and
analyze a profile of the execution of your host OS/390 C or C++ application. Use
this information to time and tune your code so that you can increase the
performance of your application.

Use the Distributed Debugger to debug your OS/390 C/C++ application remotely
from your workstation. Set a break point with the simple click of the mouse. Use the
windowing capabilities of your workstation to view multiple segments of your source
and your storage, while monitoring a variable at the same time.

Use the workstation-based editor to quickly develop C and C++ application code
that runs on OS/390. Context-sensitive help information is available to you when
you need it.

References to Performance Analyzer in this document refer to the IBM OS/390
Performance Analyzer included in the C/C++ Productivity Tools for OS/390 product.

OS/390 Language Environment
IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of runtime
services available with OS/390 Language Environment (formerly Language
Environment for MVS™ & VM, Language Environment/370 and LE/370).

OS/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services, as shown below. OS/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

20 OS/390 V2R10.0 C/C++ Programming Guide

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS/390 Language Environment provides a variety of services:

v Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. OS/390 C/C++ contains
these functions within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

v Runtime options that help in the execution, performance, and diagnosis of your
application.

v Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

v Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

For more information, see the Language Environment home page at the following
web address:
http://www.ibm.com/s390/le/

The Program Management Binder
The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the
IPA compile-time option)

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

Chapter 2. About IBM OS/390 C/C++ 21

v Input of object modules, load modules, and program objects

v Improved long name support:
– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, enabling full cross-referencing
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in a
PDS), or bind it into a load module or a program object stored in a PDS, PDSE, or
HFS file.

Note: For further information on the binder, refer to the DFSMS home page at
http://www.ibm.com/storage/software/sms/smshome.htm.

OS/390 UNIX System Services (OS/390 UNIX)
OS/390 UNIX provides capabilities under OS/390 to make it easier to implement or
port applications in an open, distributed environment. OS/390 UNIX Services are
available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

OS/390 UNIX provides support for both existing OS/390 applications and new
OS/390 UNIX applications:

v C programming language support as defined by ISO/ANSI C

v C++ programming language support

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:
System Interfaces and Headers, Issue 4, Version 2, which provides standard
interfaces for better source code portability with other conforming systems; and
X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open
UNIX descriptions of sockets and X/Open Transport Interface (XTI)

v OS/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

v The OS/390 UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– A shell, tcsh, based on the C shell, csh

– Tools and utilities that support the X/Open Single UNIX Specification, also
known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
OS/390 support. The following is a partial list of utilities that are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from a
shell session

c89 Compiles, assembles, and binds OS/390 UNIX C applications

dbx Provides an environment to debug and run programs

22 OS/390 V2R10.0 C/C++ Programming Guide

|

|
|

|

|

||

gencat Merges the message text source files Messagefile (usually
*.msg) into a formatted message Catalogfile (usually *.cat)

iconv Converts characters from one code set to another

lex Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

localedef Creates a compiled locale object

make Helps you manage projects containing a set of interdependent
files, such as a program with many OS/390 C/C++ source and
object files, keeping all such files up to date with one another

yacc Allows you to write compilers and other programs that parse
input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, assembles, and binds OS/390 UNIX C++
applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

v The OS/390 UNIX Debugger feature, which provides the dbx interactive symbolic
debugger for OS/390 UNIX applications

v OS/390 UNIX, which provides access to a hierarchical file system (HFS), with
support for the POSIX.1 and XPG4 standards

v OS/390 C/C++ I/O routines, which support using HFS files, standard OS/390
data sets, or a mixture of both

v Application threads (with support for a subset of POSIX.4a)

v Support for OS/390 C/C++ DLLs

OS/390 UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
OS/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you
may find that the OS/390 UNIX environment can enhance your productivity. Refer to
OS/390 UNIX System Services User’s Guide for more information on the Shell and
Utilities.

For more information, see the OS/390 UNIX home page at the following web
address:
http://www.ibm.com/s390/unix/

Chapter 2. About IBM OS/390 C/C++ 23

||

||

OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions
All OS/390 UNIX C functions are available at all times. In some situations, you must
specify the POSIX(ON) runtime option. This is required for the POSIX.4a threading
functions, and the system() and signal handling functions where the behavior is
different between POSIX/XPG4 and ANSI. Refer to OS/390 C/C++ Run-Time
Library Reference for more information about requirements for each function.

You can invoke an OS/390 C/C++ program that uses OS/390 UNIX C functions
using the following methods:

v Directly from an OS/390 UNIX Shell.

v From another program, or from an OS/390 UNIX Shell, using one of the exec
family of functions, or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime option.

Input and Output
The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The C++
I/O Stream Class Library provides additional support.

I/O Interfaces
The C/C++ runtime library supports the following I/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method. This method
processes all input and output by character.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is an OS/390 C/C++ extension to the ANSI standard.

TCP/IP Sockets I/O
OS/390 UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known as
sockets. A set of C language functions provides support for OS/390 UNIX
sockets. OS/390 UNIX sockets correspond closely to the sockets that are
used by UNIX applications that use the Berkeley Software Distribution
(BSD) 4.3 standard (also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking Services, Issue 4, is
supplied as an additional choice. This interface is known as X/Open
Sockets.

The OS/390 UNIX socket application program interface (API) provides
support for both UNIX domain sockets and Internet domain sockets. UNIX
domain sockets, or local sockets, allow interprocess communication within
OS/390 independent of TCP/IP. Local sockets behave like traditional UNIX
sockets and allow processes to communicate with one another on a single
system. With Internet sockets, application programs can communicate with
others in the network using TCP/IP.

24 OS/390 V2R10.0 C/C++ Programming Guide

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output for
your own data types. This helps improve the maintainability of programs that use
input and output.

File Types
In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
OS/390 C/C++ has native support for three types of VSAM data
organization:

v Key-sequenced data sets (KSDS). Use KSDS to access a record through
a key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

v Entry-sequenced data sets (ESDS). Use ESDS to access data in the
order it was created (or in the reverse order).

v Relative-record data sets (RRDS). Use RRDS for data in which each
item has a particular number (for example, a telephone system with a
record associated with each number).

For more information on how to perform I/O operations on these VSAM file
types, see “Chapter 13. Performing VSAM I/O Operations” on page 161.

Hierarchical File System Files
OS/390 C/C++ recognizes Hierarchical File System (HFS) file names. The
name specified on the fopen() or freopen() call has to conform to certain
rules (described in OS/390 C/C++ Programming Guide). You can create
regular HFS files, special character HFS files, or FIFO HFS files. You can
also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than to
devices. Since memory files reside in main storage and only exist while the
program is executing, you primarily use them as work files. You can access
memory files across load modules through calls to non-POSIX system()
and C fetch(); they exist for the life of the root program. Standard streams
can be redirected to memory files on a non-POSIX system() call using
command line redirection.

Hiperspace Expanded Storage
Large memory files can be placed in Hiperspace™ expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to 2 gigabytes of
contiguous virtual storage space. A program can use this storage as a
buffer (1 gigabyte = 230 bytes).

Additional I/O Features
IBM OS/390 C/C++ provides additional I/O support through the following features:

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the
DFSMS/MVS® support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

Chapter 2. About IBM OS/390 C/C++ 25

v Full support of PDS/Es on OS/390 — including support for multiple members
opened for write

v Overlapped I/O support under OS/390 (NCP, BUFNO)

v Multibyte character I/O functions

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD
or tape

v Support for Generation Data Group I/O

The System Programming C Facility
The System Programming C (SPC) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services available
on your operating system. SPC offers a number of advantages:

v You can develop applications that you can execute in a customized environment
rather than with OS/390 Language Environment services. Note that if you do not
use OS/390 Language Environment services, only some built-in functions and a
limited set of C/C++ runtime library functions are available to you.

v You can substitute the OS/390 C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SPC.

v SPC lets you develop applications featuring a user-controlled environment, in
which an OS/390 C environment is created once and used repeatedly for C
function execution from other languages.

v You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products
When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:

v Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS/390 C++ program can use interlanguage calls (ILC) to
call OS/390 C programs that access CSP.

v Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++ application
programs. The CICS® Command-Level Interface provides data, job, and task
management facilities that are normally provided by the operating system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

v DB2 Universal Database™ (UDB) for OS/390

26 OS/390 V2R10.0 C/C++ Programming Guide

DB2 programs manage data that is stored in relational databases. You can
access the data by using a structured set of queries that are written in Structured
Query Language (SQL).

The DB2 program uses SQL statements that are embedded in the program. The
SQL translator (DB2 preprocessor) translates the embedded SQL into host
language statements that perform the requested functions. The OS/390 C/C++
compilers compile the output of the SQL translator. The DB2 program processes
a request, and processing returns to the application.

v Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

v Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture (IMS/ESA)
product provides support for hierarchical databases.

v Interactive System Productivity Facility (ISPF)

OS/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a
person and a computer. The dialog interface contains display, variable, message,
and dialog services as well as other facilities that are used to write interactive
applications.

v Graphical Data Display Manager (GDDM)

GDDM® provides a comprehensive set of functions to display and print
applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts — including support for double-byte character set (DBCS)

– Business image support

– Saving and restoring graphic pictures

– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)

OS/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable interface.
You can create applications to perform a variety of tasks, such as data entry,
query building, administration aids, and report analysis.

v OS/390 Java Support

The Java language supports the Java Native Interface (JNI) for making calls to
and from C/C++. These calls do not use ILC support but rather the Java defined
interface JNI. Java code, which has been compiled using the High Performance
Compiler for Java (HPCJ), will support the JNI interface. There is no distinction
between compiled Java and interpretted Java as far as calls to C or C++.

Additional Features of OS/390 C/C++

Feature Description

long long Data Type The OS/390 C/C++ compiler supports long long as a native data type in
LANGLVL(EXTENDED) mode.

Multibyte Character Support OS/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Chapter 2. About IBM OS/390 C/C++ 27

||
|

Feature Description

Wide Character Support Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

OS/390 C/C++ provides three S/390 floating-point number data types: single precision
(32 bits), declared as float; double precision (64 bits), declared as double; and
extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, OS/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and long double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if you
specify the FLOAT(IEEE754) compile option. For details on this support, see the
description of the FLOAT option in OS/390 C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support OS/390 C/C++ provides message text in either American English or Japanese. You can
dynamically switch between the two languages.

Locale Definition Support OS/390 C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page to
another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multi-threading Threads are efficient in applications that allow them to take advantage of any
underlying parallelism available in the host environment. This underlying parallelism in
the host can be exploited either by forking a process and creating a new address
space, or by using multiple threads within a single process. For more information, refer
to the “Chapter 23. Using Threads in an OS/390 UNIX Application” on page 321

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks at
the same time. OS/390 C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of OS/390 to allow a single OS/390 C application program to
use more than one processor of a multiprocessing system simultaneously.
Note: XPLINK is not supported in an MTF environment. You can also use threads to
perform multitasking with or without XPLINK, as described in the “Chapter 23. Using
Threads in an OS/390 UNIX Application” on page 321.

Packed Structures and
Unions

OS/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of an OS/390 C program or to
define structures that are laid out according to COBOL or PL/I structure layout rules.

Fixed-point (Packed)
Decimal Data

OS/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

28 OS/390 V2R10.0 C/C++ Programming Guide

||
|
|
|
|

|
|
|
|

|
|

Feature Description

Long Name Support For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under
OS/390, OS/390 UNIX, and TSO. You can also use the system() function to call
EXECs on OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA Support for OS/390, IMS/ESA®, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(2) instructs the compiler to generate
faster instruction sequences available only on newer machines. ARCH(3) also generates
these faster instruction sequences and enables support for IEEE 754 Binary
Floating-Point instructions. Code compiled with ARCH(2) runs on a G2, G3, G4, and
2003 processor and code compiled with ARCH(3) runs on a G5 or G6 processor, and
follow-on models.

Use the TUNE compiler option to optimize your application for a selected machine
architecture. TUNE impacts performance only; it does not impact the processor model on
which you will be able to run your application. TUNE(3) optimizes your application for the
newer G4, G5, and G6 processors. TUNE(2) optimizes your application for other
architectures. For information on which machines and architectures support the above
options, refer to the ARCHITECTURE and TUNE compiler information in OS/390 C/C++
User’s Guide.

Chapter 2. About IBM OS/390 C/C++ 29

|
|
|

|
|

30 OS/390 V2R10.0 C/C++ Programming Guide

Part 2. Input and Output

This part describes the models of input and output available with IBM OS/390
C/C++. C++ has its own way of handling input and output, the I/O Stream class
library. “Chapter 5. Using the I/O Stream Class Library in C++” on page 47 contains
a brief description of C++ I/O, but for a more complete description and examples,
you should see the OS/390 C/C++ IBM Open Class Library User’s Guide and the
OS/390 C/C++ IBM Open Class Library Reference.

v “Chapter 3. Introduction to C and C++ Input and Output” on page 33

v “Chapter 4. Understanding Models of C I/O” on page 35

v “Chapter 5. Using the I/O Stream Class Library in C++” on page 47

v “Chapter 6. Opening Files” on page 49

v “Chapter 7. Buffering of C Streams” on page 69

v “Chapter 8. Using ASA Text Files” on page 71

v “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 75

v “Chapter 10. Using C and C++ Standard Streams and Redirection” on page 83

v “Chapter 11. Performing OS I/O Operations” on page 103

v “Chapter 12. Performing Hierarchical File System I/O Operations” on page 139

v “Chapter 13. Performing VSAM I/O Operations” on page 161

v “Chapter 14. Performing Terminal I/O Operations” on page 199

v “Chapter 15. Performing Memory File and Hiperspace I/O Operations” on
page 209

v “Chapter 16. Performing CICS I/O Operations” on page 223

v “Chapter 17. Language Environment Message File Operations” on page 225

v “Chapter 18. Debugging I/O Programs” on page 227

© Copyright IBM Corp. 1996, 2000 31

32 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 3. Introduction to C and C++ Input and Output

This chapter provides you with a general introduction to C and C++ input and
output (I/O). Three types of C and C++ input and output are discussed in this
chapter:

v text streams

v binary streams

v record I/O

Types of C and C++ Input and Output
A stream is a continuous flow of data elements that are transmitted or intended for
transmission in a defined format. A record is a set of data elements treated as a
unit, and a file is a named set of records that is stored or processed as a unit.

The OS/390 C/C++ compiler supports three types of input and output: text streams,
binary streams, and record I/O. Text and binary streams are both ANSI standards;
record I/O is an OS/390 C extension. Record I/O is not supported by the C++ I/O
Streams Class Library.

Note: If you have written data in one of these three types and try to read it as
another type (for example, reading a binary file in text mode), you may not
get the behavior that you expect.

Text Streams
Text streams contain printable characters and, depending on the type of file, control
characters. Text streams are organized into lines. Each line ends with a control
character, usually a new-line. The last record in a text file may or may not end with
a control character, depending on what kind of file you are using. Text files
recognize the following control characters:

\a Alarm.

\b Backspace.

\f Form feed.

\n New-line.

\r Carriage return.

\t Horizontal tab character.

\v Vertical tab character.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if
MB_CUR_MAX > 1 in the definition of the locale that is in effect. For more
information about MB_CUR_MAX, see “Chapter 9. OS/390 C Support for the
Double-Byte Character Set” on page 75.

\x0F DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX
> 1 in the definition of the locale that is in effect. For more information
about MB_CUR_MAX, see “Chapter 9. OS/390 C Support for the Double-Byte
Character Set” on page 75.

Control characters behave differently in terminal files (see “Chapter 14. Performing
Terminal I/O Operations” on page 199) and ASA files (see “Chapter 8. Using ASA
Text Files” on page 71).

© Copyright IBM Corp. 1996, 2000 33

Binary Streams
Binary streams contain an ordered sequence of bytes. For binary streams, the
library does not translate any characters on input or output. It treats them as a
continuous stream of bytes, and ignores any record boundaries. When data is
written out to a record-oriented file, it fills one record before it starts filling the next.
HFS streams follow the binary model, regardless of whether they are opened for
text, binary, or record I/O. You can simulate record I/O by using new-line characters
as record boundaries.

Record I/O
Record I/O is an OS/390 C extension to the ANSI standard. For files opened in
record format, OS/390 C/C++ reads and writes one record at a time. If you try to
write more data to a record than the record can hold, the data is truncated. For
record I/O, OS/390 C/C++ allows only the use of fread() and fwrite() to read and
write to files. Any other functions (such as fprintf(), fscanf(), getc(), and putc())
fail. For record-oriented files, records do not change size when you update them. If
the new record has fewer characters than the original record, the new data fills the
first n characters, where n is the number of characters of the new data. The record
will remain the same size, and the old characters (those after n) are left unchanged.
A subsequent update begins at the next boundary. For example, if you have the
string "abcdefgh":

and you overwrite it with the string "1234", the record will look like this:

OS/390 C/C++ record I/O is binary. That is, it does not interpret any of the data in a
record file and therefore does not recognize control characters. The only exception
is for file categories that do not support records, such as the Hierarchical File
System (also known as POSIX I/O). For these files, OS/390 C/C++ uses new-line
characters as record boundaries.

a b c d e f g h

1 2 3 4 e f g h

34 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 4. Understanding Models of C I/O

This chapter describes OS/390 C/C++ support for the major models of C I/O:

v The record model

v The byte stream model

The next chapter (“Chapter 5. Using the I/O Stream Class Library in C++” on
page 47) describes a third major model, the object-oriented model.

The Record Model for C I/O
Almost all the kinds of I/O that OS/390 C/C++ supports use this model. The only
ones that do not are HFS, memory file, and Hiperspace I/O.

The record model consists of the following:

v A record, which is the unit of data transmitted to and from a program.

v A block, which is the unit of data transmitted to and from a device. Each block
may contain one or more records.

In the record model of I/O, records and blocks have the following attributes:

RECFM Specifies the format of the data or how the data is organized on the
physical device.

LRECL Specifies the length of logical records (as opposed to physical
ones). Variable length records include a count field that is normally
not available to the programmer.

BLKSIZE Specifies the length of physical records (blocks on the physical
device).

Record Formats
Use the RECFM attribute to specify the record format. The records in a file using the
record model have one of the following formats:

v Fixed-length (F)

v Variable-length (V)

v Undefined-length (U)

Note: OS/390 C/C++ does not support ISCII/ASCII format-D files.

These formats support the following additional options for RECFM:

A Specifies that the file contains ASA control characters.

B Specifies that a file is blocked. A blocked file can have more than one
record in each block.

M Specifies that the file contains machine control characters.

S Specifies that a file is either in standard format (if it is fixed) or spanned (if it
is variable). In a standard file, every block must be full before another one
starts. In a spanned file, a record can be longer than a block. If it is, the
record is divided into segments and stored in consecutive blocks.

The record formats and the additional options associated with them are discussed
in the following sections.

© Copyright IBM Corp. 1996, 2000 35

Not all the I/O categories (listed in Table 4 on page 50) support all of these
attributes. Depending on what category you are using, OS/390 C/C++ ignores or
simulates attributes that do not apply. For more information, on the record formats
and the options supported for each I/O category, see “Opening Files” section in this
book.

Fixed-Format Records
Record Format (RECFM)

These are the formats you can specify for RECFM if you want to use a fixed-format
file:

F Fixed-length, unblocked

FA Fixed-length, ASA print-control characters

FB Fixed-length, blocked

FM Fixed-length, machine print-control codes

FS Fixed-length, unblocked, standard

FBA Fixed-length, blocked, ASA print-control characters

FBM Fixed-length, blocked, machine print-control codes

FBS Fixed-length, blocked, standard

FSA Fixed-length, unblocked, standard, ASA print-control characters

FSM Fixed-length, unblocked, standard, machine print-control codes

FBSM Fixed-length, blocked, standard, machine print-control codes

FBSA Fixed-length, blocked, standard, ASA print-control characters.

Note: In general, all references in this guide to files with record format FB also refer
to FBM and FBA. The specific behavior of ASA files (such as FBA) is explained
in “Chapter 8. Using ASA Text Files” on page 71.

Attention: OS/390 C/C++ distinguishes between FB and FBS formats, because an
FBS file contains no embedded short blocks (the last block may be
short). FBS files give you much better performance. The use of standard
(S) blocks optimizes the sequential processing of a file on a
direct-access device. With a standard format file, the file pointer can be
directly repositioned by calculating the exact position in that file of a
given record rather than reading through the entire file.

If the records are FB, some blocks may contain fewer records than others, as shown
in Figure 2 on page 37.

36 OS/390 V2R10.0 C/C++ Programming Guide

Mapping C Types to Fixed Format: The following formats are discussed in this
section:

v Binary

v Text (non-ASA)

v Text (ASA)

v Record

Binary
On binary input and output, data flows over record boundaries. Because all
fixed-format records must be full, OS/390 C/C++ completes any incomplete
output record by padding it with nulls ('\0') when you close the file.
Incomplete blocks are not padded. On input, nulls are visible and are
treated as data.

For example, if record length is set to 10 and you are writing 25 characters
of data, OS/390 C/C++ will write two full records, each containing 10
characters, and then an incomplete record containing 5 characters. If you
then close the file, OS/390 C/C++ will complete the last record with 5 nulls.
If you open the file for reading, OS/390 C/C++ will read the records in
order. OS/390 C/C++ will not strip off the nulls at the end of the last record.

Text (non-ASA)
When writing in a text stream, you indicate the end of the data for a record
by writing a new-line ('\n') or carriage return ('\r') to the stream. In a
fixed-format file, the new-line or carriage return will not appear in the
external file, and the record will be padded with blanks from the position of
the new-line or carriage return to LRECL. (A carriage return is considered the
same as a new-line because the '\r' is not written to the file.)

Record Record Record Record Record Record Record

Record Record Record Record Record Record

Record Record Record Record Record Record Record

Record Record Record Record Record Record

Record Record Record Record Record Record

F-Format FB-Format FBS-Format

Block Block

.

Figure 2. Blocking Fixed-Length Records

Chapter 4. Understanding Models of C I/O 37

For example, if you have set LRECL to 10, and you write the string "ABC\n" to
a fixed-format text file, OS/390 C/C++ will write this to the physical file:

A B C

A record containing only a new-line is written to the file as LRECL blanks.

When reading in a text stream, the I/O functions place a new-line character
('\n') in the buffer to indicate the end of data for the record. In a fixed-format
file, the new-line character is placed at the start of the blank padding at the
end of the data.

For example, if your file position points to the start of the following record in
a fixed-format file opened as a text stream

A B C

file pointer

and you call fgets() to read the line of text, fgets() places the string
"ABC\n" in your input buffer.

Attention: Any blanks written immediately before a new-line or carriage
return will be considered blank padding when the record is read
back from the file. You cannot change the padding character.

When you are updating a fixed-format file opened as a text stream, you can
update the amount of data in a record. The maximum length of the updated
data is LRECL bytes plus the new-line character; the minimum length is zero
data bytes plus the new-line character. Writing new data into an existing
record replaces the old data. If the new data is longer or shorter than the
old data, the number of blank padding characters in the record in the
external file is changed. When you extend a record, thereby writing over the
old new-line, there will be a new-line character implied after the new
characters. For instance, if you were to overwrite the record mentioned in
the previous example with the string "123456", the records in the physical
file would then look like this:

1 2 3

file pointer

4 5 6

The blanks at the end of the record imply a new-line at position 7. You can
see this new-line by calling fflush() and then performing a read. The
implied new-line is the first character returned from this read.

A fixed record can hold only LRECL characters. If you try to write more than
that, OS/390 C/C++ truncates the data unless you are using a standard

38 OS/390 V2R10.0 C/C++ Programming Guide

stream or a terminal file. In this case, the output is split across multiple
records. If truncation occurs, OS/390 C/C++ raises SIGIOERR and sets both
errno and the error flag.

Text (ASA)
For ASA files, the first character of each record is reserved for the ASA
control character that represents a new-line, a carriage return, or a form
feed. This control character represents what should happen before the
record is written.

Table 3. C Control to ASA Characters

C Control Character ASA Character Description

\n ' ' skip one line

\n\n '0' skip two lines

\n\n\n '-' skip three lines

\f '1' new page

\r '+' overstrike

A control character that ends a logical record is represented at the
beginning of the following record in the external file. Since the ASA control
character is in the first byte of each record, a record can hold only LRECL - 1
bytes of data. As with non-ASA text files described above, OS/390 C/C++
adds blank padding to complete any record shorter than LRECL - 1 when it
writes the record to the file. On input, OS/390 C/C++ removes all trailing
blanks. For example, if LRECL is 10, and you enter the string:

\nABC\nDEF

the record in the physical file will look like this:

On input, this string is read as follows:
\nABC\nDEF

You can lengthen and shorten records the same way as you can for
non-ASA files. For more information about ASA, refer to “Chapter 8. Using
ASA Text Files” on page 71.

Record
As with fixed-format text files, a record can hold LRECL characters. Every
call to fwrite() is considered to be writing a full record. If you write fewer
than LRECL characters, OS/390 C/C++ completes the record with enough
nulls to make it LRECL characters long. If you try to write more than that,
OS/390 C/C++ truncates the data.

Variable-Format Records
In a file with variable-length records, each record may be a different length. The
variable length formats permit both variable-length records and variable-length
blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word
(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word

A B C D E F ...

Chapter 4. Understanding Models of C I/O 39

(RDW), or, if you are using spanned files, the Segment Descriptor Word (SDW).
Illustrations of variable-length records are shown in Figure 3 on page 41.

Once you have set the LRECL for a variable-format file, you can write up to LRECL
minus 4 characters in each record. OS/390 C/C++ does not let you see RDWs,
BDWs, or SDWs when you open a file as variable-format. To see the RDWs or
SDWs and BDWs, open the variable file as undefined-format, as described in
“Undefined-Format Records” on page 42.

The value of LRECL must be greater than 4 to accommodate the RDW or SDW. The
value of BLKSIZE must be greater than or equal to the value of LRECL plus 4. You
should not use a BLKSIZE greater than LRECL plus 4 for an unblocked data set.
Doing so results in buffers that are larger than they need to be. The largest amount
of data that any one record can hold is LRECL bytes minus 4.

For striped data sets, a block is padded out to its full BLKSIZE. This makes
specifying an unnecessarily large BLKSIZE very inefficient.

Record Format (RECFM): You can specify the following formats for
variable-length records:

V Variable-length, unblocked

VA Variable-length, ASA print control characters, unblocked

VB Variable-length, blocked

VM Variable-length, machine print control codes, unblocked

VS Variable-length, unblocked, spanned

VBA Variable-length, blocked, ASA print control characters

VBM Variable-length, blocked, machine print control codes

VBS Variable-length, blocked, spanned

VSA Variable-length, spanned, ASA print control characters

VSM Variable-length, spanned, machine print control codes

VBSA Variable-length, blocked, spanned, ASA print control characters

VBSM Variable-length, blocked, spanned, machine print control codes

Note: In general, all references in this guide to files with record format VB also refer
to VBM and VBA. The specific behavior of ASA files (such as VBA) is explained
in “Chapter 8. Using ASA Text Files” on page 71.

V-format signifies unblocked variable-length records. Each record is treated as a
block containing only one record.

VB-format signifies blocked variable-length records. Each block contains as many
complete records as it can accommodate.

Spanned Records: A spanned record is opened using both V and S in the format
specifier. A spanned record is a variable-length record in which the length of the
record can exceed the size of a block. If it does, the record is divided into segments
and accommodated in two or more consecutive blocks. The use of spanned records
allows you to select a block size, independent of record length, that will combine
optimum use of auxiliary storage with the maximum efficiency of transmission.

40 OS/390 V2R10.0 C/C++ Programming Guide

VS-format specifies that each block contains only one record or segment of a
record. The first 4 bytes of a block describe the block control information. The
second 4 bytes contain record or segment control information, including an
indication of whether the record is complete or is a first, intermediate, or last
segment.

VBS-format differs from VS-format in that each block in VBS-format contains as many
complete records or segments as it can accommodate, while each block in
VS-format contains at most one record per block.

Mapping C Types to Variable Format:

Binary
On input and output, data flows over record boundaries. Any record will
hold up to LRECL minus 4 characters of data. If you try to write more than
that, your data will go to the next record, after the RDW or SDW. You will
not be able to see the descriptor words when you read the file.

Note: If you need to see the BDWs, RDWs, or SDWs, you can open and
read a V-format file as a U-format file. See “Undefined-Format
Records” on page 42 for more information.

OS/390 C/C++ never creates empty binary records for files opened in
V-format. See “Writing to Binary Files” on page 125 for more information. An
empty binary record is one that contains only an RDW, which is 4 bytes
long. On input, empty records are ignored.

C1 C1 C1C2 C2 C2Record 1 Record 2

C1 C1C2 C2 C2Record 1 Record 2 Record 3

Record 3

C1 C1 C1C2 C2 C2

C2

Record 1
(entire)

Record 2
(first segment)

Record 2
(first segment)

Record 2
(next segment)

C1 C1C2 C2 C2
Record 1
(entire)

Record 2
(last segment)

V-format:

VB-format:

VS-format:

VBS-format:

C1
C2

: Block control information
: Record or segment control information

Block

Spanned Record

Spanned Record

Figure 3. Variable-Length Records on OS/390

Chapter 4. Understanding Models of C I/O 41

Text (non-ASA)
Record boundaries are used in the physical file to represent the position of
the new-line character. You can indicate the end of a record by including a
new-line or carriage return character in your data. In variable-format files,
OS/390 C/C++ treats the carriage return character as if it were a new-line.
OS/390 C/C++ does not write either of these characters to the physical file;
instead, it creates a record boundary. When you read the file back,
boundaries are read as new-lines.

If a record only contains a new-line character, the default behavior of
OS/390 C/C++ is to write a record containing a single blank to the file.
Therefore, the string “ \n” is treated the same way as the string “\n”; both
are read back as “\n”. All other blanks in your output are read back as is.
Any empty (zero-length) record is ignored on input. However, if the
environment variable _EDC_ZERO_RECLEN was set to Y at the time the file was
opened, a single new-line is written to the file as an empty record, and a
single blank represents “ \n”. On input, an empty record is treated as a
single new-line and is not ignored.

After a record has been written to a file, you cannot change its length. If
you try to shorten a logical record by writing a new, smaller amount of data
into it, the C I/O library will add blank characters until the record is full.
Writing more data to a record than it can hold causes your data to be
truncated unless you are writing to a standard stream or a terminal file. In
this case, your output is split across multiple records. If truncation occurs,
OS/390 C/C++ raises SIGIOERR and sets both errno and the error flag.

Note: If you did not explicitly set the _EDC_ZERO_RECLEN environment
variable when you opened the file, you can update a record that
contains a single blank to contain a non-blank character, thereby
lengthening the logical record from '\n' to 'x\n'), where x is the
non-blank character.

Text (ASA)
OS/390 C/C++ treats variable-format ASA text files similarly to the way it
treats fixed-format ones. Empty records are always ignored in ASA
variable-format files; for a record to be recognized, it must contain at least
one character as the ASA control character.

For more information about ASA, refer to “Chapter 8. Using ASA Text Files”
on page 71.

Record
Each call to fwrite() creates a record that must be shorter than or equal to
the size established by LRECL. If you try to write more than LRECL bytes on
one call to fwrite(), OS/390 C/C++ will truncate your data. OS/390 C/C++
never creates empty records using record I/O. On input, empty records are
ignored unless you have set the _EDC_ZERO_RECLEN environment variable to
Y. In this case, empty records are treated as records with length 0.

If your application sets _EDC_ZERO_RECLEN to Y, bear in mind that fread()
returns back 0 bytes read, but does not set errno, and that both feof() and
ferror() return 0 as well.

Undefined-Format Records
Everything in an undefined-format file is treated as data, including control
characters and record boundaries. Blocks in undefined-format records are
variable-length; each block is considered a record.

42 OS/390 V2R10.0 C/C++ Programming Guide

It is impossible to have an empty record. Whatever you specify for LRECL has no
effect on your data, but the value of LRECL must be less than or equal to the value
you specify for BLKSIZE. Regardless of what you specify, OS/390 C/C++ sets LRECL
to zero when it creates an undefined-format file.

Reading a file in U-format enables you to read an entire block at once.

Record Format (RECFM): You can specify the following formats for
undefined-length records:

U Undefined-length

UA Undefined-length, ASA print control characters

UM Undefined-length, machine print control codes

U, UA, and UM formats permit the processing of records that do not conform to F- and
V-formats. The operating system treats each block as a record; your program must
perform any additional blocking or deblocking.

You can read any file in U-format. This is useful if, for example, you want to see the
BDWs and RDWs of a file that you have written in V-format.

Mapping C Types to Undefined Format:

Binary
When you are writing to an undefined-format file, binary data fills a block
and then begins a new block.

Text (non-ASA)
Record boundaries (that is, block boundaries) are used in the physical file
to represent the position of the new-line character. You can indicate the end
of a record by including a new-line or carriage return character in your data.
In undefined-format files, OS/390 C/C++ treats the carriage return character
as if it were a new-line. OS/390 C/C++ does not write either of these
characters to the physical file; instead, it creates a record boundary. When
you read the file back, these boundaries are read as new-lines. If a record
contains only a new-line character, OS/390 C/C++ writes a record
containing a single blank to the file regardless of the setting of the
_EDC_ZERO_RECLEN environment variable. Therefore, the string ' \n' (a
single blank followed by a new-line character) is treated the same way as
'\n'; both are written out as a single blank. On input, both are read as
'\n'. All other blank characters are written and read as you intended. After
a record has been written to a file, you cannot change its length. If you try
to shorten a logical record by writing a new, smaller amount of data into it,
the C I/O library adds blank characters until the record is full. Writing more
data to a record than it can hold will cause your data to be truncated unless
you are writing to a standard stream or a terminal file. In these cases, your
output is split across multiple records. If truncation occurs, OS/390 C/C++
raises SIGIOERR and sets both errno and the error flag.

Note: You can update a record that contains a single blank to contain a
non-blank character, thereby lengthening the logical record from '\n'
to 'x\n'), where x is the non-blank character.

Text (ASA)
For a record to be recognized, it must contain at least one character as the
ASA control character.

Chapter 4. Understanding Models of C I/O 43

For more information about ASA, refer to “Chapter 8. Using ASA Text Files”
on page 71.

Record
Each call to fwrite() creates a record that must be shorter than or equal to
the size established by BLKSIZE. If you try to write more than BLKSIZE bytes
on one call to fwrite(), OS/390 C/C++ truncates your data.

The Byte Stream Model for C I/O
The byte stream model differs from the record I/O model. In the byte stream model,
a file is just a stream of bytes, with no record boundaries. New-line characters
written to the stream appear in the external file.

If the file is opened in binary mode, any new-line characters previously written to
the file are visible on input. OS/390 C/C++ memory file I/O and Hiperspace memory
file I/O are based on the byte stream model (see “Chapter 15. Performing Memory
File and Hiperspace I/O Operations” on page 209 for more information).

Hierarchical File System (HFS) I/O, defined by POSIX, is also based on the byte
stream model. Refer to “Chapter 12. Performing Hierarchical File System I/O
Operations” on page 139 for information about I/O with HFS.

Mapping the C Types of I/O to the Byte Stream Model
Binary

In the byte stream model, files opened in binary mode do not contain any
record boundaries. Data is written as is to the file.

Text The byte stream model does not support ASA. New-lines, carriage returns,
and other control characters are written as-is to the file.

Record
If record I/O is supported by the kind of file you are using, OS/390 C/C++
simulates it by treating new-line characters as record boundaries. New-lines
are not treated as part of the record. A record written out with a new-line
inside it is not read back as it was written, because OS/390 C/C++ treats
the new-line as a record boundary instead of data.

HFS files support record I/O, but memory files do not.

As with all other record I/O, you can use only fread() and fwrite() to read
from and write to files. Each call to fwrite() inserts a new-line in the byte
stream; each call to fread() strips it off. For example, if you use one
fwrite() statement to write the string ABC and the next to write DEF, the
byte stream will look like this:

A B C \n D E F \n ...

There are no limitations on lengthening and shortening records. If you then
rewind the file and write new data into it, OS/390 C/C++ will replace the old
data. For example, if you used the rewind() function on the stream in the
previous example and then called fwrite() to place the string 12345 into it,

44 OS/390 V2R10.0 C/C++ Programming Guide

the stream would look like this:

1 2 3 4 5 \n F \n ...

If you are using files with this model, do not use new-line characters in your
output. If you do, they will create extra record boundaries. If you are unsure
about the data being written or are writing numeric data, use binary instead
of text to avoid writing a byte that has the hex value of a new-line.

Chapter 4. Understanding Models of C I/O 45

46 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 5. Using the I/O Stream Class Library in C++

The object-oriented model for I/O is a set of C++ classes that comprise the I/O
Stream Class Library. This set of classes implements and manages stream buffers
for input and output. Stream buffers can take two forms. They can be arrays of
bytes where data is stored between the program and the ultimate consumer for
output. Stream buffers can also be between the ultimate producer and the program
for input. Stream buffers and manipulators are used to format data.

There are two base classes, ios and streambuf, from which all other classes in the
I/O Stream library are derived. The ios class and its derivative classes are used to
implement formatting of I/O and maintain error state information of stream buffers
implemented with the streambuf class.

To use the I/O Stream Library, include the iostream.h header file in your program.

This chapter includes the following topics:

v Advantages to using the C++ I/O Stream Class Library

v Predefined Streams for C++

v How C++ I/O Streams Relate to C Streams

v Specifying File Attributes

v Related Information

Advantages to Using the C++ I/O Stream Class Library
Although input and output are implemented with streams for both C and C++, the
C++ I/O Stream Class Library provides the same facilities for input and output as C
stdio.h. The I/O Stream Class Library has the following advantages:

v The input (>>) operator and output (<<) operator are typesafe. These operators
are easier to use than scanf() and printf().

v You can overload the input and output operators to define input and output for
your own types and classes. This makes input and output across types, including
your own, uniform.

Predefined Streams for C++
OS/390 C++ provides the following predefined streams:

cin The standard input stream

cout The standard output stream

cerr The standard error stream, unit-buffered such that characters sent to this
stream are flushed on each output operation

clog The buffered error stream

All predefined streams are tied to cout. When you use cin, cerr, or clog, cout gets
flushed sending the contents of cout to the ultimate consumer.

OS/390 C standard streams create all I/O to I/O Streams:

v Input to cin comes from stdin (unless cin is redirected)

v cout output goes to stdout (unless cout is redirected)

v cerr output goes to stderr (unit-buffered) (unless cerr is redirected)

© Copyright IBM Corp. 1996, 2000 47

v clog output goes to stderr (unless clog is redirected)

When redirecting or intercepting a C standard stream, the corresponding C++ I/O
Stream standard stream becomes redirected. This applies unless you redirect an
I/O Stream standard stream. See “Chapter 10. Using C and C++ Standard Streams
and Redirection” on page 83 for more information.

How C++ I/O Streams Relate to C Streams
I/O Stream Class Library file I/O is implemented in terms of OS/390 C file I/O, and
is buffered from it. The only exception cerr is unit buffered (ios::unitbuf is set). A
filebuf object is associated with each ifstream, ofstream, and fstream object.
When the filebuf is flushed, it writes to the underlying C stream, which has its own
buffer. The filebuf object follows every fwrite() to the underlying C stream with
an fflush().

Specifying File Attributes
The fstream, ifstream, and ofstream classes specialize stream input and output
for files.

For OS/390 C++, overloaded fstream, ifstream, and ofstream constructors, and
open() member functions, with an additional parameter, are provided so you can
specify OS/390 C fopen() mode values. You can use this additional parameter to
specify any OS/390 C fopen() mode value except type=record. If you choose to
use a constructor without this additional parameter, you will get the default OS/390
C fopen() file characteristics. Table 6 on page 56 describes the default fopen()
characteristics.

Related Information
For more detailed information on the classes available with the I/O Stream Class
Library and how to use them, see OS/390 C/C++ IBM Open Class Library
Reference and OS/390 C/C++ IBM Open Class Library User’s Guide.

48 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 6. Opening Files

This chapter describes how to open I/O files. You can open files using the standard
C fopen() and freopen() library functions. Alternatively, if you want to use the C++
I/O stream class library, you can use the constructors for the ifstream, ofstream or
fstream classes, or the open() member functions of the filebuf, ifstream,
ofstream or fstream classes.

To open a file stream with a previously opened HFS file descriptor, use the
fdopen() function.

To open files with HFS low-level I/O, use the open() function. For more information
about opening HFS files, see “Chapter 12. Performing Hierarchical File System I/O
Operations” on page 139.

Prototypes of functions
The prototypes of these functions are:

C Library Functions:
FILE *fopen(const char *filename, const char *mode);

FILE *freopen(const char *filename, const char *mode, FILE *stream);

FILE *fdopen(int filedes, char *mode);

C++ I/O Stream Class Library Functions:
// ifstream constructor
ifstream(const char* fname, int mode=ios::in,

int prot=filebuf::openprot);

// OS/390 C++ extension
ifstream(const char* fname, const char* fattr,

int mode=ios::in, int prot=filebuf::openprot);

// ifstream::open()
void open(const char* fname, int mode=ios::in,

int prot=filebuf::openprot);

// OS/390 C++ extension
void open(const char* fname, const char* fattr,

int mode=ios::in, int prot=filebuf::openprot);
// ofstream constructor
ofstream(const char* fname, int mode=ios::out,

int prot=filebuf::openprot);

// OS/390 C++ extension
ofstream(const char* fname, const char* fattr,

int mode=ios::out, int prot=filebuf::openprot);

// ofstream::open()
void open(const char* fname, int mode=ios::out,

int prot=filebuf::openprot);

// OS/390 C++ extension
void open(const char* fname, const char* fattr,

int mode=ios::out, int prot=filebuf::openprot);

// fstream constructor
fstream(const char* fname, int mode,

© Copyright IBM Corp. 1996, 2000 49

int prot=filebuf::openprot);

// OS/390 C++ extension
fstream(const char* fname, const char* fattr,

int mode, int prot=filebuf::openprot);

// fstream::open()
void open(const char* fname, int mode,

int prot=filebuf::openprot);

// OS/390 C++ extension
void open(const char* fname, const char* fattr,

int mode, int prot=filebuf::openprot);

// filebuf::open()
filebuf* open(const char* fname, int mode,

int prot=filebuf::openprot);

// OS/390 C++ extension
filebuf* open(const char* fname, const char* fattr,

int mode, int prot=filebuf::openprot);

The C library functions are described in more detail in OS/390 C/C++ Run-Time
Library Reference. The C++ I/O streams class library functions are described in
more detail in OS/390 C/C++ IBM Open Class Library Reference and OS/390
C/C++ IBM Open Class Library User’s Guide.

Categories of I/O
The following table lists the categories of I/O that OS/390 C/C++ supports and
points to the section where each category is described.

Table 4. Kinds of I/O Supported by OS/390 C/C++

Type of I/O Suggested Uses and Supported Devices Model Page

OS I/O Used for dealing with the following kinds of files:

v Generation data group

v MVS sequential DASD files

v Regular and extended partitioned data sets

v Tapes

v Printers

v Punch data sets

v Card reader data sets

v MVS inline JCL data sets

v MVS spool data sets

v Striped data sets

v Optical readers

Record 103

Hierarchical File
System (HFS) I/O

Used under OS/390 UNIX System Services
(OS/390 UNIX) to support HFS data sets, and
access the byte-oriented HFS files according to
POSIX .1 and XPG 4.2 interfaces. This
increases the portability of applications written
on UNIX-based systems to OS/390 C/C++
systems.

Byte
stream

139

50 OS/390 V2R10.0 C/C++ Programming Guide

Table 4. Kinds of I/O Supported by OS/390 C/C++ (continued)

Type of I/O Suggested Uses and Supported Devices Model Page

VSAM I/O Used for working with VSAM data sets.
Supports direct access to records by key,
relative record number, or relative byte address.
Supports entry-sequenced, relative record, and
key-sequenced data sets.

Record 161

Terminal I/O Used to perform interactive input and output
operations with a terminal.

Record 199

Memory Files Used for applications requiring temporary I/O
files without the overhead of system data sets.
Fast and efficient.

Byte
stream

209

Hiperspace
Memory Files

Used to deal with memory files as large as 2
gigabytes.

Byte
stream

209

CICS Data Queues Used under the Customer Information Control
System (CICS). CICS data queues are
automatically selected under CICS for the
standard streams stdout and stderr for C, or
cout and cerr for C++. The CICS I/O
commands are supported through the Command
Level interface. The standard stream stdin
under C (or cin under C++) is treated as an
empty file under CICS.

Record 223

OS/390 Language
Environment
Message File

Used when you are running with OS/390
Language Environment. The message file is
automatically selected for stderr under OS/390
Language Environment. For C++, automatic
selection is of cerr.

Record 225

The following table lists the environments that OS/390 C/C++ supports, and which
categories of I/O work in which environment.

Table 5. I/O Categories and Environments That Support Them

Type of I/O MVS
batch

IMS online TSO TSO batch CICS

OS I/O Yes Yes Yes Yes No

HFS I/O Yes Yes Yes Yes No

VSAM I/O Yes Yes Yes Yes No

Terminal I/O No No Yes No No

Memory Files Yes Yes Yes Yes Yes

Hiperspace Memory Files Yes Yes Yes Yes No

CICS Data Queues No No No No Yes

OS/390 Language
Environment Message File

Yes Yes Yes Yes No

Note: MVS batch includes IMS batch. TSO is interactive. TSO batch indicates an
environment set up by a batch call to IKJEFT01. Programs run in such an environment
behave more like a TSO interactive program than an MVS batch program.

Chapter 6. Opening Files 51

Specifying What Kind of File to Use
This section discusses:

v the kinds of files you can use

v how to specify RECFM, LRECL, and BLKSIZE

v how to specify DDnames

OS Files
OS/390 C/C++ treats a file as an OS file, provided that it is not a CICS data queue,
or an HFS, VSAM, memory, terminal, or Hiperspace file.

HFS Files
When you are running under MVS, TSO (batch and interactive), or IMS, OS/390
C/C++ recognizes an HFS I/O file as such if the name specified on the fopen() or
freopen() call conforms to certain rules. These rules are described in “How OS/390
C/C++ Determines What Kind of File to Open” on page 59.

VSAM Data Sets
OS/390 C/C++ recognizes a VSAM data set if the file exists and has been defined
as a VSAM cluster before the call to fopen().

Terminal Files
When you are running with the run-time option POSIX(OFF) under interactive TSO,
OS/390 C/C++ associates streams to the terminal. You can also call fopen() to
open the terminal directly if you are running under TSO (interactive or batch), and
either the file name you specify begins with an asterisk (*), or the ddname has been
allocated with a DSN of *.

When running with POSIX(ON), OS/390 C/C++ associates streams to the terminal
under TSO and a shell if the file name you have specified fits one of the following
criteria:

v Under TSO (interactive and batch), the name must begin with the sequence
//*, or the ddname must have been allocated with a DSN of *.

v Under a shell, the name specified on fopen() or freopen() must be the
character string returned by ttyname().

Interactive IMS and CICS behave differently from what is described here. For more
information about terminal files with interactive IMS and CICS see “Chapter 10.
Using C and C++ Standard Streams and Redirection” on page 83.

If you are running with POSIX(ON) outside a shell, you must use the regular OS/390
C/C++ I/O functions for terminal I/O. If you are running with POSIX(ON) from a shell,
you can use the regular OS/390 C/C++ I/O functions or the POSIX low-level
functions (such as read()) for terminal I/O.

Memory Files and Hiperspace Memory Files
You can use regular memory files on all the systems that OS/390 C/C++ supports.
To create one, specify type=memory on the fopen() or freopen() call that creates
the file. A memory file, once created, exists until either of the following happens:

v You explicitly remove it with remove() or clrmemf()

v The root program is terminated

52 OS/390 V2R10.0 C/C++ Programming Guide

While a memory file exists, you can just use another fopen() or freopen() that
specifies the memory file’s name; you do not have to specify type=memory. For
example:

CBC3GOF1

A valid memory file name will match current file restrictions on a real file. Thus, a
memory file name that is classified as HFS can have more characters than can one
classified as an MVS file name.

If you are not running under CICS, you can open a Hiperspace memory file as
follows:

fp = fopen("a.b", "w, type=memory(hiperspace)");

If you specify hiperspace and you are running in a CICS environment, OS/390
C/C++ opens a regular memory file. If you are running with the run-time options
POSIX(ON) and TRAP(OFF), specifying hiperspace has no effect; OS/390 C/C++ will
open a regular memory file. You must specify TRAP(ON) to be able to create
Hiperspace files.

CICS Data Queues
A CICS transient data queue is a pathway to a single predefined destination. The
destination can be a ddname, another transient data queue, a VSAM file, a
terminal, or another CICS environment. The CICS system administrator defines the
queues that are active during execution of CICS. All users who direct data to a
given queue will be placing data in the same location, in order of occurrence.

You cannot use fopen() or freopen() to specify this kind of I/O. It is the category
selected automatically when you call any ANSI functions that reference stdout and
stderr under CICS. If you reference either of these in a C or C++ program under
CICS, OS/390 C/C++ attempts to open the CESO (stdout) or CESE (stderr)
queue. If you want to write to any other queue, you should use the CICS-provided
interface.

/* this example shows how fopen() may be used with memory files */

#include <stdio.h>
char text[3], *result;
FILE * fp;

int main(void)
{
fp = fopen("a.b", "w, type=memory"); /* Opens a memory file */
fprintf(fp, "%d\n",10); /* Writes to the file */
fclose(fp); /* Closes the file */
fp = fopen("a.b", "r"); /* Reopens the same */

/* file (already */
/* a memory file) */

if ((result=fgets(text,3,fp)) !=NULL) /* Retrieves results */
printf("value retrieved is %s\n",result);

fclose(fp); /* Closes the file */

return(0);
}

Figure 4. Memory File Example

Chapter 6. Opening Files 53

OS/390 Language Environment Message File
The OS/390 Language Environment message file is managed by OS/390 Language
Environment and may not be directly opened or closed with fopen(), freopen() or
fclose() within a C or C++ application. In OS/390 Language Environment, output
from stderr is directed to the OS/390 Language Environment message file by
default. You can use freopen() and fclose() to manage stderr, or you can
redirect it to another destination. There are application writer interfaces (AWIs) that
enable you to access the OS/390 Language Environment message file directly.
These are documented in OS/390 Language Environment Programming Guide.

See “Chapter 17. Language Environment Message File Operations” on page 225 for
more information on OS/390 Language Environment message files.

How to Specify RECFM, LRECL, and BLKSIZE
For OS files and terminal files, the values of RECFM, LRECL, and BLKSIZE are
significant. When you open a file, OS/390 C/C++ searches for the RECFM, LRECL, and
BLKSIZE values in the following places:

1. The fopen() or freopen() statement that opens the file

2. The DD statement (described in “DDnames” on page 57)

3. The values set in the existing file

4. The default values for fopen() or freopen().

When you call fopen() and specify a write mode (w, wb, w+, wb+, w+b) for an
existing file, OS/390 C/C++ uses the default values for fopen() if:

v the data set is opened by the dataset name or

v the data set is opened by ddname and the DD statement does not have any
attributes filled in.

These defaults are listed in Table 6 on page 56. To force OS/390 C/C++ to use
existing attributes when you are opening a file, specify recfm=* on the fopen() or
freopen() call.

recfm=* is valid only for existing DASD data sets. It is ignored in all other cases.

Notes:

1. When specifying a ddname on fopen() or freopen() you should be aware of
the following when opening the ddname using one of the write modes:

2. If the ddname is allocated to an already existing file and that ddname has not
yet been opened, then the DD statement will not contain the recfm, lrecl, or
blksize. That information is not filled in until the ddname is opened for the first
time. If the first open uses one of the write modes (w,wb, w+, wb+, w+b) and
recfm=* is not specified, then the existing file attributes are not considered.
Therefore, since the DD statement has not yet been filled in, the fopen()
defaults are used.

3. If the ddname is allocated at the same time the file is created, then the DD
statement will contain the same recfm, lrecl, and blksize specified for the
file. If the first open uses one of the write modes (w, wb, w+, wb+, w+b) and
recfm=* is not specified, then OS/390 C/C++ picks up the existing file attributes
from the DD statement since they were placed there at the time of allocation.

You can specify the record format in

v The RECFM parameter of the JCL DD statement under MVS

v The RECFM parameter of the ALLOCATE statement under TSO

54 OS/390 V2R10.0 C/C++ Programming Guide

v The __recfm field of the __dyn_t structure passed to the dynalloc() library
function under MVS

v The RECFM parameter on the call to the fopen() or freopen() library function

v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

v The ISPF data set utility under MVS

Certain categories of I/O may ignore or simulate some attributes such as BLKSIZE or
RECFM that are not physically supported on the device. Table 4 on page 50 lists all
the categories of I/O that OS/390 C/C++ supports and directs you to where you can
find more information about them.

You can specify the logical record length in

v The LRECL parameter of the JCL DD statement under MVS

v The LRECL parameter of the ALLOCATE statement under TSO

v The __lrecl field of the __dyn_t structure passed to the dynalloc() library
function under MVS

v The LRECL parameter on the call to the fopen() or freopen() library function

v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

v The ISPF data set utility

If you are creating a file and you do not select a record size, OS/390 C/C++ uses a
default. See “fopen() Defaults” for details on how defaults are calculated.

You can specify the block size in

v The BLKSIZE parameter of the JCL DD statement

v The BLKSIZE parameter of the ALLOCATE statement under TSO

v The __blksize field of the __dyn_t structure passed to the dynalloc() library
function under MVS

v The BLKSIZE parameter on a call to the fopen() or freopen() library function

v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

v The ISPF data set utility

If you are creating a file and do not select a block size, OS/390 C/C++ uses a
default. The defaults are listed in Table 6 on page 56.

fopen() Defaults
You cannot specify a file attribute more than once on a call to fopen() or freopen().
If you do, the function call fails. If the file attributes specified on the call to fopen()
differ from the actual file attributes, fopen() usually fails. However, fopen() does
not fail if:

v The file is opened for w, w+, wb, or wb+, and the file is neither an existing PDS or
PDSE nor an existing file opened by a ddname that specifies DISP=MOD. In such
instances, fopen() attributes override the actual file attributes. However, if
recfm=* is specified on the fopen(), any attributes that are not specified either on
the fopen() or for the ddname will be retrieved from the existing file. If the final
combination of attributes is invalid, the fopen() will fail.

v The file is opened for reading (r or rb) with recfm=U. Any other specified
attributes should be compatible with those of the existing data set.

Chapter 6. Opening Files 55

In calls to fopen(), the LRECL, BLKSIZE, and RECFM parameters are optional. (If you
are opening a file for read or append, any attributes that you specify must match
the existing attributes.)

If you do not specify file attributes for fopen() (or for an I/O Stream object), you get
the following defaults.

RECFM Defaults
If recfm is not specified in a fopen() call for an output binary file, recfm defaults to:

v recfm=VB for spool (printer) files

v recfm=FB otherwise

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:

v recfm=F if _EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE specified.
In this case, LRECL and BLKSIZE are both defaulted to 254.

v recfm=VBA for spool (printer) files.

v recfm=U for terminal files.

v recfm=VB for MVS files.

v recfm=VB for all other OS files.

If recfm is not specified for a record I/O file, you will get the default of recfm=VB.

LRECL and BLKSIZE defaults
The following table shows the defaults for LRECL and BLKSIZE when OS/390 C/C++
is creating a file, not appending or updating it. The table assumes that OS/390
C/C++ has already processed any information from the fopen() statement or
ddname. The defaults provide a basis for fopen() to select values for unspecified
attributes when you create a file.

Table 6. fopen() Defaults for LRECL and BLKSIZE when Creating OS Files

lrecl specified? blksize specified? RECFM LRECL BLKSIZE

no no All F 80 80

All FB 80 maximum integral multiple of
80 less than or equal to max

All V, VB,
VS, or
VBS

minimum of 1028 or max–4 max

All U 0 max

yes no All F lrecl lrecl

All FB lrecl maximum integral multiple of
lrecl less than or equal to max

All V lrecl lrecl+4

All U 0 lrecl

no yes All F or
FB

blksize blksize

All V, VB,
VS, or
VBS

minimum of 1028 or blksize–4 blksize

All U 0 blksize

Note: “All”includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control
character (M) specifier.

56 OS/390 V2R10.0 C/C++ Programming Guide

In the preceding table, the value max represents the maximum block size for the
device. These are the current default maximum block sizes for several devices that
OS/390 C/C++ supports:

Device Block Size

DASD 6144

3203 Printer 132

3211 Printer 132

4245 Printer 132

2540 Reader 80

2540 Punch 80

2501 Reader 80

3890 Document Processor 80

TAPE 32760

For more information about specific default block sizes, as returned by the DEVTYPE
macro, refer to OS/390 DFSMS: Using Data Sets.

For DASD files that do not have recfm=U, if you specify blksize=0 on the call to
fopen() or freopen() and you have DFP Release 3.1 or higher, the system
determines the optimal block size for your file. If you do not have the correct level
of DFP or you specify blksize=0 for a ddname instead of specifying it on the
fopen() or freopen() call, OS/390 C/C++ behaves as if you had not specified the
blksize parameter at all.

For information about block sizes for different categories of I/O, see the chapters
listed in Table 4 on page 50.

You do not have to specify the LRECL and BLKSIZE attributes; however, it is possible
to have conflicting attributes when you do specify them. The restrictions are:

v For a V file, the LRECL must be greater than 4 bytes and must be at least 4 bytes
smaller than the BLKSIZE.

v For an F file, the LRECL must be equal to the BLKSIZE, and must be at least 1.

v For an FB file, the BLKSIZE must be an integer multiple of the LRECL.

v For a U file, the LRECL must be less than or equal to the BLKSIZE and must be
greater than or equal to 0. The BLKSIZE must be at least 1.

v In spanned files, the LRECL and the BLKSIZE attributes must be greater than 4.

v If you specify LRECL=X, the BLKSIZE attribute must be less than or equal to the
maximum block size allowed on the device.

To determine the maximum LRECL and BLKSIZE values for the various file types and
devices available on your operating system, refer to the chapters listed in Table 4
on page 50.

DDnames
DD names are specified by prefixing the DD name with DD:. All the following forms
of the prefix are supported:

v DD:

v dd:

Chapter 6. Opening Files 57

v dD:

v Dd:

The DD statement enables you to write C source programs that are independent of
the files and input/output devices they will use. You can modify the parameters of a
file (such as LRECL, BLKSIZE, and RECFM) or process different files without
recompiling your program.

How to Create a DDname Under MVS Batch
To create a ddname under MVS batch, you must write a JCL DD statement.
For the C file PARTS.INSTOCK, you would write a JCL DD statement similar to
the following:

//STOCK DD DSN=PARTS.INSTOCK, . . .

HFS files can be allocated with a DD card. For example:
//STOCK DD PATH='/u/parts.instock',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXU,SIRWXO,SIRWXG)

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD
statements. The C library may close files to perform some file operations
such as freopen(), and the DD statement will be unallocated.

For more information on writing DD statements, refer to the JCL manuals
listed in OS/390 Information Roadmap.

How to Create a DDname Under TSO
To create a ddname under TSO, you must write an ALLOCATE command. For
the declaration shown above for the C file STOCK, you should write a TSO
ALLOCATE statement similar to the following:

ALLOCATE FILE(STOCK) DATASET('PARTS.INSTOCK')

You can also allocate HFS files with TSO ALLOCATE commands. For
example:

ALLOC FI(stock) PATH('/used/parts.stock') PATHOPTS(OWRONLY,OCREAT)
PATHMODE(sirwxu,sirwxo,sirwxg)

See OS/390 Information Roadmap for more information on TSO ALLOCATE.

How to Create a DDname In Source Code
You can also use the OS/390 C/C++ library functions svc99() and
dynalloc() to allocate ddnames. See OS/390 C/C++ Run-Time Library
Reference for more information about these functions.

You do not always need to describe the characteristics of the data in files both
within the program and outside it. There are, in fact, advantages to describing the
characteristics of your data in only one place.

Opening a file by ddname may require the merging of information internal and
external to the program. If any conflict is detected that will prevent the opening of a
file, fopen() returns a NULL pointer to indicate that the file cannot be opened. See
OS/390 C/C++ Run-Time Library Reference for more information on fopen().

If DISP=MOD is specified on a DD statement and if the file is opened in w or wb mode,
the DISP=MOD causes the file to be opened in append mode rather than in write
mode.

58 OS/390 V2R10.0 C/C++ Programming Guide

Note: You can open a ddname only with fopen() or freopen(). open() does not
interpret ddnames as such.

How OS/390 C/C++ Determines What Kind of File to Open
This section describes the criteria that OS/390 C/C++ uses to determine what kind
of file it is opening. OS/390 C/C++ goes through the categories listed in Table 4 on
page 50 in the order that follows. If a category applies to a file, OS/390 C/C++
stops searching.

Note: Files cannot be opened under CICS when you have specified the POSIX(ON)
run-time option.

The following chart shows how OS/390 C/C++ determines what type of file to open
under TSO, MVS batch, and interactive IMS with POSIX(ON). For information on the
types of files shown in the chart see the appropriate chapter in the I/O section.

Chapter 6. Opening Files 59

MAP 0010: Under TSO, MVS Batch, IMS — POSIX(ON)

001

Is type=memory specified?
Yes No

002

Does the name begin with // but NOT ///?
Yes No

003

Continue at Step 017 on page 61.

004

Continue at Step 008.

005

Is hiperspace specified?
Yes No

006

OS/390 C/C++ opens a regular memory file.

007

OS/390 C/C++ opens a memory file in Hiperspace.

008

Is the next character an asterisk?
Yes No

009

Is name of form DDname?
Yes No

010

Does the name specified match that of an existing memory file?
Yes No

011

OS/390 C/C++ opens an OS file.

012

OS/390 C/C++ opens the existing memory file.

60 OS/390 V2R10.0 C/C++ Programming Guide

013

Continue to Step 032 on page 62.

014

Are you running under TSO interactive?
Yes No

015

OS/390 C/C++ removes the asterisk from the name unless the asterisk is the
only character, and proceeds to Step 028 on page 62.

016

OS/390 C/C++ opens a terminal file.

017

Is the name of the form *DD:ddname or DD:ddname?
Yes No

018

Does the name specified match that of an existing memory file?
Yes No

019

OS/390 C/C++ opens an HFS file.

020

OS/390 C/C++ opens the existing memory file.

021

Does ddname exist?
Yes No

022

Does a memory file exist?
Yes No

023

OS/390 C/C++ opens an HFS file called either *DD:ddname or
DD:ddname.

024

OS/390 C/C++ opens the existing memory file.

MAP 0010 (continued)

Chapter 6. Opening Files 61

025

Is a path specified in ddname?
Yes No

026

OS/390 C/C++ opens an OS file.

027

OS/390 C/C++ opens an HFS file.

028

Is the name of the form *DD:ddname or DD:ddname?
Yes No

029

Does the name specified match that of an existing memory file?
Yes No

030

OS/390 C/C++ opens an OS file.

031

OS/390 C/C++ opens the existing memory file.

032

Does ddname exist?
Yes No

033

Does a memory file exist?
Yes No

034

ERROR

035

OS/390 C/C++ opens the existing memory file.

036

Is a path specified in ddname?
Yes No

037

OS/390 C/C++ opens an OS file.

MAP 0010 (continued)

62 OS/390 V2R10.0 C/C++ Programming Guide

038

OS/390 C/C++ opens an HFS file.

The following chart shows how OS/390 C/C++ determines what type of file to open
under TSO, MVS batch, and interactive IMS with POSIX(OFF). For information on the
types of files shown in the chart see the appropriate chapter in the I/O section.

MAP 0010 (continued)

Chapter 6. Opening Files 63

MAP 0020: Under TSO, MVS Batch, IMS — POSIX(OFF)

001

Is type=memory specified?
Yes No

002

Does the name begin with // but NOT ///?
Yes No

003

Continue at Step 017 on page 65.

004

Continue at Step 008.

005

Is hiperspace specified?
Yes No

006

OS/390 C/C++ opens a regular memory file.

007

OS/390 C/C++ opens a memory file in Hiperspace.

008

Is the next character an asterisk?
Yes No

009

Is name of form DDname?
Yes No

010

Does the name specified match that of an existing memory file?
Yes No

011

OS/390 C/C++ opens an OS file.

012

OS/390 C/C++ opens the existing memory file.

64 OS/390 V2R10.0 C/C++ Programming Guide

013

Continue at Step 021.

014

Are you running under TSO interactive?
Yes No

015

OS/390 C/C++ removes the asterisk from the name unless the asterisk is the
only character, and proceeds to Step 017.

016

OS/390 C/C++ opens a terminal file.

017

Is the name of the form *DD:ddname or DD:ddname?
Yes No

018

Does the name specified match that of an existing memory file?
Yes No

019

OS/390 C/C++ opens an OS file.

020

OS/390 C/C++ opens the existing memory file.

021

Does ddname exist?
Yes No

022

Does a memory file exist?
Yes No

023

ERROR

024

OS/390 C/C++ opens the existing memory file.

MAP 0020 (continued)

Chapter 6. Opening Files 65

025

Is a path specified in ddname?
Yes No

026

OS/390 C/C++ opens an OS file.

027

OS/390 C/C++ opens an HFS file.

The following chart shows how OS/390 C/C++ determines what type of file to open
under CICS. For information on the types of files shown in the chart see the
appropriate chapter in the I/O section.

MAP 0020 (continued)

66 OS/390 V2R10.0 C/C++ Programming Guide

MAP 0030: Under CICS

001

Is type=memory specified?
Yes No

002

Does the name specified match that of an existing memory file?
Yes No

003

The fopen() call fails.

004

OS/390 C/C++ opens that memory file.

005

Is hiperspace specified?
Yes No

006

OS/390 C/C++ opens the specified memory file.

007

The fopen() call ignores the hiperspace specification and opens the memory file.

Chapter 6. Opening Files 67

MAP 0030 (continued)

68 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 7. Buffering of C Streams

This chapter describes buffering modes used by OS/390 C/C++, library functions
available to control buffering and methods of flushing buffers.

OS/390 C/C++ uses buffers to map C I/O to system-level I/O. When OS/390 C/C++
performs I/O operations, it uses one of the following buffering modes:

v Line buffering - characters are transmitted to the system as a block when a
new-line character is encountered. Line buffering is meaningful only for text
streams and HFS files.

v Full buffering - characters are transmitted to the system as a block when a buffer
is filled.

v No buffering - characters are transmitted to the system as they are written. Only
regular memory files and HFS files support the no buffering mode.

The buffer mode affects the way the buffer is flushed. You can use the setvbuf()
and setbuf() library functions to control buffering, but you cannot change the
buffering mode after an I/O operation has used the buffer, as all read, write, and
reposition operations do. In some circumstances, repositioning alters the contents of
the buffer. It is strongly recommended that you only use setbuf() and setvbuf()
before any I/O, to conform with ANSI, and to avoid any dependency on the current
implementation. If you use setvbuf(), OS/390 C/C++ may or may not accept your
buffer for its internal use. For a hiperspace memory file, if the size of the buffer
specified to setvbuf() is 8K or more, it will affect the number of hiperspace blocks
read or written on each call to the operating system; the size is rounded down to
the nearest multiple of 4K.

Full buffering is the default except in the following cases:

v If you are using an interactive terminal, OS/390 C/C++ uses line buffering.

v If you are running under CICS, OS/390 C/C++ also uses line buffering.

v stderr is line-buffered by default.

v If you are using a memory file, OS/390 C/C++ does not use any buffering.

For terminals, because I/O is always unblocked, line buffering is equivalent to full
buffering.

For record I/O files, buffering is meaningful only for blocked files or for record I/O
HFS files using full buffering. For unblocked files, the buffer is full after every write
and is therefore written immediately, leaving nothing to flush. For blocked files or
fully-buffered HFS files, however, the buffer can contain one or more records that
have not been flushed and that require a flush operation for them to go to the
system.

You can flush buffers to the system in several different ways.

v If you are using full buffering, OS/390 C/C++ automatically flushes a buffer when
it is filled.

v If you are using line buffering for a text file or an HFS file, OS/390 C/C++ flushes
a buffer when you complete it with a control character. Except for HFS files,
specifying line buffering for a record I/O or binary file has no effect; OS/390
C/C++ treats the file as if you had specified full buffering.

v OS/390 C/C++ flushes buffers to the system when you close a file or end a
program.

© Copyright IBM Corp. 1996, 2000 69

v OS/390 C/C++ flushes buffers to the system when you call the fflush() library
function, with the following restrictions:

– A file opened in text mode does not flush data if a record has not been
completed with a new-line.

– A file opened in fixed format does not flush incomplete records to the file.

– An FBS file does not flush out a short block unless it is a DISK file opened
without the NOSEEK parameter.

v All streams are flushed across non-POSIX system() calls. Streams are not
flushed across POSIX system() calls. For a POSIX system call, we recommend
that you do a fflush() before the system() call.

If you are reading a record that another user is writing to at the same time, you can
see the new data if you call fflush() to refresh the contents of the input buffer.

Note: This is not supported for VSAM files.

You may not see output if a program that is using input and output fails, and the
error handling routines cannot close all the open files.

70 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 8. Using ASA Text Files

This chapter describes the American Standards Association (ASA) text files, the
control characters used in ASA files, how OS/390 C/C++ translates the control
characters, and how OS/390 C/C++ treats ASA files during input and output. The
first column of each record in an ASA file contains a control character (' ', '0', '−', '1',
or '+') when it appears in the external medium.

OS/390 C/C++ translates control characters in ASA files opened for text processing
(r, w, a, r+, w+, a+ functions). On input, OS/390 C/C++ translates ASA
characters to sequences of control characters, as shown in Table 7. On output,
OS/390 C/C++ performs the reverse translation. The following sequences of control
characters are translated, and the resultant ASA character becomes the first
character of the following record:

Table 7. C Control to ASA Characters Translation Table

C Control Character
Sequence

ASA Character Description

\n ’ ’ skip one line

\n\n ’0’ skip two lines

\n\n\n ’-’ skip three lines

\f ’1’ new page

\r ’+’ overstrike

If you are writing to the first record or byte of the file and the output data does not
start with a translatable sequence of C control characters, the ' ' ASA control
character is written to the file before the specified data.

OS/390 C/C++ does not translate or verify control characters when you open an
ASA file for binary or record I/O.

Example of Writing to an ASA File

CBC3GAS1

/* this example shows how to write to an ASA file */

#include <stdio.h>
#define MAX_LEN 80

int main(void) {
FILE *fp;
int i;
char s[MAX_LEN+1];

Figure 5. ASA Example (Part 1 of 2)

© Copyright IBM Corp. 1996, 2000 71

This program writes five records to the file asa.file, as follows:
0abcdef
1
+345
-
9034

Note that the last record is 9034. The last single '\n' does not create a record with a
single control character (' '). If this same file is opened for read, and the getc()
function is called to read the file 1 byte at a time, the same characters as those that
were written out by fputs() in the first program are read.

ASA File Control
ASA files are treated as follows:

v If the first record written does not begin with a control character, then a single
new-line is written and then followed by data; that is, the ASA character defaults
to a space when none is specified.

v In ASA files, control characters are treated the same way that they are treated in
other text files, with the following exceptions:

'\f' — form feed
Defines a record boundary and determines the ASA character of the
following record. Refer to Table 7 on page 71.

'\n' — new-line
Does either of these:

– Define a record boundary and determines the ASA character of the
following record (see translation table above).

– Modify the preceding ASA character if the current position is directly
after an ASA character of ' ' or '0' (see translation table above).

'\r' — carriage return
Defines a record boundary and determines the ASA character of the
following record (see translation table above).

v Records are terminated by writing a new-line ('\n'), carriage return ('\r'), or
form feed ('\f') character.

v An ASA character can be updated to any other ASA character.

Updates made to any of the C control characters that make up an ASA character
cause the ASA character to change.

fp = fopen("asa.file", "w, recfm=fba");
if (fp != NULL) {

fputs("\n\nabcdef\f\r345\n\n", fp);
fputs("\n\n9034\n", fp);
fclose(fp);

return(0);
}

fp = fopen("asa.file", "r");
for (i = 0; i < 5; i++) {

fscanf(fp, "%s", s[0]);
printf("string = %s\n",s);

}
}

Figure 5. ASA Example (Part 2 of 2)

72 OS/390 V2R10.0 C/C++ Programming Guide

If the file is positioned directly after a ' ' or '0' ASA character, writing a '\n'
character changes the ASA character to a '0' or '-' respectively. However, if the
ASA character is a '-', '1' or '+', the '\n' truncates the record (that is, it adds blank
padding to the end of the record), and causes the following record's ASA
character to be written as a ' '. Writing a '\f' or '\r' terminates the record and
start a new one, but writing a normal data character simply overwrites the first
data character of the record.

v You cannot overwrite the ASA character with a normal data character. The
position at the start of a record (at the ASA character) is the logical end of the
previous record. If you write normal data there, you are writing to the end of the
previous record. OS/390 C/C++ truncates data for the following files, except
when they are standard streams:

– Variable-format files

– Undefined-format files

– Fixed-format files in which the previous record is full of data

When truncation occurs, OS/390 C/C++ raises SIGIOERR and sets both errno and
the error flag.

v Even when you update an ASA control character, seeking to a previously
recorded position still succeeds. If the recorded position was at a control
character that no longer exists (because of an update), the reposition is to the
next character. Often, this is the first data character of the record. For example, if
you have the following string:

you have saved the position of the third new-line. If you then update the ASA
character to a form feed ('\f'), the logical ASA position x no longer exists:

\fHELLO WORLD

If you call fseek() with the logical position x, it repositions to the next valid
character, which is the letter 'H':

v If you try to shorten a record when you are updating it, OS/390 C/C++ adds
enough blank padding to fill the record.

v The ASA character can represent up to three new-lines, which can increase the
logical record length by 1 or 2 bytes.

v Extending a fixed logical record on update implies that the logical end of the line
follows the last written non-blank character.

v If an undefined text record is updated, the length of the physical records does not
change. If the replacement record is:

\n\n\nHELLO WORLD

x = ftell()

\fHELLO WORLD

fseek() to pos x

Chapter 8. Using ASA Text Files 73

– Longer - data characters beyond the record boundary are truncated. At the
point of truncation, the User error flag is set and SIGIOERR is raised (if the
signal is not set up to be ignored). Truncation continues until you do one of
these:

1. Write a new-line character, carriage return, or form feed to complete the
current record

2. Close the file explicitly or implicitly at termination

3. Reposition to another position in the file.

– Shorter - the blank character is used to overwrite the rest of the record.

v If you close an ASA file that has a new-line as its last character, OS/390 C/C++
does not write the new-line to the physical file. The next time you read from the
file or update it, OS/390 C/C++ returns the new-line to the end of the file. An
exception to this rule happens when you write only a new-line to a new file. In
this case, OS/390 C/C++ does not truncate the new-line; it writes a single blank
to the file. On input, however, you will read two new-lines.

v Using ASA format to read a file that contains zero-length records results in
undefined behavior.

v You may have trouble updating a file if two ASA characters are next to each
other in the file. For example, if there is a single-byte record (containing only an
ASA character) immediately followed by the ASA character of the next record,
you are positioned at or within the first ASA character. If you then write a
sequence of '\n' characters intended to update both ASA characters, the '\n's
will be absorbed by the first ASA character before overflowing to the next record.
This absorption may affect the crossing of record boundaries and cause
truncation or corruption of data.

At least one normal intervening data character (for example, a space) is required
between '\n' and '\n' to differentiate record boundaries.

Note: Be careful when you update an ASA file with data containing more than
one consecutive new-line: the result of the update depends on how the
original ASA records were structured.

v If you are writing data to a non-blocked file without intervening flush or reposition
requests, each record is written to the system on completion (that is, when a
'\n', '\r' or '\f' character is written or when the file is closed).

If you are writing data to a blocked file without intervening flush or reposition
requests, and the file is opened in full buffering mode, the block is written to the
system on completion of the record that fills the block. If the blocked file is line
buffered, each record is written to the system on completion.

If you are writing data to a spanned file without intervening flush or reposition
requests, and the record spans multiple blocks, each block is written to the
system once it is full and the user writes an additional byte of data.

v If a flush occurs while an ASA character indicating more than one new-line is
being updated, the remaining new-lines will be discarded and a read will continue
at the first data character. For example, if '\n\n\n' is updated to be '\n\n' and
a flush occurs, then a '0' will be written out in the ASA character position.

74 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 9. OS/390 C Support for the Double-Byte Character
Set

The number of characters in some languages such as Japanese or Korean is larger
than 256, the number of distinct values that can be encoded in a single byte. The
characters in such languages are represented in computers by a sequence of
bytes, and are called multibyte characters. This chapter explains how the OS/390 C
compiler supports multibyte characters.

Note: The OS/390 C++ compiler does not have native support for multibyte
characters. The support described here is what OS/390 C provides; for C++,
you can take advantage of this support by using interlanguage calls to C
code. Please refer to “Chapter 19. Using Linkage Specifications in C or C++”
on page 239 for more information.

The OS/390 C compiler supports the IBM EBCDIC encoding of multibyte
characters, in which each natural language character is uniquely represented by
one to four bytes. The number of bytes that encode a single character depends on
the global shift-state information. If a stream is in initial shift state, one multibyte
character is represented by a byte or sequence of bytes that has the following
characteristics:

v It starts with the byte containing the shift-out (0x0e) character.

v The shift-out character is followed by 2 bytes that encode the value of the
character.

v These bytes may be followed by a byte containing the shift-in (0x0f) character.

If the sequence of bytes ends with the shift-in character, the state remains initial,
making this sequence represent a 4-byte multibyte character. Multibyte characters
of various lengths can be normalized by the set of OS/390 C library functions and
encoded in units of one length. Such normalized characters are called wide
characters; in OS/390 C they are represented by two bytes. Conversions between
multibyte format and wide character format can be performed by string conversion
functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(), as well
by the family of the wide character I/O functions. MB_CUR_MAX is defined in the
stdlib.h header file. Depending on its value, either of the following happens:

v When MB_CUR_MAX is 1, all bytes are considered single-byte characters; shift-out
and shift-in characters are treated as data as well.

v When MB_CUR_MAX is 4:

– On input, the wide character I/O functions read the multibyte character from
the streams, and convert them to the wide characters.

– On output, they convert wide characters to multibyte characters and write
them to the output streams.

Both binary and text streams have orientation. Streams opened with type=record
do not. There are three possible orientations of a stream:

Non-oriented
A stream that has been associated with an open file before any operation
other than setbuf() or setvbuf() is performed. Subsequent operations on a
non-oriented stream change the orientation of the stream. You can use the
setbuf() and setvbuf() functions only on a non-oriented stream. When you
use these functions, the stream remains non-oriented. When you perform
one of the wide character input/output operations on a non-oriented stream,

© Copyright IBM Corp. 1996, 2000 75

the stream becomes wide-oriented. When you perform one of the byte
input/output operations on a non-oriented stream, the stream becomes
byte-oriented.

Wide-oriented
A stream on which any wide character input/output functions are
guaranteed to operate correctly. Conceptually, wide-oriented streams are
sequences of wide characters. The external file associated with a
wide-oriented stream is a sequence of multibyte characters. Using byte I/O
functions on a wide-oriented stream results in undefined behavior. A stream
opened for record I/O cannot be wide-oriented.

Byte-oriented
A stream on which any byte input/output functions are guaranteed to
operate properly. Using wide character I/O functions on a byte input/output
stream results in undefined behavior. Byte-oriented streams have minimal
support for multibyte characters.

Calls to the clearerr(), feof(), ferror(), fflush(), fgetpos(), or ftell()
functions do not change the orientation.

Once you have established a stream’s orientation, the only way to change it is to
make a successful call to the freopen() function, which removes a stream’s
orientation.

The wchar.h header file declares the WEOF macro and the functions that support
wide character input and output. The macro expands to a constant expression of
type wint_t. Certain functions return WEOF type when the end-of-file is reached on
the stream.

Note: The behavior of the wide character I/O functions is affected by the LC_CTYPE
category of the current locale, and the setting of MB_CUR_MAX. Wide-character
input and output should be performed under the same LC_CTYPE setting. If
you change the setting between when you read from a file and when you
write to it, or vice versa, you may get undefined behavior. If you change it
back to the original setting, however, you will get the behavior that is
documented. See the introduction of this chapter for a discussion of the
effects of MB_CUR_MAX.

Opening Files
You can use the fopen() or freopen() library functions to open I/O files that contain
multibyte characters. You do not need to specify any special parameters on these
functions for wide character I/O.

Reading Streams and Files
Wide character input functions read multibyte characters from the stream and
convert them to wide characters. The conversion process is performed in the same
way that the mbrtowc() function performs conversions.

The following OS/390 C library functions support wide character input:

v fgetwc()

v fgetws()

v getwc()

v getwchar()

76 OS/390 V2R10.0 C/C++ Programming Guide

v swscanf()

In addition, the following byte-oriented functions support handling multibyte
characters by providing conversion specifiers to handle the wchar_t data type:

v scanf()

v fscanf()

v sscanf()

All other byte-oriented input functions treat input as single-byte.

For a detailed description of unformatted and formatted I/O functions, refer to the
OS/390 C/C++ Run-Time Library Reference.

The wide-character input/output functions maintain global shift-state for multibyte
character streams they read or write. For each multibyte character they read,
wide-character input functions change global shift-state as the mbrtowc() function
would do. Similarly, for each multibyte character they write, wide-character output
functions change global shift-state as the wcrtomb() function would do.

When you are using wide-oriented input functions, multibyte characters are
converted to wide characters according to the current shift state. Invalid double-byte
character sequences cause conversion errors on input. As OS/390 C uses
wide-oriented functions to read a stream, it updates the shift state when it
encounters shift-out and shift-in characters. Wide-oriented functions always read
complete multibyte characters. Byte-oriented functions do not check for complete
multibyte characters, nor do they maintain information about the shift state.
Therefore, they should not be used to read multibyte streams.

For binary streams, no validation is performed to ensure that records start or end in
initial shift state. For text streams, however, all records must start and end in initial
shift state.

Writing Streams and Files
Wide character output functions convert wide characters to multibyte characters and
write the result to the stream. The conversion process is performed in the same
way that the wcrtomb() function performs conversions.

The following OS/390 C functions support wide character output:

v fputwc()

v fputws()

v swprintf()

v vswprintf()

v putwc()

v putwchar()

In addition, the following byte-oriented functions support handling multibyte
characters by providing conversion specifiers to handle the wchar_t data type:

v printf()

v fprintf()

v sprintf()

Chapter 9. OS/390 C Support for the Double-Byte Character Set 77

All other output functions do not support the wchar_t data type. However, all of the
output functions support multibyte character output for text streams if MB_CUR_MAX is
4.

For a detailed description of unformatted and formatted I/O functions, refer to the
OS/390 C/C++ Run-Time Library Reference.

Writing Text Streams
When you are using wide-oriented output functions, wide characters are converted
to multibyte characters. For text streams, all records must start and end in initial
shift state. The wide-character functions add shift-out and shift-in characters as they
are needed. When the file is closed, a shift-out character may be added to
complete the file in initial shift state.

When you are using byte-oriented functions to write out multibyte data, OS/390 C
starts each record in initial shift state and makes sure you complete each record in
initial shift state before moving to the next record. When a string starts with a
shift-out, all data written is treated as multibyte, not single-byte. This means that
you cannot write a single-byte control character (such as a new-line) until you
complete the multibyte string with a shift-in character.

Attempting to write a second shift-out character before a shift-in is not allowed.
OS/390 C truncates the second shift-out and raises SIGIOERR if SIGIOERR is not set
to SIG_IGN.

When you write a shift-in character to an incomplete multibyte character, OS/390 C
completes the multibyte character with a padding character (0xfe) before it writes
the shift-in. The padding character is not counted as an output character in the total
returned by the output function; you will never get a return code indicating that you
wrote more characters than you provided. If OS/390 C adds a padding character,
however, it does raise SIGIOERR, if SIGIOERR is not set to SIG_IGN.

Control characters written before the shift-in are treated as multibyte data and are
not interpreted or validated.

When you close the file, OS/390 C ensures that the file ends in initial shift state.
This may require adding a shift-in and possibly a padding character to complete the
last multibyte character, if it is not already complete. If padding is needed in this
case, OS/390 C does not raise SIGIOERR.

Multibyte characters are never split across record boundaries. In addition, all
records end and start in initial shift state. When a shift-out is written to the file,
either directly or indirectly by wide-oriented functions, OS/390 C calculates the
maximum number of complete multibyte characters that can be contained in the
record with the accompanying shift-in. If multibyte output (including any required
shift-out and shift-in characters) does not fit within the current record, the behavior
depends on what type of file it is (a memory file has no record boundaries and so
never has this particular problem). For a standard stream or terminal file, data is
wrapped from one record to the next. Shift characters may be added to ensure that
the first record ends in initial shift state and that the second record starts in the
required shift state.

For files that are not standard streams, terminal files, or memory files, any attempt
to write data that does not fit into the current record results in data truncation. In
such a case, the output function returns an error code, raises SIGIOERR, and sets

78 OS/390 V2R10.0 C/C++ Programming Guide

errno and the error flag. Truncation continues until initial state is reached and a
new-line is written to the file. An entire multibyte stream may be truncated, including
the shift-out and shift-in, if there are not at least two bytes in the record. For a
wide-oriented stream, truncation stops when a wchar_t new-line character is written
out.

Updating a wide-oriented file or a file containing multibyte characters is strongly
discouraged, because your update may overwrite part of a multibyte string or
character, thereby invalidating subsequent data. For example, you could
inadvertently add data that overwrites a shift-out. The data after the shift-out is
meaningless when it is treated in initial shift state. Appending new data to the end
of the file is safe.

Writing Binary Streams
When you are using wide-oriented output functions, wide characters are converted
to multibyte characters. No validation is performed to ensure that records start or
end in initial shift state. When the file is closed, any appends are completed with a
shift-in character, if it is needed to end the stream in initial shift state. If you are
updating a record when the stream is closed, the stream is flushed. See “Flushing
Buffers” for more information.

Byte-oriented output functions do not interpret binary data. If you use them for
writing multibyte data, ensure that your data is correct and ends in initial shift state.

Updating a wide-oriented file or a file containing multibyte characters is strongly
discouraged, because your update may overwrite part of a multibyte string or
character, thereby invalidating subsequent data. For example, you could
inadvertently add data that overwrites a shift-out. The data after the shift-out is
meaningless when it is treated in initial shift state. Appending new data to the end
of the file is safe for a wide-oriented file.

If you update a record after you call fgetpos(), the shift state may change. Using
the fpos_t value with the fsetpos() function may cause the shift state to be set
incorrectly.

Flushing Buffers
You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see the OS/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of stream. If you call one OS/390 C
program from another OS/390 C program by using the ANSI system() function, all
open streams are flushed before control is passed to the callee. A call to the POSIX
system() function does not flush any streams to the system. For a POSIX system
call, we recommend that you do a fflush() before the system call.

Flushing Text Streams
When you call fflush() after updating a text stream, fflush() calculates your
current shift state. If you are not in initial shift state, OS/390 C looks forward in the
record to see whether a shift-in character occurs before the end of the record or
any shift-out. If not, OS/390 C adds a shift-in to the data if it will not overwrite a
shift-out character. The shift-in is placed such that there are complete multibyte
characters between it and the shift-out that took the data out of initial state. OS/390

Chapter 9. OS/390 C Support for the Double-Byte Character Set 79

C may accomplish this by skipping over the next byte in order to leave an even
number of bytes between the shift-out and the added shift-in.

Updating a wide-oriented or byte-oriented multibyte stream is strongly discouraged.
In a byte-oriented stream, you may have written only half of a multibyte character
when you call fflush(). In such a case, OS/390 C adds a padding byte before the
shift-out. For both wide-oriented and byte-oriented streams, the addition of any shift
or padding character does not move the current file position.

Calling fflush() has no effect on the current record when you are writing new data
to a wide-oriented or byte-oriented multibyte stream, because the record is
incomplete.

Flushing Binary Streams
In a wide-oriented stream, calling fflush() causes OS/390 C to add a shift-in
character if the stream does not already end in initial shift state. In a byte-oriented
stream, calling fflush() causes no special behavior beyond what a call to fflush()
usually does.

ungetwc() Considerations
ungetwc() pushes wide characters back onto the input stream for binary and text
files. You can use it to push one wide character onto the ungetwc() buffer. Never
use ungetc() on a wide-oriented file. After you call ungetwc(), calling fflush()
backs up the file position by one wide character and clears the pushed-back wide
character from the stream. Backing up by one wide character skips over shift
characters and backs up to the start of the previous character (whether single-byte
or double-byte). For text files, OS/390 C counts the new-lines added to the records
as single-byte characters when it calculates the file position. For example, if you
have the following stream: you can run the following code fragment:

A B C

fp

SO SIX'FE' X'7F'

You can set the _EDC_COMPAT environment variable before you open the file, so that
fflush() ignores any character pushed back with ungetwc() or ungetc(), and leaves

fgetwc(fp); /* Returns X'00C1' (the hexadecimal */
/* wchar representation of A) */

fgetwc(fp); /* Returns X'00C2' (the hexadecimal */
/* wchar representation of B) */

fgetwc(fp); /* Returns X'7FFE' (the hexadecimal */
/* wchar representation of the DBCS */
/* character) between the SO and SI */
/* characters; leaves file position at C */

ungetwc('Z',fp); /* Logically inserts Z before SI character */
fflush(fp); /* Backs up one wchar, leaving position at */

/* beginning of X'7FFE' DBCS char */
/* and DBCS state in double-byte mode; */
/* clears Z from the logical stream */

Figure 6. ungetwc() Example

80 OS/390 V2R10.0 C/C++ Programming Guide

the file position where it was when ungetwc() or ungetc() was first issued. Any
characters pushed back are still cleared. For more information about _EDC_COMPAT,
see “Chapter 33. Using Environment Variables” on page 471.

Setting Positions within Files
The following conditions apply to text streams and binary streams.

Repositioning within Text Streams
When you use the fseek() or fsetpos() function to reposition within files, OS/390
C recalculates the shift state.

If you update a record after a successful call to the fseek() function or the
fsetpos() function, a partial multibyte character can be overwritten. Calling a wide
character function for data after the written character can result in undefined
behavior.

Use the fseek() or fsetpos() functions to reposition only to the start of a multibyte
character. If you reposition to the middle of a multibyte character, undefined
behavior can occur.

Repositioning within Binary Streams
When you are working with a wide-oriented file, keep in mind the state of the file
position that you are repositioning to. If you call ftell(), you can seek with
SEEK_SET and the state will be reset correctly. You cannot use such an ftell()
value across a program boundary unless the stream has been marked
wide-oriented. A seek specifying a relative offset (SEEK_CUR or SEEK_END) will change
the state to initial state. Using relative offsets is strongly discouraged, because you
may be seeking to a point that is not in initial state, or you may end up in the
middle of a multibyte character, causing wide-oriented functions to give you
undefined behavior. These functions expect you to be at the beginning or end of a
multibyte character in the correct state. Using your own offset with SEEK_SET also
does the same. For a wide-oriented file, the number of valid bytes or records that
ftell() supports is cut in half.

When you use the fsetpos() function to reposition within a file, the shift state is set
to the state saved by the function. Use this function to reposition to a wide
character that is not in the initial state.

ungetwc() Considerations
For text files, the library functions fgetpos() and ftell() take into account the
character you have pushed back onto the input stream with ungetwc(), and move
the file position back by one wide character. The starting position for an fseek() call
with a whence value of SEEK_CUR also takes into account this pushed-back wide
character. Backing up one wide character means backing up either a single-byte
character or a multibyte character, depending on the type of the preceding
character. The implicit new-lines at the end of each record are counted as wide
characters.

For binary files, the library functions fgetpos() and ftell() also take into account
the character you have pushed back onto the input stream with ungetwc(), and
adjust the file position accordingly. However, the ungetwc() must push back the
same type of character just read by fgetwc(), so that ftell() and fgetpos() can
save the state correctly. An fseek() with an offset of SEEK_CUR also accounts for the

Chapter 9. OS/390 C Support for the Double-Byte Character Set 81

pushed-back character. Again, the ungetwc() must unget the same type of
character for this to work properly. If the ungetwc() pushes back a character in the
opposite state, you will get undefined behavior.

You can make only one call to ungetwc(). If the current logical file position is
already at or before the first wchar in the file, a call to ftell() or fgetpos() after
ungetwc() fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point for
the reposition also accounts for the presence of ungetwc() characters and
compensates as ftell() and fgetpos() do. Specifying a relative offset other than 0
is not supported and results in undefined behavior.

You can set the _EDC_COMPAT environment variable to specify that ungetwc() should
not affect fgetpos() or fseek(). (It will still affect ftell().) If the environment
variable is set, fgetpos() and fseek() ignore any pushed-back wide character. See
“Chapter 33. Using Environment Variables” on page 471 for more information about
_EDC_COMPAT.

If a repositioning operation fails, OS/390 C attempts to restore the original file
position by treating the operation as a call to fflush(). It does not account for the
presence of ungetwc() characters, which are lost.

Closing Files
OS/390 C expects files to end in initial shift state. For binary byte-oriented files, you
must ensure that the ending state of the file is initial state. Failure to do so results
in undefined behavior if you reaccess the file again. For wide-oriented streams and
byte-oriented text streams, OS/390 C tracks new data that you add. If necessary,
OS/390 C adds a padding byte to complete any incomplete multibyte character and
a shift-in to end the file in initial state.

Manipulating Wide Character Array Functions
In order to manipulate wide character arrays in your program, the following
functions can be used:

Table 8. Manipulating wide character arrays

Function Purpose

wmemcmp() Compare wide character

wmemchr() Locate wide character

wmemcpy() Copy wide character

wmemmove() Move wide character

wmemset() Set wide character

wcrtomb() Convert a wide character to a multibyte
character

wcscat() Append to wide-character string

wcschr() Search for wide-character substring

wcscmp() Compare wide-character strings

For more information about these functions, refer to the OS/390 C/C++ Run-Time
Library Reference.

82 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 10. Using C and C++ Standard Streams and
Redirection

A C program or a C++ program has associated with it standard streams. You do not
have to open these streams, because they are automatically set up for you by C
when you include the stdio.h header file, or by C++ when you include iostream.h.
Table 9 below shows three standard streams for C and the functions that implicitly
use them. It also shows the four C++ standard streams and the operators typically
used to perform I/O with them.

The default behavior for the I/O Stream standard streams is for them to open
automatically on first reference. You do not have to declare them or call their open()
member functions to open them. For example, with no preceding declaration or
open() call, the following statement writes the decimal number n to the cout stream.
cout << n << endl;

For more detailed information on the classes available with the I/O Stream Class
Library and how to use them, see OS/390 C/C++ IBM Open Class Library
Reference and OS/390 C/C++ IBM Open Class Library User’s Guide.

Table 9. C and C++ Standard streams

C standard streams and their related functions

Name of
stream

Purpose Functions that use it

stdin The input device from which your C program
usually retrieves its data.

getchar()
scanf()
gets()

stdout The output device to which your C program
normally directs its output.

printf()
puts()
putchar()

stderr The output device to which your C program directs
its diagnostic messages. OS/390 C/C++ uses
stderr to collect error messages about exceptions
that occur.

perror()

C++ standard streams and the operators typically used with them

Name of
stream

Purpose Common usage

cin The object from which your C++ program usually
retrieves its data. In OS/390 C++, input from cin
comes from stdin by default.

>>, the input (extraction)
operator

cout The object to which your C++ program normally
directs its output. In OS/390 C++, output to cout
goes to stdout by default.

<<, the output (insertion)
operator

cerr The object to which your C++ program normally
directs its diagnostic messages. In OS/390 C++,
output to cerr goes to stderr by default. cerr is
unbuffered, so each character is flushed as you
write it.

<<, the output (insertion)
operator

clog Another object intended for error messages. In
OS/390 C++, output to clog goes to stderr by
default. Unlike cerr, clog is buffered.

<<, the output (insertion)
operator

© Copyright IBM Corp. 1996, 2000 83

On I/O operations requiring a file pointer, you can use stdin, stdout, or stderr in
the same manner as you would any other file pointer.

If you are running with POSIX(ON), standard streams are opened during initialization
of the process, before the application receives control. With POSIX(OFF), the default
behavior for the C standard streams is for them to open automatically on first
reference. You do not have to call fopen() to open them. For example:

printf("%d\n",n);

with no preceding fopen() statement writes the decimal number n to the stdout
stream.

By default, stdin interprets the character sequence /* as indicating that the end of
the file has been reached. See “Chapter 14. Performing Terminal I/O Operations” on
page 199 for more information.

Default Open Modes
The default open modes for the C standard streams are:

stdin r

stdout w

stderr w

Where the streams go depends on what kind of environment you are running under.
These are the defaults:

v Under interactive TSO, all three standard streams go to the terminal.

v Under MVS batch, TSO batch, and IMS (batch and interactive):

– stdin goes to dd:sysin If dd:sysin does not exist, all read operations from
stdin will fail.

– stdout goes first to dd:sysprint; if dd:sysprint does not exist, stdout looks
for dd:systerm and then dd:syserr. If neither of these files exists, OS/390
C/C++ opens a sysout=* data set and sends the stdout stream to it.

– stderr will go to the OS/390 Language Environment message file.

v Under CICS, stdout and stderr are assigned to transient data queues, allocated
during CICS initialization. The CICS standard streams can be redirected only to
or from memory files. You can do this by using freopen().

v Under OS/390 UNIX, if you are running in one of the OS/390 UNIX shells, the
shell controls redirection. See OS/390 UNIX System Services User’s Guide and
OS/390 UNIX System Services Command Reference for information.

You can also redirect the standard streams to other files. See Redirecting Standard
Streams and sections following.

Interleaving the Standard Streams I/O with sync_with_stdio()
For the special case of I/O Streams standard streams, the ios::sync_with_stdio()
member function allows you to indicate that you wish to interleave I/O Streams I/O
with C I/O. A call to ios::sync_with_stdio() does the following:

v cin, cout, cerr, and clog are initialized with stdiobuf objects associated with
stdin, stdout, and stderr.

v The flags unitbuf and stdio are set for cout, cerr, and clog.

84 OS/390 V2R10.0 C/C++ Programming Guide

This ensures that subsequent I/O Stream and C standard stream I/O may be mixed
on a per-character basis. However, a run-time performance penalty is incurred to
ensure this synchronization.

//
// Example of interleaving I/O with sync_with_stdio()
//
// tsyncws.cxx
#include <stdio.h>
#include <fstream.h>

int main() {
ios::sync_with_stdio();
cout << "object: to show that sync_with_stdio() allows interleaving\n "

" standard input and output on a per character basis\n" << endl;

printf("line 1 ");
cout << "rest of line 1\n";
cout << "line 2 ";
printf("rest of line 2\n\n");

char string1[80] = "";
char string2[80] = "";
char string3[80] = "";
char* rc = NULL;

cout << "type the following 2 lines:\n"
"hello world, here I am\n"
"again\n" << endl;

cin.get(string1[0]);
string1[1] = getchar();
cin.get(string1[2]);

cout << "\nstring1[0] is \'" << string1[0] << "\'\n"
<< "string1[1] is \'" << string1[1] << "\'\n"
<< "string1[2] is \'" << string1[2] << "\'\n" << endl;

cin >> &string1[3];
rc = gets(string2); // note: reads to end of line, so
cin >> string3; // this line waits for more input

cout << "\nstring1 is \"" << string1 << "\"\n"
<< "string2 is \"" << string2 << "\"\n"
<< "string3 is \"" << string3 << "\"\n" << flush;

}

Figure 7. Interleaving I/O with sync_with_stdio() (Part 1 of 2)

Chapter 10. Using C and C++ Standard Streams and Redirection 85

Interleaving the Standard Streams I/O without sync_with_stdio()
Because of the buffering scheme described above, and the fact that I/O Streams
I/O is based on OS/390 C I/O, output to cout or clog may be interleaved with
output to stdout or stderr, respectively, without a call to sync_with_stdio(), by
explicitly flushing cout or clog before calling the OS/390 C output function. Results
of attempting to interleave output to cout or clog without explicitly flushing, are
undefined. Output to cerr doesn’t have to be explicitly flushed, since cerr is
unit-buffered.

Input to cin may be interleaved with input to stdin, without a call to
sync_with_stdio(), on a line-by-line basis. Results of attempting to interleave on a
per-character basis are undefined.

// sample output (with user input shown underlined):
//
// object: to show that sync_with_stdio() allows interleaving
// standard input and output on a per character basis
//
// line 1 rest of line 1
// line 2 rest of line 2
//
// type the following 2 lines:
// hello world, here I am
// again
//
// hello world, here I am
//
// string1[0] is 'h'
// string1[1] is 'e'
// string1[2] is 'l'
//
// again
//
// string1 is "hello"
// string2 is "world, here I am"
// string3 is "again"

Figure 7. Interleaving I/O with sync_with_stdio() (Part 2 of 2)

86 OS/390 V2R10.0 C/C++ Programming Guide

// Example of interleaving I/O without sync_with_stdio()
//
// tsyncwos.cxx
#include <stdio.h>
#include <fstream.h>

int main() {
cout << "object: to illustrate interleaving input and output\n "

" without sync_with_stdio()\n" << endl;

printf("interleaving output ");
cout << "works with an (end of line 1) \n" << flush;
cout << "explicit flush of cout " << flush;
printf("(end of line 2)\n\n");

char string1[80] = "";
char string2[80] = "";
char string3[80] = "";
char* rc = NULL;

cout << "type the following 3 lines:\n"
"interleaving input\n"
"on a per-line basis\n"
"is supported\n" << endl;

cin.getline(string1, 80);
rc = gets(string2);
cin.getline(string3, 80);

cout << "\nstring1 is \"" << string1 << "\"\n"
<< "string2 is \"" << string2 << "\"\n"
<< "string3 is \"" << string3 << "\"\n" << endl;

// The endl manipulator inserts a newline
// character and calls flush().

char char1 = '\0';
char char2 = '\0';
char char3 = '\0';

cout << "type the following 2 lines:\n"
"results of interleaving input on a per-\n"
"character basis are not defined\n" << endl;

cin >> char1;
char2 = (char) getchar();
cin >> char3;

cout << "\nchar1 is \'" << char1 << "\'\n"
<< "char2 is \'" << char2 << "\'\n"
<< "char3 is \'" << char3 << "\'\n" << flush;

}

Figure 8. Interleaving I/O without sync_with_stdio() (Part 1 of 2)

Chapter 10. Using C and C++ Standard Streams and Redirection 87

Redirecting Standard Streams
This section describes redirection of standard streams:

v From the command line

v By assignment

v With freopen()

v With the MSGFILE run-time option

Note that, because C++ I/O streams are implemented in terms of C streams, cin,
cout, cerr, or clog are implicitly redirected when the corresponding C standard
streams are redirected, unless cin, cout, cerr, or clog are redirected by
assignment—as described in “Assigning the Standard Streams” on page 90. If
freopen() is applied to a C standard stream, creating a binary stream or one with
"type=record", then behavior of the related I/O Stream standard stream is
undefined.

Redirecting Streams from the Command Line
To redirect a standard stream to a file from the command line, invoke your program
by entering the following:

1. Program name

2. Any parameters your program requires (these may be specified before and after
the redirection)

// sample output (with user input shown underlined):
//
// object: to illustrate interleaving input and output
// without sync_with_stdio()
//
// interleaving output works with an (end of line 1)
// explicit flush of cout (end of line 2)
//
// type the following 3 lines:
// interleaving input
// on a per-line basis
// is supported
//
// interleaving-input
// on a per-line basis
// is supported
//
// string1 is "interleaving input"
// string2 is "on a per-line basis"
// string3 is "is supported"
//
// type the following 2 lines:
// results of interleaving input on a per-
// character basis are not defined
//
// results of interleaving input on a per-
// character basis are not defined
//
// char1 is 'r'
// char2 is 'c'
// char3 is 'e'

Figure 8. Interleaving I/O without sync_with_stdio() (Part 2 of 2)

88 OS/390 V2R10.0 C/C++ Programming Guide

3. A redirection symbol followed by the name of the file that is to be used in place
of the standard stream

Note: If you specify a redirection in a system() call, after system() returns, the
streams are redirected back to those at the time of the system() call.

Using the Redirection Symbols
The following table lists the redirection symbols supported by OS/390 C/C++ (when
not running under one of the OS/390 UNIX shells) for redirection of C standard
streams from the command line or from a system() call. 0, 1, and 2 represent
stdin, stdout, and stderr, respectively.

Table 10. OS/390 C/C++ Redirection Symbols

Symbol Description

<fn associates the file specified as fn with stdin; reopens fn in mode r.

0<fn associates the file specified as fn with stdin; reopens fn in mode r.

>fn associates the file specified as fn with stdout; reopens fn in mode w.

1>fn associates the file specified as fn with stdout; reopens fn in mode w.

>>fn associates the file specified as fn with stdout; reopens fn in mode a.

2>fn associates the file specified as fn with stderr; reopens fn in mode w.

2>>fn associates the file specified as fn with stderr; reopens fn in mode a.

2>&1 associate stderr with stdout; same file and mode.

1>&2 associate stdout with stderr; same file and mode.

Notes:

1. If you use the NOREDIR option on a #pragma runopts directive under C, or the
NOREDIR compile-time option, under C++, you cannot redirect standard streams
on the command line using the preceding list of symbols.

2. If you want to pass one of the redirection symbols as an argument, you can
enclose it in double quotation marks. For example, the following passes the
string "here are the args including a <" to prog and redirects stdout to
redir1 output a.

prog "here are args including a <" >"redir1 output a"

3. TSO (batch and online) and MVS batch support command line arguments. CICS
and IMS do not.

4. When two options specifying redirection conflict with each other, or when you
redirect a standard stream more than once, the redirection fails. If you do the
latter, you will get an abend. For example, if you specify

2>&1

and then
1>&2

OS/390 C/C++ uses the first redirection and ignores any subsequent ones. If
you specify

>a.out

and then
1>&2

Chapter 10. Using C and C++ Standard Streams and Redirection 89

the redirection fails and the program abends.

5. A failed attempt to redirect a standard stream causes your program to fail in
initialization.

Assigning the Standard Streams
This method of redirecting streams is known as direct assignment. You can redirect
a C standard stream by assigning a valid file pointer to it, as follows:

FILE *stream;
stream = fopen("new.file", "w+");
stdout = stream;

You must ensure that the streams are appropriate; for example, do not assign a
stream opened for w to stdin. Doing so would cause a function such as getchar()
called for the stream to fail, because getchar() expects a stream to be opened for
read access.

Similarly, you can redirect an I/O streams standard stream under C++ by
assignment:
ofstream myfile("myfile.data");
cout = myfile;

Again, you must ensure that the assigned stream is appropriate; for example, do
not assign an fstream opened for ios::out only to cin. This will cause a
subsequent read operation to fail.

This topic is also covered in the chapter, ″Associating a File with a Standard Input
or Output Stream″, in OS/390 C/C++ IBM Open Class Library User’s Guide.

Using the freopen() Library Function
You can use the freopen() C library function to redirect C standard streams in all
environments.

Redirecting Streams with the MSGFILE Option
You can redirect stderr by specifying a ddname on the MSGFILE run-time option and
not redirecting stderr elsewhere (such as on the command line). The default
ddname for the OS/390 Language Environment MSGFILE is SYSOUT. See OS/390
Language Environment Programming Guide for more information on MSGFILE.

MSGFILE Considerations
OS/390 C/C++ makes a distinction between types of error output according to
whether the output is directed to the MSGFILE, to stderr, or to stdout:

Table 11. Output Destinations under OS/390 C/C++

Destination of
Output Type of Message Produced by Default Destination

MSGFILE output OS/390 Language
Environment
messages (CEExxxx)

OS/390 Language
Environment
conditions

MSGFILE ddname

OS/390 C/C++
language messages
(EDCxxxx)

OS/390 C/C++
unhandled conditions

MSGFILE ddname

90 OS/390 V2R10.0 C/C++ Programming Guide

Table 11. Output Destinations under OS/390 C/C++ (continued)

Destination of
Output Type of Message Produced by Default Destination

stderr messages perror() messages
(EDCxxxx)

Issued by a call, for
example, to: perror()

MSGFILE ddname 1

User output sent
explicitly to stderr

Issued by a call to
fprintf()

MSGFILE ddname

stdout messages User output sent
explicitly to stdout

Issued by a call, for
example, to: printf()

stdout 2

All stderr output is by default sent to the MSGFILE destination, while stdout output
is sent to its own destination. When stderr is redirected to stdout, both share the
stdout destination. When stdout is redirected to stderr, both share the stderr
destination.

If you specified one of the DDs used in the stdout open search order as the DD for
the MSGFILE option, then that DD will be ignored in the stdout open search.

Table 12 describes the destination of output to stderr and stdout after redirection
has occurred. Whenever stdout and stderr share a common destination, the
output is interleaved. The default case is the one where stdout and stderr have
not been redirected.

Table 12. OS/390 C/C++ Interleaved Output

stderr not
redirected

stderr redirected to
destination other
than stdout

stderr redirected to
stdout

stdout not
redirected

stdout to itself stderr
to MSGFILE

stdout to itself stderr
to its other destination

Both to stdout

stdout redirected to
destination other
than stderr

stdout to its other
destination stderr to
MSGFILE

stdout to its other
destination stderr to
its other destination

Both to the new
stdout destination

stdout redirected to
stderr

Both to MSGFILE Both to the new
stderr destination

stdout to stderr
stderr to stdout

OS/390 C/C++ routes error output as follows:

v MSGFILE output

– OS/390 Language Environment messages (messages prefixed with CEE)

– Language messages (messages prefixed with EDC)

v stderr output

– perror messages (messages prefixed with EDC and issued by a call to
perror())

– Output explicitly sent to stderr (for example, by a call to fprintf())

By default, OS/390 C/C++ sends all stderr output to the MSGFILE destination
and stdout output to its own destination. You can change this by using OS/390
C/C++ redirection, which enables you to redirect stdout and stderr to a ddname,

1. When you are using one of the OS/390 UNIX shells, stderr will go to file descriptor 2, which is typically the terminal. See
“Chapter 17. Language Environment Message File Operations” on page 225 for more information about OS/390 Language
Environment message files.

2. When you are using one of the OS/390 UNIX shells, stdout will go to file descriptor 1, which is typically the terminal.

Chapter 10. Using C and C++ Standard Streams and Redirection 91

file name, or each other. Unless you have redirected stderr, it always uses the
MSGFILE destination. When you redirect stderr to stdout, stderr and stdout
share the stdout destination. When you redirect stdout to stderr, they share the
stderr destination.

Redirecting Streams under OS/390
This section describes how to redirect C standard streams under MVS batch and
under TSO.

Under MVS Batch
You can redirect standard streams in the following ways:

v From the freopen() library function call

v On the PARM parameter of the EXEC used to invoke your C or C++ program

v Using DD statements

Because the topic of JCL statements goes beyond the scope of this book, only
simple examples will be shown here.

Using the PARM Parameter of the EXEC Statement
The following example shows an excerpt taken from a job stream. It demonstrates
both the redirection of stdout using the PARM parameter of the EXEC statement, and
the way to redirect to a fully qualified data set. You can use the redirection symbols
described in Table 10 on page 89.

Suppose you have a program called BATCHPGM. with 1 required parameter 'DEBUG'.
The output from BATCHPGM is to be directed to a sequential data set called
'MAINT.LOG.LISTING'. You can use the following JCL statements:

The following JCL redirects output to an unqualified data set using the same
program name, parameter and output data set as the example above:

If your userid were TSOU812, stdout would be sent to TSOU812.LOG.LISTING.

Using DD Statements
When you use DD statements to redirect standard streams, the standard streams
will be associated with ddnames as follows:

v stdin will be associated with the SYSIN ddname. If SYSIN is not defined, no
characters can be read in from stdin.

v stdout will be associated with the SYSPRINT ddname. If SYSPRINT is not defined,
the C library will try to associate stdout with SYSTERM, and if SYSTERM is also not
defined, the C library will try to associate stdout with SYSERR. If any of the above
DD statements are used as the MSGFILE DD, then that DD statement will not be
considered for use as the stdout DD.

v stderr will be associated with the MSGFILE, which defaults to SYSOUT. See OS/390
Language Environment Programming Guide for more information on MSGFILE.

v If you are running with the run-time option POSIX(ON), you can redirect standard
streams with ddnames only for MVS data sets, not for HFS files.

//JOBname JOB...
//STEP01 EXEC PGM=BATCHPGM,PARM='DEBUG >''MAINT.LOG.LISTING'''...

//STEP01 EXEC PGM=BATCHPGM,PARM='DEBUG >LOG.LISTING'

92 OS/390 V2R10.0 C/C++ Programming Guide

v If the ddname for stdout is not allocated to a device or data set, it is dynamically
allocated to the terminal in an interactive environment or to SYSOUT=* in an MVS
batch environment.

The following table summarizes the association of streams with ddnames:

Table 13. Association of Standard Streams with ddnames

Standard stream ddname Alternate ddname

stdin SYSIN none

stdout SYSPRINT SYSTERM, SYSERR

stderr DD associated with MSGFILE None

The following MVS example shows an excerpt taken from a job stream
demonstrating the redirection of the three standard streams by using ddnames.

In the example, your program name is MONITOR and the input to MONITOR is to be
retrieved from a sequential data set called 'SAFETY.CHEM.LIST'. The output of
MONITOR is to be directed to a partitioned data set member called
'YEAREND.ACTION(CHEM)', and any errors generated by MONITOR are to be written to
a sequential data set called 'YEAREND.MONITOR.ERRLIST'. To redirect the standard
streams using DD statements you could use the following JCL statements:

The following example shows how to get stdout and stderr to share the same file
where: the program name is HOCKEY and the input to HOCKEY is to be retrieved from
a sequential data set called 'HOCKEY.PLAYER.LIST'. The output of HOCKEY is to be
directed to a sequential data set called 'HOCKEY.OUTPUT' and any errors generated
by HOCKEY are also to be written to the sequential data set 'HOCKEY.OUTPUT'. You
could use the following JCL statements:

stderr shares stdout because of the 2>&1 redirection statement.

If you want to redirect to an HFS file, you can modify the above examples to use
the PATH and PATHOPT options described in “DDnames” on page 57.

Under TSO
You can redirect standard streams in the following ways:

v From the freopen() library function call

v From the command line

v Using the parameter list in a CALL command

//JOBname JOB...
//STEP01 EXEC PGM=MONITOR,PARM='MSGFILE(SYSERR)/'...
//SYSIN DD DSN=SAFETY.CHEM.LIST,DISP=OLD
//SYSERR DD DSN=YEAREND.MONITOR.ERRLIST,DISP=MOD
//SYSPRINT DD DSN=YEAREND.ACTION(CHEM),DISP=OLD...

//JOBname JOB...
//STEP01 EXEC PGM=HOCKEY,PARM='/ 2>&1'
//SYSIN DD DSN=HOCKEY.PLAYER.LIST,DISP=SHR
//SYSPRINT DD DSN=HOCKEY.OUTPUT,DISP=(OLD),DCB=...

Chapter 10. Using C and C++ Standard Streams and Redirection 93

From the Command Line
The following example illustrates the redirection of stdin under TSO. The program
in this example is called BUILD and it has 2 required parameters, 'PLAN' and
'JOHNSTON'. The input to BUILD is to be retrieved from a partitioned data set
member called 'CONDO(SPRING)'. To redirect stdin in this example under TSO you
can use the following command:

BUILD PLAN JOHNSTON <'CONDO(SPRING)'

Notes:

1. If the data set name is not enclosed in quotation marks, your user prefix will be
appended to the data set name specified.

2. If you specify a redirection in a system() call, after system() returns, the
streams are redirected back to those at the time of the system() call.

Using the Parameter List in a CALL Command
You can also redirect the output to a file with a ddname in TSO by specifying the
output file in the parameter list like the following:

CALL 'PREFIX.PROGRAM' '>DD:OUTFILE'

The ddname can be created by an ALLOCATE command.

Under IMS
Under IMS online and batch, you can redirect the C standard streams in any of the
following ways:

v with direct assignment

v with the freopen() function

v with ddnames

For details on ddnames, see “Using DD Statements” on page 92.

Under CICS
There are several ways to redirect C standard streams under CICS:

v You can assign a memory file to the stream (for example, stdout=myfile).

v You can use freopen() to open a standard stream as a memory file.

v You can use CICS facilities to direct where the stream output goes.

If you assign a file pointer to a stream or use freopen() on it, you will not be able
to use C functions to direct the information outside or elsewhere in the CICS
environment. Once access to a CICS transient data queue has been removed,
either by a call to freopen() or fclose(), or by the assignment of another file
pointer to the stream, OS/390 C/C++ does not provide a way to regain access.
Once C functions have lost access to the transient data queues, you must use the
CICS-provided facilities to regain it.

CICS provides a facility that enables you to direct where a given transient data
queue, the default standard stream implementation, will go, but you must configure
this facility before a CICS cold start.

94 OS/390 V2R10.0 C/C++ Programming Guide

Passing C and C++ Standard Streams Across a system() Call
A system() call occurs when one OS/390 C/C++ program calls another OS/390
C/C++ program by using the ANSI system() function, which OS/390 C/C++ uses if
you are not running with POSIX(ON). Standard streams are inherited across calls to
the ANSI system() function. With a POSIX system() function, file descriptors 0, 1,
and 2 will be mapped to standard streams stdin, stdout and stderr in the child
process. The behavior of these streams is similar to binary streams called with the
ANSI system() function.

Inheritance includes any redirection of the stream as well as the open mode of the
stream. For example, if program A reopens stdout as "A.B" for "wb" and then calls
program B, program B inherits the definition of stdout. If program B reopens stdout
as "C.D" for "ab" and then uses system() to call program C, program C inherits
stdout opened to "C.D" for append. Once control returns to the calling program, the
definitions of the standard streams from the time of the system() call are restored.
For example, when program B finally returns control to program A, stdout is
restored to "A.B" opened for "wb".

The file position and the amount of data that is visible in the called and calling
programs depend on whether the standard streams are opened for binary, text, or
record I/O.

Since the I/O Stream standard streams are implemented in terms of the C standard
streams, behavior of the I/O Stream standard streams across a system() call is
based on the behavior of the C standard streams across system().

Passing Binary Streams
If the standard stream being passed across a system() call is opened in binary
mode, any reads or writes issued in the called program occur at the next byte in the
file. On return, the position of the file is wherever the called program is positioned.
This includes any possible repositions made by the called program if the file is
enabled for positioning. Because output to binary files is done byte by byte, all
bytes are written to stdout and stderr in the order they are written. This is shown
in the following example:
printf("123");
printf("456");
system("CHILD"); ------> int main(void) { putc('7',stdout);}
printf("89");

The output from this example is:
123456789

Memory files are always opened in binary mode, even if you specify text. Any
standard streams redirected to memory files and passed across system() calls will
be treated as binary files. HFS files are also treated as binary files, because they
do not contain any real record boundaries. Memory files are not passed across calls
to the POSIX system() function.

If freopen() is applied to a C standard stream, thereby creating a binary stream,
the results of I/O to the associated I/O Stream standard stream across a system()
call are undefined.

Chapter 10. Using C and C++ Standard Streams and Redirection 95

Passing Text Streams
If the C standard stream being passed across a system() call is opened in text
mode (the default), the file position in the called program is placed at the next
record boundary, if it is not already at the start of a record. Any data in the current
record that is unread is skipped. Here is an example:

When you write to a spanned file, the file position moves to the beginning of the
next record, if that record exists. If not, the position moves to the end of the
incomplete record.

For non-spanned standard streams opened for output, if the caller has created a
text record missing an ending control character, the last record is hidden from the
called program. The called program can append new data if the stream is open in
append mode. Any appends made by the called program will be after the last
record that was complete at the time of the system() call.

When the called program terminates, it completes any new unfinished text record
with a new-line; the addition of the new-line does not move the file position. Once
any incomplete record is completed, the file position moves to the next record
boundary, if it is not already on a record boundary or at EOF.

When control returns to the original caller, any incomplete record hidden at the time
of the system() call is restored to the end of the file. If the called program is at EOF
when it is terminated and the caller was within an incomplete record at the time of
the system() call, the position upon return is restored to the original record offset at
the time of the system() call. This position is usually the end of the incomplete
record. Generally, if the caller is writing to a standard stream and does not complete
the last record before it calls system(), writes continue to add to the last record
when control returns to the caller. For example:

The output from this example is as follows:
test
hello world
abcdef

If stdout had been opened for "w+" in this example, and a reposition had been
made to the character 'b' before the system() call, upon return, the incomplete

INPUT FILE ROOT C PROGRAM CHILD PROGRAM
---------- int main() { int main() {
abcdefghijklm char c[4]; char d[2];
nopqrstuvwxyz c[0] = getchar(); d[0] = getchar();
0123456789ABC c[1] = getchar(); d[1] = getchar();
DEFGHIJKLMNOP system("CHILD"); printf("%.2s\n",

c[2] = getchar(); d);
c[3] = getchar(); }
printf("%.4s\n",c);

}

OUTPUT

no ---> from the child
ab01 ---> from root

printf("test");
printf("abc");
system("hello"); ------> int main(void) { printf("hello world\n");}
printf("def\n");

96 OS/390 V2R10.0 C/C++ Programming Guide

record "abc" would have been restored and the position would have been at the
'b'. The subsequent write of def would have performed an update to give test
hello world adef.

C++ I/O Streams Considerations
The following sections describe considerations for I/O streams standard input and
output.

Output with sync_with_stdio(): When an I/O Streams standard output stream is
open in text mode (the default), and sync_with_stdio() has been called, the output
across a system() call behaves the same as an OS/390 C standard stream:

v If the parent program writes a newline character, the line will be flushed before
the child program is invoked;

v Otherwise, the output from the parent will be held in a buffer until the child
returns.

Output without sync_with_stdio(): When an I/O Streams standard output stream
is open in text mode, and sync_with_stdio() has not been called, the behavior is
as follows:

v If the parent program writes a newline character, and explicitly flushes it, the line
will be written out before the child program is invoked;

v Otherwise, the behavior is undefined.

Input with sync_with_stdio(): When cin is open in text mode (the default), and
sync_with_stdio() has been called, the input across a system() call behaves the
same as stdin:

v The child program begins reading at the next record boundary, that is, unread
data in the current record in the parent is hidden.

v When the child program returns, the parent program begins reading at the next
record boundary, that is, unread data in the current record in the child is lost.

Input without sync_with_stdio(): When cin is open in text mode, and
sync_with_stdio() has not been called, the behavior is as follows:

v The parent program must either not read from cin before calling the child, or
must read to the end of a complete record.

v The child program begins reading at the next record boundary, that is, unread
data in the current record in the parent is hidden.

v When the child program returns, the parent program begins reading at the next
record boundary, that is, unread data in the current record in the child is lost.

v If the parent program read only part of a record before calling the child, the
behavior upon returning from the child is undefined.

Passing Record I/O Streams
For record I/O, all reads and writes made by the called program occur at the next
record boundary. Since complete records are always read and written, there is no
change in the file position across a system() call boundary.

In the following example, stdout is a variable-length record I/O file.

Chapter 10. Using C and C++ Standard Streams and Redirection 97

The output from this code fragment is as follows:
test
abc
hello world
def

If freopen() is applied to a C standard stream, creating a stream with
"type=record", then behavior of the associated I/O Stream standard stream is
undefined across a system() call.

Using Global Standard Streams
In the default inheritance model, the behavior of C standard streams is such that a
child main() function cannot affect the standard streams of the parent. The child can
use the parent’s definition or redirect a standard stream to a new location, but when
control returns to the parent, the standard stream reverts back to the definition of
the parent. In the global model, the C standard streams, stdin, stdout, and stderr,
can be redirected to a different location while running in a child main() function and
have that redirection stay in effect when control returns to the parent. You can use
the _EDC_GLOBAL_STREAMS environment variable to set standard stream
behavior to the global model. For more information, see
“_EDC_GLOBAL_STREAMS” on page 478.

Table 14 highlights the standard stream behavior differences between the default
inheritance model and the global model.

Table 14. Standard Stream Behavior Differences

Behavior Default Inheritance Model Global Model

POSIX(OFF) Standard streams are opened automatically on
first reference.

(Same)

POSIX(ON) Standard streams are opened during initialization
of the process, before the application receives
control.

Not supported.

default open modes As currently described in “Default Open Modes” on
page 84.

(Same)

default locations As currently described in “Chapter 10. Using C
and C++ Standard Streams and Redirection” on
page 83.

(Same)

command line redirection Changes the location for the main being called
and subsequent child programs.

Changes the location for the entire C
environment.

direct assignment Affects the current main and subsequent child
programs.

Affects the current main only. This
definition is not passed on to a
subsequent child program. The child
gets the current global definition, if
there is one defined.

freopen() Changes location for the main from which it is
called and affects any subsequent child programs.

Changes location for the entire C
environment.

fwrite("test",1,4,stdout);
fwrite("abc",1,3,stdout);
system("hello"); ------> int main(void) {
fwrite("def",1,3,stdout); fwrite("hello world",1,11,stdout)

}

98 OS/390 V2R10.0 C/C++ Programming Guide

Table 14. Standard Stream Behavior Differences (continued)

Behavior Default Inheritance Model Global Model

MSGFILE() run-time
option

Redirects stderr for the main being invoked and
affects any subsequent child programs. When
control returns to a parent program, stderr reverts
back to the definition of the parent. If stderr is
also redirected on the command line, that
redirection takes precedence.

(Same)

fclose() Closes standard stream in current main only. Closes the standard stream for the
entire C environment. The standard
stream cannot be global anymore.
Only direct assignment can be used
to use the standard stream, and that
would only be for the main in which it
is assigned.

file position and visible
data

As currently described in “Chapter 10. Using C
and C++ Standard Streams and Redirection” on
page 83.

File position and visible data across
mains are as if there were only one
main. No special processing occurs
during the ANSI system() call. The
standard streams are left untouched.
When either entering or returning
from a child program, reading or
writing to the standard streams begin
where previously left off,

C++ I/O Stream cin defaults to stdin
cout defaults to stdout
cerr defaults to stderr (unbuffered)
clog defaults to stderr (buffered)

(Same)

Notes:

1. The following environments do not allow global standard stream behavior as an
option:
v POSIX(ON)
v CICS
v SPC

2. You must identify the behavior of the standard streams to the C run-time library
before initialization of the first C main in the environment. The default behavior
uses the inheritance model. Once you set the standard stream behavior, it
cannot be changed. Attempts to change the behavior after the first C main has
been initialized are ignored.

3. The value of the environment variable, when queried, does not necessarily
reflect the standard stream behavior being used. This is because the value of
the environment variable can be changed after the standard stream behavior
has been set.

4. The behaviors described in Table 14 on page 98 only apply to the standard
streams that use the global behavior.

Command Line Redirection

In the C standard stream global model, command line redirection of the standard
streams is supported, but has much different behavior than the C standard stream
inheritance model.

Chapter 10. Using C and C++ Standard Streams and Redirection 99

The most important difference is that when redirection is done at system() call time,
the redirection takes effect for the entire C environment. When the child program
terminates, the standard stream definitions do not revert back to what they were
before the system() call.

Redirection of any of the standard streams, except when stderr is redirected to
stdout or vice versa, causes the standard stream to be flushed. This is because an
freopen() is done under the covers, which first closes the stream before reopening
it. Since the standard stream is global, the close causes the flush.

Redirecting stderr to stdout, or stdout to stderr, does not flush the redirected
stream. Any data in the buffer remains there until the stream is redirected again, to
something other than stdout or stderr. Only then is the buffer flushed.

Consider the following example:

When run from TSO terminal using the following command:
parent ENVAR(_EDC_GLOBAL_STREAMS=7)/

the output will be as follows:
(terminal) stdout.file stderr.file
line 1 line 7 line 10
line 3 line 8 line 6
line 2 line 9
line 4 line 5

Attention: If the stdout or stderr stream has data in its buffer and it is redirected
to stderr or stdout, then the data is lost if stdout or stderr is not redirected again.

Note: If either stdout or stderr is using global behavior, but not both, then any
redirection of stdout or stderr to stderr or stdout is ignored.

#include <stdio.h>
#include <stdlib.h>
main() {

int rc;
printf("line 1\n");
printf("line 2");
fprintf(stderr,"line 3\n");
fprintf(stderr,"line 4");
rc=system("PGM=CHILD,PARM='/ >stdout.file 2>&1;'")
printf("line 5\n");
fprintf(stderr,"line 6\n");

}

Figure 9. PARENT.C

#include <stdio.h>
main() {

printf("line 7\n");
fprintf(stderr,"line 8\n");
stderr = freopen("stderr.file","w",stderr);
printf("line 9\n");
fprintf(stderr,"line 10\n");

}

Figure 10. CHILD.C

100 OS/390 V2R10.0 C/C++ Programming Guide

Direct Assignment

You can directly assign the C standard streams in any main program. This
assignment does not have any effect on the global standard stream. No flush is
done and the new definition is not passed on to a child program nor back to a
parent program. Once you directly assign a standard stream, there is no way to
re-associate it with the global standard stream.

freopen()

When you use freopen() to redirect a standard stream, the stream is closed,
causing a flush, and then redirected. The new definition affects all C mains currently
using the global stream.

MSGFILE() Run-Time Option

The MSGFILE() run-time option redirects the stderr stream similar to command line
redirection. However, this redirection is controlled by the Common Execution Library
and does not apply to all C mains in the environment. When control returns to a
parent program, stderr reverts back to the definition of the parent.

fclose()

When a global standard stream is closed, only direct assignment can be used to
begin using the standard stream again. That use would only be for the main
performing the direct assignment. There is no way to get back global behavior for
the standard stream that was closed.

File Position and Visible Data

The file position and amount of visible data in the called and calling program is as if
there is only one program. There is no data hidden from a called program. A child
program continues where the parent program left off. This is true for all types of I/O:
binary, text, and record.

C++ I/O Stream Class Library

Since cin, cout, cerr and clog are initially based on stdin, stdout and stderr, they
continue to be in the global model. For example, if stdout is redirected using
freopen() in a child program, then both stdout and cout retain that redirection
when control returns to the parent.

Chapter 10. Using C and C++ Standard Streams and Redirection 101

102 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 11. Performing OS I/O Operations

This chapter describes using OS I/O, which includes support for the following:

v Regular sequential DASD (including striped data sets)

v Partitioned DASD (PDS and PDSE)

v Tapes

v SYSOUT

v Printers

v In-stream JCL

Note: OS/390 C/C++ does not support BDAM or ISAM data sets.
OS I/O supports text, binary, and record I/O, in three record formats, fixed (F),
variable (V), and undefined (U).

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 75
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use the C++ I/O stream class library instead, refer to “Chapter 5.
Using the I/O Stream Class Library in C++” on page 47 for general
information and OS/390 C/C++ IBM Open Class Library User’s Guide and
OS/390 C/C++ IBM Open Class Library Reference for specifics.

Opening Files
To open an OS file, you can use the standard C fopen() or freopen() library
functions. These are described in general terms in OS/390 C/C++ Run-Time Library
Reference. Details about them specific to all OS/390 C/C++ I/O are discussed in
the ″Opening Files″ section. This section describes considerations for using fopen()
and freopen() with OS files.

Using fopen() or freopen()
When you open a file using fopen() or freopen(), you must specify the file name (a
data set name) or a ddname.

Using a Data Set Name
Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode"). The following diagram shows the syntax for the
filename argument on your fopen() or freopen() call:

%%
// '

'

.

qualifier
(member)

+ number
−

0
& qualifier
&&

%

© Copyright IBM Corp. 1996, 2000 103

%
'

%&

Note: The single quotation marks in the filename syntax diagram must be matched;
if you use one, you must use the other.

A sample construct is:
'qualifier1.qualifier2(member)'

// Specifying these slashes indicates that the filename refers to a non-POSIX file
or data set.

qualifier
Each qualifier is a 1- to 8-character name. These characters may be
alphanumeric, national ($, #, @), the hyphen, or the character X'C0'. The first
character should be either alphabetic or national. Do not use hyphens in names
for RACF-protected data sets.

You can join qualifiers with periods. The maximum length of a data-set name is
as follows:

v Generally, 44 characters, including periods.

v For a generation data group, 35 characters, including periods.

These numbers do not include a member name or GDG number and
accompanying parentheses.

Specifying one or two ampersands before a single qualifier opens a temporary
data set. Multiple qualifiers are not valid after ampersands, because the system
generates additional qualifiers. Opening two temporary data sets with the same
name creates two distinct files. If you open a second temporary data set using
the same name as the first, you get a distinct data set. For example, the
following statements open two temporary data sets:

fp = fopen("//&&myfile","wb+");
fp2 = fopen("//&&myfile","wb+");

You cannot fully qualify a temporary data-set name. The file is created at open
time and is empty. When you close a temporary data set, the system removes
it.

(member)
If you specify a member, the data set you are opening must be a PDS or a
PDSE. For more information about PDSs and PDSEs, see “Regular and
Extended Partitioned Data Sets” on page 110. For members, the member name
(including trailing blanks) can be up to 8 characters long. A member name
cannot begin with leading blanks. The characters in a member name may be
alphanumeric, national ($, #, @), the hyphen, or the character X'C0'. The first
character should be either alphabetic or national.

+number

−number

0 You specify a Generation Data Group (GDG) by using a plus (+) or minus (−) to
precede the version number, or by using a 0. For more information about
GDGs, see “Generation Data Group I/O” on page 106.

104 OS/390 V2R10.0 C/C++ Programming Guide

The Resource Access Control Facility (RACF) expects the data-set name to have a
high-level qualifier that is defined to RACF. RACF uses the entire data-set name
when it protects a tape data set.

When you enclose a name in single quotation marks, the name is fully qualified.
The file opened is the one specified by the name inside the quotation marks. If the
name is not fully qualified, OS/390 C/C++ does one of the following:

v If your system does not use RACF, OS/390 C/C++ does not add a high-level
qualifier to the name you specified.

v If you are running under TSO (batch or interactive), OS/390 C/C++ appends the
TSO user prefix to the front of the name. For example, the statement
fopen("a.b","w"); opens a data set tsoid.A.B, where tsoid is the user prefix. If
the name is fully qualified, OS/390 C/C++ does not append a user prefix. You
can set the user prefix by using the TSO PROFILE command with the PREFIX
parameter.

v If you are running under MVS batch or IMS (batch or online), OS/390 C/C++
appends the RACF user ID to the front of the name.

If you want your code to be portable between the VM/CMS and OS/390 systems
and between memory files and disk files, use a name of the format name1.name2,
where name1 and name2 are up to 8 characters and are delimited by a period, or
use a ddname. You can also add a member name.

For example, the following piece of code can run under both Language
Environment for VM, and Language Environment for OS/390.

FILE *stream;

stream = fopen("parts.instock", "r");

Using a DDname
The DD statement enables you to write C or C++ source programs that are
independent of the files and input/output devices they use. You can modify the
parameters of a file or process different files without recompiling your program.

Use ddnames if you want to use non-DASD devices.

If you specify DISP=MOD on a DD statement and w or wb mode on the fopen() call,
OS/390 C/C++ treats the file as if you had opened it in append mode instead of
write mode.

To open a file by ddname under MVS batch, you must define the ddname first. You
can do this in any of the following ways:

v In batch (MVS, TSO, or IMS), you can write a JCL DD statement. For the
declaration shown above for the C or C++ file PARTS.INSTOCK, you write a JCL DD
statement similar to the following:

//STOCK DD DSN=USERID.PARTS.INSTOCK,DISP=SHR

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD
statements. The C library may close files to perform some file operations such as
freopen(), and the DD statement will be unallocated.

If you use SPACE=RLSE on a DD statement, OS/390 C/C++ releases space only if
all of the following are true:
– The file is open in w, wb, a, or ab mode
– It is not simultaneously open for read

Chapter 11. Performing OS I/O Operations 105

– No positioning functions (fseek(), ftell(), rewind(), fgetpos(), fsetpos())
have been performed.

For more information on writing DD statements, refer to the job control language
(JCL) manuals listed in OS/390 Information Roadmap.

v Under TSO (interactive and batch), you can issue an ALLOCATE command. The DD
definition shown above for the C file STOCK has an equivalent TSO ALLOCATE
command, as follows:

ALLOCATE FILE(STOCK) DATASET(PARTS.INSTOCK) SHR

See OS/390 Information Roadmap for manuals containing information on TSO
ALLOCATE.

v In the OS/390 environment, you can use the svc99() or dynalloc() library
functions to define ddnames. For information about these functions, refer to
OS/390 C/C++ Run-Time Library Reference.

DCB Parameter: The DCB (data control block) parameter of the DD statement
allows you to describe the characteristics of the data in a file and the way it will be
processed at run time. The other parameters of the DD statement deal chiefly with
the identity, location, and disposition of the file. The DCB parameter specifies
information required for the processing of the records themselves. The
subparameters of the DCB parameter are described in OS/390 MVS JCL User’s
Guide.

The DCB parameter contains subparameters that describe:

v The organization of the file and how it will be accessed. Parameters supplied on
fopen() override those specified in DCB.

v Device-dependent information such as the recording technique for magnetic tape
or the line spacing for a printer (for example: CODE, DEN, FUNC, MODE, OPTCD=J,
PRTSP, STACK, SPACE, UNIT and TRTCH subparameters).

v The data-set format (for example: BLKSIZE, LRECL, and RECFM subparameters).

You cannot use the DCB parameter to override information already established for
the file in your C or C++ program (by the file attributes declared and the other
attributes that are implied by them). DCB subparameters that attempt to change
information already supplied by fopen() or freopen() are ignored.

An example of the DCB parameter is:
DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

It specifies that fixed-length records, 40 bytes in length, are to be grouped in a
block 400 bytes long. You can copy attributes from another data set by either
setting the DCB parameter to DCB=(dsname) or using the SVC 99 services provided
by the svc99() and dynalloc() library functions.

Generation Data Group I/O
A Generation Data Group (GDG) is a group of related cataloged data sets. Each
data set within a generation data group is called a generation data set. Generation
data sets have sequentially ordered absolute and relative names that represent
their age. The absolute generation name is the representation used by the catalog
management routines in the catalog. The relative name is a signed integer used to
refer to the latest (0), the next to the latest (-1), and so forth, generation. The
relative number can also be used to catalog a new generation (+1). For more
information on GDGs, see OS/390 DFSMS: Using Data Sets.

106 OS/390 V2R10.0 C/C++ Programming Guide

If you want to open a generation data set by data-set name with fopen() or
freopen(), you will require a model. This model specifies parameters for the group,
including the maximum number of generations (the generation index). You can
define such a model by using the Access Method Services DEFINE command. For
more information on the DEFINE command, see OS/390 DFSMS Access Method
Services for Catalogs. Note also that fopen() does not support a DCB= parameter. If
you want to change the parameters, alter the JCL that describes the model and
open it in w mode.

MVS uses an absolute generation and version number to catalog each generation.
The generation and version numbers are in the form GxxxxVyy, where xxxx is an
unsigned 4-digit decimal generation number (0001 through 9999) and yy is an
unsigned 2-digit decimal version number (00 through 99). For example:

v A.B.C.G0001V00 is generation data set 1, version 0, in generation data group
A.B.C.

v A.B.C.G0009V01 is generation data set 9, version 1, in generation data group
A.B.C.

The number of generations kept depends on the size of the generation index.

When you open a GDG by relative number, OS/390 C/C++ returns the relative
generation in the __dsname field of the structure returned by the fldata() function.
You cannot use the rename() library function to rename GDGs by relative
generation number; rename GDG data sets by using their absolute names.

The following example defines a GDG. The fopen() fails because it tries to change
the RECFM of the data set.

Chapter 11. Performing OS I/O Operations 107

CBC3GOS1
This example is valid only for C:

//*---
//* This example demonstrates GDG I/O
//*---
//* Create GDG model MYGDG.MODEL and GDG name MYGDG
//*---
//MODEL EXEC PGM=IDCAMS
//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(0)),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE GDG -

(NAME(userid.MYGDG) -
EMPTY -
SCRATCH -
LIMIT(255))

/*
//*---
//* Create GDG data set MYGDG(+1)
//*---
//DATASET EXEC PGM=IEFBR14
//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=userid.MYGDG.MODEL
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*---
//* Compile, link, and run an inlined C program.
//* This program attempts to open the GDG data set MYGDG(+1) but
//* should fail as it is opening the data set with a RECFM that is
//* different from that of the GDG model (F versus FB).
//*---
//C EXEC EDCCLG,
// CPARM='NOSEQ,NOMARGINS'
//COMPILE.SYSIN DD DATA,DLM='/>'
#include <stdio.h>
#include <errno.h>

int main(void)
{

FILE *fp;

fp = fopen("MYGDG(+1)", "a,recfm=F");

if (fp == NULL)
{

printf("Error...Unable to open file\n");
printf("errno ... %d\n",errno);
perror("perror ... ");

}

printf("Finished\n");
}
/>

Figure 11. Generation Data Group Example for C

108 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GOS2
This example is valid for C++:

A relative number used in the JCL refers to the same generation throughout a job.
The (+1) used in the example above exists for the life of the entire job and not just
the step, so that fopen()’s reference to (+1) did not create another new data-set
but accessed the same data set as in previous steps.

//*---
//* This example demonstrates GDG I/O
//*---
//* Create GDG model MYGDG.MODEL and GDG name MYGDG
//*---
//MODEL EXEC PGM=IDCAMS
//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(0)),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE GDG -

(NAME(userid.MYGDG) -
EMPTY -
SCRATCH -
LIMIT(255))

/*
//*---
//* Create GDG data set MYGDG(+1)
//*---
//DATASET EXEC PGM=IEFBR14
//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=userid.MYGDG.MODEL
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*---
//* Compile, bind, and run an inlined C++ program.
//* This program attempts to open the GDG data set MYGDG(+1) but
//* should fail as it is opening the data set with a RECFM that is
//* different from that of the GDG model (F versus FB).
//*---
//*
//DOCLG1 EXEC CBCCBG,
// CPARM='NOSEQ,NOMARGINS'
//COMPILE.SYSIN DD DATA,DLM='<>'
#include <stdio.h>
#include <errno.h>
int main(void)
{

FILE *fp;

fp = fopen("MYGDG(+1)", "a,recfm=F");

if (fp == NULL)
{

printf("Error...Unable to open file\n");
printf("errno ... %d\n",errno);
perror("perror ... ");

}

printf("Finished\n");
}
<>

Figure 12. Generation Data Group Example for C++

Chapter 11. Performing OS I/O Operations 109

Note: You cannot use fopen() to create another generation dataset because
fopen() does not fully support the DCB parameter.

Regular and Extended Partitioned Data Sets
Partitioned data sets (PDS) and partitioned data sets extended (PDSE) are DASD
data sets divided into sections known as members. Each member can be accessed
individually by its unique 1- to 8-character name.

PDSEs are similar to PDSs, but contain a number of enhancements.

Table 15. PDSE and PDS Differences

PDSE Characteristics PDS Characteristics

Data set has a 123-extent limit Data set has a 16-extent limit

Directory is open-ended and indexed by
member name; faster to search directory

Fixed-size directory is searched sequentially

PDSEs are device-independent: records are
reblockable

Block sizes are device-dependent

Uses dynamic space allocation and
reclamation

Must use IEBCOPY COMPRESS to reclaim
space

Supports creation of more than one member
at a time*

Supports creation of only one member at a
time

Note: *OS/390 C/C++ allows you to open two separate members of a PDSE for writing at
the same time. However, you cannot open a single member for writing more than once.

You specify a member by enclosing its name in parentheses and placing it after the
data-set name. For example, the following JCL refers to member A of the data set
MY.DATA:

//MYDD DD DSN=userid.MY.DATA(A),DISP=SHR

You can specify members on calls to fopen() and freopen(). You can specify
members when you are opening a data set by its data set name or by a ddname.
When you use a ddname and a member name, the definition of the ddname must
not also specify a member. For example, using the DD statement above, the
following will fail:

fp = fopen("dd:MYDD(B)","r");

You cannot open a PDS or PDSE member using the modes a, ab, a+, a+b, w+, w+b,
or wb+. If you want to perform the equivalent of the w+ or wb+ mode, you must first
open the file as w or wb, write to it, and then close it. Then you can perform updates
by reopening the file in r+ or rb+ mode. You can use the C library functions ftell()
or fgetpos() to obtain file positions for later updates to the member. Normally,
opening a file in r+ or rb+ mode enables you to extend a file by writing to the end;
however, with these modes you cannot extend a member. To do so, you must copy
the contents of the old member plus any extensions to a new member. You can
remove the old member by using the remove() function and then rename the new
member to the old name by using rename().

All members have identical attributes for RECFM, LRECL, and BLKSIZE. For PDSs, you
cannot add a member with different attributes or specify a RECFM of FBS, FBSA, or
FBSM. OS/390 C/C++ verifies any attributes you specify.

For PDSEs, OS/390 C/C++ checks to make sure that any attributes you specify are
compatible with those of the existing data set. Compatible attributes are those that

110 OS/390 V2R10.0 C/C++ Programming Guide

|

specify the same record format (F, V, or U) and the same LRECL. Compatibility of
attributes enables you to choose whether to specify blocked or unblocked format,
because PDSEs reblock all the records. For example, you can create a PDSE as FB
LRECL=40 BLKSIZE=80, and later open it for read as FB LRECL=40 BLKSIZE=1600 or F
LRECL=40 BLKSIZE=40. The LRECL cannot change, and the BLKSIZE must be
compatible with the RECFM and LRECL. Also, you cannot change the basic format of
the PDSE from F to V or vice versa. If the PDS or PDSE already exists, you do not
need to specify any attributes, because OS/390 C/C++ uses the previously existing
ones as its defaults.

At the start of each partitioned data set is its directory, a series of records that
contain the member names and starting locations for each member within the data
set. You can access the directory by specifying the PDS or PDSE name without
specifying a member. You can open the directory only for read; update and write
modes are not allowed. The only RECFM that you can specify for reading the
directory is RECFM=U. However, you do not need to specify the RECFM, because
OS/390 C/C++ uses U as the default.

OS/390 DFSMS: Using Data Sets contains more detailed explanations about how to
use PDSs and PDSEs.

Partitioned and Sequential Concatenated Data Sets
There are two forms of concatenated data sets: partitioned and sequential. You can
open concatenated data sets only by ddname, and only for read or update.
Specifying any of the write, or append modes fails. As with PDS members, you
cannot extend a concatenated data set.

Partitioned concatenation consists of specifying multiple PDSs or PDSEs under
one ddname. When you access the concatenation, it acts as one large PDS or
PDSE, from which you can access any member that has a unique name. If two or
more partitioned data sets in the concatenation contain a member with the same
name, using the concatenation ddname to specify that member refers to the first
member with that name found in the entire concatenation. You cannot use the
ddname to access subsequent members. For example, if you have a PDS named
PDS1, with members A, B, and C, and a second PDS named PDS2, with members C,
D, and E, and you concatenate the two data sets as follows:

//MYDD DD userid.PDS1,DISP=SHR
// DD userid.PDS2,DISP=SHR

and perform the following:
fp = fopen("DD:MYDD(C)","r");
fp2 = fopen("DD:MYDD(D)","r");

the first call to fopen() finds member C from PDS1, even though there is also a
member C in PDS2. The second call finds member D from PDS2, because PDS2 is the
first PDS in the concatenation that contains this member. The member C in PDS2 is
inaccessible.

When you are concatenating partitioned data sets, be aware of the DCB attributes
for them. The concatenation is treated as a single data set with the following
attributes:
v RECFM= the RECFM of the first data set in the concatenation
v LRECL= the LRECL of the first data set in the concatenation
v BLKSIZE= the largest BLKSIZE of any data set in the concatenation

Chapter 11. Performing OS I/O Operations 111

These are the rules for compatible concatenations:

Table 16. Rules for Possible Concatenations

RECFM of first
data set RECFM of subsequent data sets LRECL of subsequent data sets

RECFM=F RECFM=F Same as that of first one

RECFM=FB RECFM=F or RECFM=FB Same as that of first one

RECFM=V RECFM=V Less than or equal to that of first
one

RECFM=VS RECFM=V or RECFM=VS Less than or equal to that of first
one

RECFM=VB RECFM=V or RECFM=VB Less than or equal to that of first
one

RECFM=VBS RECFM=V, RECFM=VB,
RECFM=VS, or RECFM=VBS

Less than or equal to that of first
one

RECFM=U RECFM=U or RECFM=F (see note
below)

Note: You can use a data set in V-format, but when you read it, you will see all of the
BDWs and RDWs or SDWs with the data.

If the first data set is in ASA format, all subsequent data sets must be ASA as well.
The preceding rules apply to ASA files if you add an A to the RECFMs specified.

If you do not follow these rules, undefined behavior occurs. For example, trying to
read a fixed-format member as RECFM=V could cause an exception or abend.

Repositioning is supported as it is for regular PDSs and PDSEs. If you try to read
the directory, you will be able to read only the first one.

Sequential concatenation consists of treating multiple sequential data sets or
partitioned data-set members as one long sequential data set. For example,

//MYDD DD userid.PDS1(A),DISP=SHR
// DD userid.PDS2(E),DISP=SHR
// DD userid.DATA,DISP=SHR

creates a concatenation that contains two members and a regular sequential data
set. You can read or update all of these in order. In partitioned concatenations, you
can read only one member at a time.

OS/390 C/C++ does not support concatenating data sets that do not have
compatible DCB attributes. The rules for compatibility are the same as those for
partitioned concatenations.

If all the data sets in the concatenation support repositioning, you can reposition
within a concatenation by using the functions fseek(), ftell(), fgetpos(),
fsetpos(), and rewind(). If the first one does not, all of the repositioning functions
except rewind() fail for the entire concatenation. If the first data set supports
repositioning but a subsequent one does not, you must specify the noseek
parameter on the fopen() or freopen() call. If you do not, fopen() or freopen()
opens the file successfully; however, an error occurs when the read position gets to
the data set that does not support repositioning.

112 OS/390 V2R10.0 C/C++ Programming Guide

In-stream Data Sets
An in-stream data set is a data set contained within a set of JCL statements.
In-stream data sets (also called inline data sets) begin with a DD * or DD DATA
statement. These DD statements can have any valid ddname, including SYSIN. If you
omit a DD statement before the input data, the system provides a DD * statement
with the ddname of SYSIN. This example shows you how to indicate an in-stream
data set:

//MYDD DD *
record 1
record 2
record 3
/*

The // at the beginning of the data set starts in column 1. The statement
fopen("DD:MYDD","rb"); opens a data set with lrecl=80, blksize=80, and
recfm=FB. In this example, the delimiter indicating the end of the data set is /*. In
some cases, your data may contain this string. For example, if you are using C
source code that contains comments, OS/390 C/C++ treats the beginning of the first
comment as the end of the in-stream data set. To avoid this occurrence, you can
change the delimiter by specifying DLM=nn, where nn is a two-character delimiter, on
the DD statement that identifies the file. For example:

//MYDD DD *,DLM=¢¢
#include <stdio.h>
/* Hello, world program */
int main() {printf("Hello, world\n"); }
¢¢

For more information about in-stream data sets, see OS/390 MVS JCL User’s
Guide.

To open an in-stream data set, call the fopen() or freopen() library function and
specify the data-set’s ddname. You can open an in-stream data set only for reading.
Specifying any of the update, write, or append modes fails. Once you have opened
an in-stream data set, you cannot acquire or change the file position except by
rewinding. This means that calls to the fseek(), ftell(), fgetpos(), and fsetpos()
for in-stream data sets fail. Calling rewind() causes OS/390 C/C++ to reopen the
file, leaving the file position at the beginning.

You can concatenate regular data sets and in-stream data sets sequentially. If you
do so, note the following:

v If the first data set is in-stream, you cannot acquire or change the file position for
the entire concatenation.

v If the first data set is not in-stream and supports repositioning, you must specify
the noseek parameter on the fopen() or freopen() call that opens the
concatenation. If you do not, fopen() or freopen() opens the file successfully;
however, an error occurs when the read position gets to the in-stream.

v The in-stream data set is treated as FB 80 and the concatenation rules for
sequential concatenation apply.

SYSOUT Data sets
You can specify a SYSOUT data set by using the SYSOUT parameter on a DD
statement. OS/390 C/C++ supports opening SYSOUT data sets in two ways:

1. Specifying a ddname that has the SYSOUT parameter. For information about
defining ddnames, see “Using a DDname” on page 105.

Chapter 11. Performing OS I/O Operations 113

2. Specifying a data-set name of * on a call to fopen() or freopen() while you are
running under MVS batch or IMS online or batch.

On a DD statement, you specify SYSOUT=x, where x is the output class. If the class
matches the JOB statement MSGCLASS, the output appears with the job log. You can
specify a SYSOUT data set and get the job MSGCLASS by specifying SYSOUT=*. If you
want to create a job stream within your program, you can specify INTRDR on the DD
statement. This sends your SYSOUT data set to the internal reader to be read as an
input job stream. For example,

//MYDD DD SYSOUT=(A,INTRDR)

For more details about the SYSOUT parameter, refer to OS/390 MVS JCL User’s
Guide.

You can specify DCB attributes for a SYSOUT data set on a DD statement or a call to
fopen() or freopen(). If you do not, OS/390 C/C++ uses the following defaults:

Binary or Record I/O
RECFM=VB LRECL=137 BLKSIZE=882

Text I/O
RECFM=VBA LRECL=137 BLKSIZE=882

Tapes
OS/390 C/C++ supports standard label (SL) tapes. If you are creating tape files, you
can only open them by ddname. OS/390 C/C++ provides support for opening tapes
in read, write, or append mode, but not update. When you open a tape for read or
append, any data-set control block (DCB) characteristics you specify must match
those of the existing data set exactly. The repositioning functions are available only
when you have opened a tape for read. For tapes opened for write or append,
calling rewind() has no effect; calls to any of the other repositioning functions fail.
To open a tape file for write, you must open it by ddname.

Opening FBS-format tape files with append-only mode is not supported.

When you open a tape file for output, the data-set name you specify in the JCL
must match the data-set name specified in the tape label, even if the existing tape
file is empty. If this is not the case, you must either change the JCL to specify the
correct data-set name or write to another tape file, or reinitialize the tape to remove
the tape label and the data. You can use IEBGENER with the following JCL to create
an empty tape file before passing it to the subsequent steps:
//ALLOC EXEC PGM=IEBGENER
//SYSUT1 DD *
/*
//SYSUT2 DD DSN=name-of-OUTPUT-tape-file,UNIT=xxxx,LABEL=(x,SL),
// DISP=(NEW,PASS),(DCB=LRECL=xx,BLKSIZE=xx,RECFM=xx),
// VOL=SER=xxx
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*

Note: For tapes, the value for UNIT= can be TAPE or CART.

Because the C library does not create tape files, you can append only to a tape file
that already exists. Attempting to append to a file that does not already exist on a
tape will cause an error. You can create an empty data set on a tape by using the
utility IEBGENER.

114 OS/390 V2R10.0 C/C++ Programming Guide

Multivolume Data Sets
OS/390 C/C++ supports data sets that span more than one volume of DASD or
tape. To open a multivolume data set for write, you must open it by ddname.

You can open multivolume tape data sets only for read or write. Opening them for
update or append is not supported.

You can open multivolume DASD data sets for read, write, or update, but not for
append. If you open one in r+ or rb+ mode, you can read and update the file, but
you cannot extend the data set.

The repositioning functions are available only when you have opened a multivolume
data set for read. For multivolume data sets opened for write, calling rewind() has
no effect; calls to any of the other repositioning functions fail. Here is an example of
a multivolume data set declaration:

//MYDD DD DSNAME=TEST.TWO,DISP=(NEW,CATLG),
// VOLUME=(,,,3,SER=(333001,333002,333003)),
// SPACE=(TRK,(9,10)),UNIT=(3390,P)

This creates a data set that may span up to three volumes. For more information
about the VOLUME parameter on DD statements, refer to OS/390 MVS JCL User’s
Guide.

Striped Data Sets
A striped data set is a special data set organization introduced with DFSMS Version
1 Release 1.0. Striping spreads a data set over a specified number of volumes
such that I/O parallelism can be exploited. Unlike a multivolume data set in which
physical record n follows record n-1, a striped data set has physical records n and
n-1 on separate volumes. This enables asynchronous I/O to perform parallel
operations, making requests for multiple reads and writes faster. Striped data sets
also facilitate repositioning once the relative block number is known. OS/390 C/C++
exploits this capability when it uses fseek() to reposition. This can result in
substantial savings for applications that use ftell() and fseek() with data sets that
have RECFMs of V, U, and FB (not FBS). data sets. When a data set is striped, an
fseek() can seek directly to the specified block just as an fsetpos() or rewind()
can. For a normal data set with the aforementioned RECFMs, OS/390 C/C++ has to
read forward or rewind the data set to get to the desired position. Depending on
how large the data set is, this can be quite inefficient compared to a direct
reposition. Note that for such data sets, striping pads blocks to their maximum size.
Therefore, you may be wasting space if you have short records.

If your system has DFSMS Version 1 Release 1.0 and higher, you may not be able
to use striped data sets. This is because there is a hardware requirement by
DFSMS that all volumes of a striped data set be attached to ESCON channels.
Contact your system administrator for details on whether striped data sets are
available on your system and how to specify them.

Other Devices
OS/390 C/C++ supports several other devices for input and output. You can open
these devices only by ddname. The following table lists a number of these devices
and tells you which record formats are valid for them.

Chapter 11. Performing OS I/O Operations 115

Table 17. Other Devices Supported for Input and Output

Device Valid open modes Repositioning? fldata()__device

Printer w, wb, a, ab No __PRINTER

Card reader r, rb rewind() only __OTHER

Card punch w, wb, a, ab No __OTHER

Optical reader r, rb rewind() only __OTHER

DUMMY data set r, rb, r+, rb+, r+b, w,
wb, w+, wb+ w+b, a,
ab, a+, ab+, a+b

rewind() only __DUMMY

Note: For all devices above that support open modes a or ab, the modes are treated as if
you had specified w or wb.

None of the devices listed above can be opened for update except the DUMMY data
set.

OS/390 C/C++ queries each device to find out its maximum BLKSIZE.

The DUMMY data set is not truly a device, although OS/390 C/C++ treats it as one. To
use the DUMMY data set, specify DD DUMMY in your JCL. On input, the DUMMY data set
always returns EOF; on output, it is always successful. This is the way to specify a
DUMMY data set:

//MYDD DD DUMMY

For more information on DUMMY data sets, see OS/390 MVS JCL User’s Guide.

fopen() and freopen() Parameters
The following table lists the parameters that are available on the fopen() and
freopen() functions, tells you which ones are allowed and applicable for OS I/O,
and lists the option values that are valid for the applicable ones. Detailed
descriptions of these options follow the table.

Table 18. Parameters for the fopen() and freopen() Functions for OS/390 OS I/O

Parameter Allowed? Applicable? Notes

recfm= Yes Yes Any of the 27 record formats available
under OS/390 C/C++, plus * and A are
valid.

lrecl= Yes Yes 0, any positive integer up to 32760, or X is
valid. See the parameter list below.

blksize= Yes Yes 0 or any positive integer up to 32760 is
valid.

space= Yes Yes Valid only if you are opening a new data set
by its data-set name. See the parameter list
below.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes No Not used for OS I/O.

password= Yes No Not used for OS I/O.

asis Yes No Used to specify mixed-case file names. Not
recommended.

116 OS/390 V2R10.0 C/C++ Programming Guide

Table 18. Parameters for the fopen() and freopen() Functions for OS/390 OS
I/O (continued)

Parameter Allowed? Applicable? Notes

byteseek Yes Yes Used for binary files to specify that the
seeking functions should use relative byte
offsets instead of encoded offsets.

noseek Yes Yes Used to disable seeking functions for
improved performance.

OS Yes No Ignored.

recfm=
OS/390 C/C++ allows you to specify any of the 27 possible RECFM types (listed
on pages 36, 39, and 42), as well as the OS/390 C/C++ RECFMs * and A.

When you are opening an existing file for read or append (or for write, if you
have specified DISP=MOD), any RECFM that you specify must match that of the
existing file, except that you may specify recfm=U to open any file for read, and
you may specify recfm=FBS for a file created as recfm=FB. Specifying recfm=FBS
indicates to OS/390 C/C++ that there are no short blocks within the file. If there
are, undefined behavior results.

For variable-format OS files, the RDW, SDW, and BDW contain the length of
the record, segment, and block as well as their own lengths. If you open a file
for read with recfm=U, OS/390 C/C++ treats each physical block as an
undefined-format record. For files created with recfm=V, OS/390 C/C++ does not
strip off block descriptor words (BDWs) or record descriptor words (RDWs), and
for blocked files, it does not deblock records. Using recfm=U is helpful for
viewing variable-format files or seeing how records are blocked in the file.

When you are opening an existing PDS or PDSE for write and you specify a
RECFM, it must be compatible with the RECFM of the existing data set. FS and FBS
formats are invalid for PDS members. For PDSs, you must use exactly the
same RECFM. For PDSEs, you may choose to change the blocked attribute (B),
because PDSEs perform their own blocking. If you want to read a PDS or
PDSE directory and you specify a RECFM, it must be recfm=U.

Specifying recfm=A indicates that the file contains ASA control characters. If you
are opening an existing file and you specify that ASA characters exist
(>recfm=A) when they do not, the call to fopen() or freopen() fails. If you create
a file by opening it for write or append, the A attribute is added to the default
RECFM. For more information about ASA, see “Chapter 8. Using ASA Text Files”
on page 71.

Specifying recfm=* causes OS/390 C/C++ to fill in any attributes that you do not
specify, taking the attributes from the existing data set. This is useful if you want
to create a new version of a data set with the same attributes as the previous
version. If you open a data set for write and the data set does not exist, OS/390
C/C++ uses the default attributes specified in “fopen() Defaults” on page 55.
This parameter has no effect when you are opening for read or append, and
when you use it for non-DASD files.

lrecl= and blksize=
The LRECL that you specify on the fopen() call defines the maximum record
length that the C library allows. Records longer than the maximum record length
are not written to the file. The first 4 bytes of each block and the first 4 bytes of

Chapter 11. Performing OS I/O Operations 117

each record of variable-format files are used for control information. For more
information, see “Variable-Format Records” on page 39.

The maximum LRECL supported for fixed, undefined, or variable-blocked-
spanned format sequential disk files is 32760. For other variable-length format
disk files the maximum LRECL is 32756. Sequential disk files for any format have
a maximum BLKSIZE of 32760. The record length can be any size when opening
a spanned file and specifying lrecl=X. You can now specify lrecl=X on the
fopen() or freopen() call for spanned files. If you are updating an existing file,
the file must have been originally opened with lrecl=X for the open to succeed.
lrecl=X is useful only for text and record I/O.

When you are opening an existing file for read or append (or for write, if you
have specified DISP=MOD), any LRECL or BLKSIZE that you specify must match
that of the existing file, except when you open an F or FB format file on a disk
device without specifying the noseek parameter. In this case, you can specify
the S attribute to indicate to OS/390 C/C++ that the file has no imbedded short
blocks. Files without short blocks improve OS/390 C/C++’s performance.

When you are opening an existing PDS or PDSE for write and you specify an
LRECL or BLKSIZE, it must be compatible with the LRECL or BLKSIZE of the
existing data set. For PDSs, you must use exactly the same values. For
PDSEs, the LRECL must be the same, but the BLKSIZE may be different if you
have changed the blocking attribute as described under the RECFM parameter
above. You can change the blocking attribute, because PDSEs perform their
own blocking. The BLKSIZE you choose should be compatible with the RECFM
and LRECL. When you open the directory of a PDS or PDSE, do not specify
LRECL or BLKSIZE; OS/390 C/C++ uses the defaults. See Table 19 on page 122
for more information.

space=(units,(primary,secondary,directory))
This keyword enables you to specify the space parameters for the allocation of
an MVS data set. It applies only to MVS data sets that you open by filename
and do not already exist. If you open a data set by ddname, this parameter has
no effect. You cannot specify any whitespace inside the value for the space
keyword. You must specify at least one value with this parameter. Any
parameter that you specify will be validated for syntax. If that validation fails,
then the fopen() or freopen() will fail even if the parameter would have been
ignored.

The supported values for units are as follows:
v Any positive integer indicating BLKSIZE
v CYL (mixed case)
v TRK (mixed case)

The primary quantity, the secondary quantity, and the directory quantity all must
be positive integers.

If you specify values only for units and primary, you do not have to specify the
inside set of parentheses. You can use a comma to indicate a quantity is to
take the default value. For example:

space=(cyl,(100,,10)) - default secondary value
space=(trk,(100,,)) - default secondary and directory value
space=(500,(100,)) - default secondary, no directory

You can specify only the values indicated on this parameter. If you specify any
other values, fopen() or freopen() fails.

118 OS/390 V2R10.0 C/C++ Programming Guide

Any values not specified are omitted on the allocation. These values are filled
by the system during SVC 99 processing.

type=
You can omit this parameter. If you specify it, the only valid value for OS I/O is
type=record, which opens a file for record I/O.

acc=
This parameter is not valid for OS I/O. If you specify it, OS/390 C/C++ ignores
it.

password=
This parameter is not valid for OS I/O. If you specify it, OS/390 C/C++ ignores
it.

asis
If you use this parameter, OS/390 C/C++ does not convert your file names to
upper case. The use of the asis parameter is strongly discouraged, because
most of the I/O services used by OS/390 C/C++ require uppercase file names.

byteseek
When you specify this parameter and open a file in binary mode, all
repositioning functions (such as fseek() and ftell()) use relative byte offsets
from the beginning of the file instead of encoded offsets. In previous releases of
OS/390 C/C++, byteseeking was performed only for fixed format binary files. To
have the byteseek parameter set as the default for all your calls to fopen() or
freopen(), you can set the environment variable _EDC_BYTE_SEEK to Y. See
“Chapter 33. Using Environment Variables” on page 471 for more information.

noseek
Specifying this parameter on the fopen() call disables the repositioning
functions ftell(), fseek(), fgetpos(), and fsetpos() for as long as the file is
open. When you have specified NOSEEK and have opened a disk file for read
only, the only repositioning function allowed on the file is rewind(), if the device
supports rewinding. Otherwise, a call to rewind() sets errno and raises
SIGIOERR, if SIGIOERR is not set to SIG_IGN. Calls to ftell(), fseek(),
fsetpos(), or fgetpos() return EOF, set errno, and set the stream error flag on.

The use of the noseek parameter may improve performance when you are
reading and writing data sets.

Note: If you specify the NOSEEK parameter when you open a file for writing, you
must specify NOSEEK on any subsequent fopen() call that simultaneously
opens the file for reading; otherwise, you will get undefined behavior.

OS
If you specify this parameter, OS/390 C/C++ ignores it.

Buffering
OS/390 C/C++ uses buffers to map C I/O to system-level I/O.

When OS/390 C/C++ performs I/O operations, it uses one of the following buffering
modes:

v Line buffering — characters are transmitted to the system when a new-line
character is encountered. Line buffering is meaningless for binary and record I/O
files.

v Full buffering — characters are transmitted to the system when a buffer is filled.

Chapter 11. Performing OS I/O Operations 119

C/C++ provides a third buffering mode, unbuffered I/O, which is not supported for
OS files.

You can use the setvbuf() and setbuf() library functions to set the buffering mode
before you perform any I/O operation to the file. setvbuf() fails if you specify
unbuffered I/O. It also fails if you try to specify line buffering for an FBS data set
opened in text mode, where the device does not support repositioning. This failure
happens because OS/390 C/C++ cannot deliver records at line boundaries without
violating FBS format. Do not try to change the buffering mode after you have
performed any I/O operation to the file.

For all files except stderr, full buffering is the default, but you can use setvbuf() to
specify line buffering. For binary files, record I/O files, and unblocked text files, a
block is written out as soon as it is full, regardless of whether you have specified
line buffering or full buffering. Line buffering is different from full buffering only for
blocked text files.

Multiple Buffering
Multiple buffering (or asynchronous I/O) is supported for MVS data sets. Multiple
buffering is not supported for a data set opened for read at the same time that
another file pointer has it opened for write or append. When you open files for
multiple buffering, blocks are read into buffers before they are needed, eliminating
the delay caused by waiting for I/O to complete. Multiple buffering may make I/O
less efficient if you are seeking within or writing to a file, because seeking or writing
may discard blocks that were read into buffers but never used.

To specify multiple buffering, code either the NCP=xx or BUFNO=yy subparameter of
the DCB parameter on the JCL DD statement (or allocation), where xx is an integer
number between 02 and 99, and yy is an integer number normally between 02 and
255. Whether OS/390 C/C++ uses NCP or BUFNO depends on whether you are using
BSAM or QSAM, respectively. NCP is supported under BSAM; BUFNO is supported
under QSAM. BSAM and QSAM are documented in OS/390 DFSMS: Using Data
Sets. If you specify noseek, OS/390 C/C++ uses QSAM if possible. If OS/390 C/C++
is using BSAM and you specify a value for BUFNO, OS/390 C/C++ maps this value to
NCP. If OS/390 C/C++ is using QSAM and you specify a value for NCP, OS/390
C/C++ maps this value to BUFNO.

If you specify both NCP and BUFNO, OS/390 C/C++ takes the greater of the two
values, up to the maximum for the applicable value. For example, if you specify a
BUFNO of 120 and you are using BSAM, which uses NCP instead, OS/390 C/C++ will
use NCP=99.

If you do not specify either, OS/390 C/C++ defaults to single buffering, except in the
following cases, where OS/390 C/C++ uses the system’s default BUFNO and
performs multiple buffering for both reading and writing:

v If you open a device that does not support repositioning, and specify read-only or
write-only mode (r, rb, w, wb, a, ab).

v If you specify the NOSEEK parameter on the call to fopen() or freopen(), and
specify read-only or write-only mode. When you specify NOSEEK, you get multiple
buffering for both reads and writes.

Here is an example of how to specify BUFNO:
//DD5 DD DSNAME=TORONTO.BLUEJAYS,DISP=SHR,DCB=(BUFNO=5)

120 OS/390 V2R10.0 C/C++ Programming Guide

You may need to update code from previous releases that relies on OS/390 C/C++
ignoring NCP or BUFNO parameters.

DCB (Data Control Block) Attributes
For OS files, the C run-time library creates a skeleton data control block (DCB) for
the file when you open it. File attributes are determined from the following sources
in this order:

1. The fopen() or freopen() function call

2. Attributes for a ddname specified previously (if you are opening by ddname)

3. Existing file attributes (if you specify recfm=* or you are opening an existing file
for read or append)

4. Defaults from fopen() or freopen() for creating a new file.

If you do not specify RECFM when you are creating a new file, OS/390 C/C++ uses
the following defaults:

If recfm is not specified in a fopen() call for an output binary file, recfm defaults to:
v recfm=VB for spool (printer) files,
v recfm=FB otherwise.

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:

v recfm=F if _EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE specified.
In this case, LRECL and BLKSIZE are both defaulted to 254.

v recfm=VBA for spool (printer) files.

v recfm=U for terminal files

v recfm=V if the LRECL or BLKSIZE is specified

v recfm=VB for all other OS files.

If recfm is not specified for a record I/O file, you will get the default of recfm=VB.
The following table shows the defaults for LRECL and BLKSIZE when the OS/390
C/C++ compiler creates an OS file.

Chapter 11. Performing OS I/O Operations 121

Table 19. fopen() Defaults for LRECL and BLKSIZE when Creating OS Files

lrecl specified? blksize specified? RECFM LRECL BLKSIZE

no no All F 80 80

All FB 80 maximum integral
multiple of 80 less
than or equal to max

All V, VB, VS, or VBS minimum of 1028 or
max–4

max

All U 0 max

yes no All F lrecl lrecl

All FB lrecl maximum integral
multiple of lrecl less
than or equal to max

All V lrecl lrecl+4

All U 0 lrecl

no yes All F or FB blksize blksize

All V, VB, VS, or VBS minimum of 1028 or
blksize–4

blksize

All U 0 blksize

Note: All includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control character
(M) specifier.

In Table 19, the value max represents the maximum reasonable block size for the
device. These are the current default maximum block sizes for several devices that
OS/390 C/C++ supports:

C OR C++
PROGRAM

DD STATEMENT

TAPE LABEL

file *f;

f = fopen("dd:master","r,
blksize=400, recfm=FB")

//MASTER DD UNIT=3480,
VOLUME=SER=1791
DSNAME=LIST,
DCB=(...,
RECFM=FB,
BLKSIZE=400,
LRECL=100)

Record format=FB
Record length=100
Block size=400
Recording density=1600

DATA CONTROL BOX

Record format

Block size

Record length

Device type

Recording density

FB

400

100

3480

1600

Figure 13. How the Operating System Completes the DCB. Information from the C or C++
program overrides that from the DD statement and the tape label. Information from the DD
statement overrides that from the data set label.

122 OS/390 V2R10.0 C/C++ Programming Guide

Device Default Maximum Block Size

DASD 6144

3203 Printer 132

3211 Printer 132

4245 Printer 132

2540 Reader 80

2540 Punch 80

2501 Reader 80

3890 Document Processor 80

TAPE 32760

For more information about specific default block sizes as returned by the DEVTYPE
macro, refer to OS/390 DFSMS: Using Data Sets.

You can perform multiple buffering under MVS. See “Multiple Buffering” on
page 120 for details.

Reading from Files
You can use the following library functions to read from a file:

v fread()

v fgetc()

v fgets()

v fscanf()

v getc()

v gets()

v getchar()

v scanf()

fread() is the only interface allowed for reading record I/O files. A read operation
directly after a write operation without an intervening call to fflush(), fsetpos(),
fseek(), or rewind() fails. OS/390 C/C++ treats the following as read operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

OS/390 C/C++ does not consider a read to be at EOF until you try to read past the
last byte visible in the file. For example, in a file containing three bytes, the feof()
function returns FALSE after three calls to fgetc(). Calling fgetc() one more time
causes feof() to return TRUE.

You can set up a SIGIOERR handler to catch read or write system errors. See the
debugging section in this book for more details.

Reading from Binary Files
OS/390 C/C++ reads binary records in the order that they were written to the file.
Any null padding is visible and treated as data. Record boundaries are
meaningless.

Chapter 11. Performing OS I/O Operations 123

Reading from Text Files
For non-ASA variable text files, the default for OS/390 C/C++ is to ignore any empty
physical records in the file. If a physical record contains a single blank, OS/390
C/C++ reads in a logical record containing only a new-line. However, if the
environment variable _EDC_ZERO_RECLEN was set to Y, OS/390 C/C++ reads an
empty physical record as a logical record containing a new-line, and a physical
record containing a single blank as a logical record containing a blank and a
new-line. OS/390 C/C++ differentiates between empty records and records
containing single blanks, and does not ignore either of them. For more information
about how OS/390 C/C++ treats empty records in variable format, see “Mapping C
Types to Variable Format” on page 41.

For ASA variable text files, if a file was created without a control character as its
first byte, the first byte defaults to the ' ' character. When the file is read back, the
first character is read as a new-line.

On input, ASA characters are translated to the corresponding sequence of control
characters. For more information about using ASA files, refer to “Chapter 8. Using
ASA Text Files” on page 71.

For undefined format text files, reading a file causes a new-line character to be
inserted at the end of each record. On input, a record containing a single blank
character is considered an empty record and is translated to a new-line character.
Trailing blanks are preserved for each record.

For files opened in fixed text format, rightmost blanks are stripped off a record at
input, and a new-line character is placed in the logical record. This means that a
record consisting of a single new-line character is represented by a fixed-length
record made entirely of blanks.

Reading from Record I/O Files
For files opened in record format, fread() is the only interface that supports
reading. Each time you call fread() for a record I/O file, fread() reads one record.
If you call fread() with a request for less than a complete record, the requested
bytes are copied to your buffer, and the file position is set to the start of the next
record. If the request is for more bytes than are in the record, one record is read
and the position is set to the start of the next record. OS/390 C/C++ does not strip
any blank characters or interpret any data.

fread() returns the number of items read successfully, so if you pass a size
argument equal to 1 and a count argument equal to the maximum expected length
of the record, fread() returns the length, in bytes, of the record read. If you pass a
size argument equal to the maximum expected length of the record, and a count
argument equal to 1, fread() returns either 0 or 1, indicating whether a record of
length size read. If a record is read successfully but is less than size bytes long,
fread() returns 0.

A failed read operation may lead to undefined behavior until you reposition
successfully.

124 OS/390 V2R10.0 C/C++ Programming Guide

Writing to Files
You can use the following library functions to write to a file:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputc()

v fputs()

v putc()

v putchar()

fwrite() is the only interface allowed for writing to record I/O files. See OS/390
C/C++ Run-Time Library Reference for more information on these library functions.

A write operation directly after a read operation without an intervening call to
fflush(), fsetpos(), fseek(), or rewind() fails unless the read operation has
reached EOF. The file pointer does not reach EOF until after you have tried to read
past the last byte of the file.

OS/390 C/C++ counts a call to a write function writing 0 bytes or a write request
that fails because of a system error as a write operation.

If you are updating a file and a system failure occurs, OS/390 C/C++ tries to set the
file position to the end of the last record updated successfully. For a fully-buffered
file, this is at the end of the last record in a block. For a line-buffered file, this may
be any record in the current block. If you are writing new data at the time of a
system failure, OS/390 C/C++ puts the file position at the end of the last block of
the file. In files opened for blocked output, you may lose data written by other writes
to that block before the system failure. The contents of a file after a system write
failure are indeterminate.

If one user opens a file for writing, and another later opens the same file for
reading, the user who is reading the file can check for records that may have been
written past the end of the file by the other user. If the file is a spanned variable text
file, the reader can read part of a spanned record and reach the end of the file
before reading in the last segment of the spanned record.

Writing to Binary Files
Data flows over record boundaries in binary files. Writes or updates past the end of
a record go to the next record. When you are writing to files and not making any
intervening calls to fflush(), blocks are written to the system as they are filled. If a
fixed record is incomplete when you close the file, OS/390 C/C++ completes it with
nulls. You cannot change the length of existing records in a file by updating them.

If you are using variable binary files, note the following:

v On input and on update, records that have no length are ignored; you will not be
notified. On output, zero-length records are not written. However, in spanned
files, if the first segment of a record has been written to the system, and the user
flushes or closes the file, a zero-length last segment may be written to the file.

Chapter 11. Performing OS I/O Operations 125

v If you are writing new data in a recfm=VB file, OS/390 C/C++ may add a short
record at the end of a block, to fill the block out to the full block size.

v If your file is spanned, records are written up to length LRECL, spanning multiple
blocks if necessary. You can create a spanned file by specifying a RECFM
containing V and S on the fopen() call.

Writing to Text Files
OS/390 C/C++ treats the control characters as follows when you are writing to a
non-ASA text file:

\a Alarm. Placed directly into the file; OS/390 C/C++ does not interpret it.

\b Backspace. Placed directly into the file; OS/390 C/C++ does not interpret it.

\f Form feed. Placed directly into the file; OS/390 C/C++ does not interpret it.

\n New-line. Defines a record boundary; OS/390 C/C++ does not place it in
the file.

\r Carriage return. Defines a record boundary; OS/390 C/C++ does not place
it in the file. Treated like a new-line character.

\t Horizontal tab character. Placed directly into the file; OS/390 C/C++ does
not interpret it.

\v Vertical tab character. Placed directly into the file; OS/390 C/C++ does not
interpret it.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if
MB_CUR_MAX > 1. Placed into the file.

\x0F DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX
> 1. Placed into the file. See “Chapter 9. OS/390 C Support for the
Double-Byte Character Set” on page 75 for more information about
MB_CUR_MAX.

The way OS/390 C/C++ treats text files depends on whether they are in fixed,
variable, or undefined format, and whether they use ASA.

As with ASA files in other environments, the first character of each record is
reserved for the ASA control character that represents a new-line, a carriage return,
or a form feed.

Table 20. C Control to ASA Characters

C Control Character
Sequence

ASA Character Description

\n ' ' skip one line

\n\n '0' skip two lines

\n\n\n '-' skip three lines

\f '1' new page

\r '+' overstrike

See “Chapter 8. Using ASA Text Files” on page 71 for more information.

Writing to Fixed-Format Text Files
Records in fixed-format files are all the same length. You complete each record with
a new-line or carriage return character. For fixed text files, the new-line character is
not written to the file. Blank padding is inserted to the LRECL of each record of the

126 OS/390 V2R10.0 C/C++ Programming Guide

block, and the block, when full, is written. For a more complete description of the
way fixed-format files are handled, see “Fixed-Format Records” on page 36.

A logical record can be shortened to be an empty record (containing just a new-line)
or extended to a record containing LRECL bytes of data plus a new-line. Because the
physical record represents the new-line position by using padding blanks, the
new-line position can be changed on an update as long as it is within the physical
record.

Note: Using ftell() or fgetpos() values for positions that do not exist after you
have shortened records results in undefined behavior.

When you are updating a file, writing new data into an existing record replaces the
old data and, if the new data is longer or shorter than the old data, changes the
size of the logical record by changing the number of blank characters in the
physical record. When you extend a record, thereby writing over the old new-line, a
new-line character is implied after the last character of the update. Calling fflush()
flushes the data out to the file and inserts blank padding between the last data
character and the end of the record. Once you have called fflush(), you can call
any of the read functions, which begin reading at the new-line. Once the new-line is
read, reading continues at the beginning of the next record.

Writing to Variable-Format Text Files
In a file with variable-length records, each record may be a different length. The
variable length formats permit both variable-length records and variable-length
blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word
(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word
(RDW).

For ASA and non-ASA, the '\n' (new-line) character implies a record boundary. On
output, the new-line is not written to the physical file; instead, it is assumed to follow
the data of the record.

If you have not set _EDC_ZERO_RECLEN, OS/390 C/C++ writes out a record containing
a single blank character to represent a single new-line, On input, a record
containing a single blank character is considered an empty record and is translated
to a new-line character. Note that a single blank followed by a new-line is written
out as a single blank, and is treated as just a new-line on input. When
_EDC_ZERO_RECLEN is set, writing a record containing only a new-line results in a
zero-length variable record.

For more information about environment variables, refer to “Chapter 33. Using
Environment Variables” on page 471. For more information about how OS/390
C/C++ treats empty records in variable format, see “Mapping C Types to Variable
Format” on page 41.

Attempting to shorten a record on update by specifying less data before the
new-line causes the record to be padded with blanks to the original record size. For
spanned records, updating a record to a shorter length results in the same blank
padding to the original record length, over multiple blocks, if applicable.

Attempts to lengthen a record on update generally result in truncation. The
exception to this rule is extending an empty record to a 1-byte record when the
environment variable _EDC_ZERO_RECLEN is not set. Because the physical
representation for an empty record is a record containing one blank character, it is
possible to extend the logical record to a single non-blank character followed by a

Chapter 11. Performing OS I/O Operations 127

new-line character. For standard streams, truncation in text files does not occur;
data is wrapped automatically to the next record as if you had added a new-line.

When you are writing data to a non-blocked file without intervening flush or
reposition requests, each record is written to the system when a new-line or
carriage return character is written or when the file is closed.

When you are writing data to a blocked file without intervening flush or reposition
requests, if the file is opened in full buffering mode, the block is written to the
system on completion of the record that fills the block. If the blocked file is line
buffered, each record is written to the system when it is completed. If you are using
full buffering for a VB format file, a write may not fill a block completely. The data
does not go to the system unless a block is full; you can complete the block with
another write. If the subsequent write contains more data than is needed to fill the
block, it flushes the current block to the system and starts writing your data to a
new block.

When you are writing data to a spanned file without intervening flush or reposition
requests, if the record spans multiple blocks, each block is written to the system
once it is full and the user writes an additional byte of data.

For ASA variable text files, if a file was created without a control character as its
first byte or record (after the RDW and BDW), the first byte defaults to the ' '
character. When the file is read back, the first character is read as a new-line.

Writing to Undefined-Format Text Files
In an undefined-format file, there is only one record per block. Each record may be
a different length, up to a maximum length of BLKSIZE. Each record is completed
with a new-line or carriage return character. The new-line character is not written to
the physical file; it is assumed to follow the data of the record. However, if a record
contains only a new-line character, OS/390 C/C++ writes a record containing a
single blank to the file to represent an empty record. On input, the blank is read in
as a new-line.

Once a record has been written, you cannot change its length. If you try to shorten
a logical record by updating it with a shorter record, OS/390 C/C++ completes the
record with blank padding. If you try to lengthen a record by updating it with more
data than it can hold, OS/390 C/C++ truncates the new data. The only instance in
which this does not happen is when you extend an empty record so that it contains
a single byte. Any data beyond the single byte is truncated.

Truncation Versus Splitting
If you try to write more data to a record than OS/390 C/C++ allows, and the file you
are writing to is not one of the standard streams (the defaults, or those redirected
by freopen() or command-level redirection), output is cut off at the record boundary
and the remaining bytes are discarded. OS/390 C/C++ does not count the
discarded characters as characters that have been written out successfully.

In all truncation cases, the SIGIOERR signal is raised if the action for SIGIOERR is not
SIG_IGN. The user error flag is set so that ferror() will return TRUE. For more
information about SIGIOERR, ferror(), and other I/O-related debugging tools, see
“Chapter 18. Debugging I/O Programs” on page 227. OS/390 C/C++ continues to
discard new output until you complete the current record by writing a new-line or
carriage return character, close the file, or change the file position.

128 OS/390 V2R10.0 C/C++ Programming Guide

If you are writing to one of the standard streams, attempting to write more data than
a record can hold results in the data being split across multiple records.

Writing to Record I/O Files
fwrite() is the only interface allowed for writing to a file opened for record I/O.
Only one record is written at a time. If you attempt to write more new data than a
full record can hold or you try to update a record with more data than it currently
has, OS/390 C/C++ truncates your output at the record boundary. When OS/390
C/C++ performs a truncation, it sets errno and raises SIGIOERR, if SIGIOERR is not
set to SIG_IGN.

When you update a record, you can update less than the full record. The remaining
data that you do not update is left untouched in the file.

When you are writing new records to a fixed-record I/O file, if you try to write a
short record, OS/390 C/C++ pads the record with nulls out to LRECL.

At the completion of an fwrite(), the file position is at the start of the next record.
For new data, the block is flushed out to the system as soon as it is full.

Flushing Buffers
You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see OS/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of streams. If you call one OS/390 C/C++
program from another OS/390 C/C++ program by using the ANSI system() function,
all open streams are flushed before control is passed to the callee, and again
before control is returned to the caller. If you are running with POSIX(ON), a call to
the POSIX system() function does not flush any streams to the system.

Updating Existing Records
Calling fflush() while you are updating flushes the updates out to the system. If
you call fflush() when you are in the middle of updating a record, OS/390 C/C++
writes the partially updated record out to the system. A subsequent write continues
to update the current record.

Reading Updated Records
If you have a file open for read at the same time that the file is open for write in the
same application, you will be able to see the new data if you call fflush() to
refresh the contents of the input buffer, as in the following example:

Chapter 11. Performing OS I/O Operations 129

CBC3GOS3

Writing New Records
Writing new records is handled differently for:

v Binary streams

v Text streams

v Record I/O

Binary Streams
OS/390 C/C++ treats line buffering and full buffering the same way for binary files.

If the file has a variable length or undefined record format, fflush() writes the
current record out. This may result in short records. In blocked files, this means that
the block is written to disk, and subsequent writes are to a new block. For fixed
files, no incomplete records are flushed.

For single-volume disk files in FBS format, fflush() flushes complete records in an
incomplete block out to the file. For all other types of FBS files, fflush() does not
flush an incomplete block out to the file.

/* this example demonstrates how updated records are read */

#include <stdio.h>
int main(void)
{

FILE * fp, * fp2;
int rc, rc2, rc3, rc4;
fp = fopen("a.b","w+");

fprintf(fp,"first record");

fp2 = fopen("a.b","r"); /* Simultaneous Reader */

/* following gets EOF since fp has not completed first line
* of output so nothing will be flushed to file yet */
rc = fgetc(fp2);
printf("return code is %i\n", rc);

fputc('\n', fp); /* this will complete first line */
fflush(fp); /* ensures data is flushed to file */

rc2 = fgetc(fp2); /* this gets 'f' from first record */
printf("value is now %c\n", rc2);

rewind(fp);

fprintf(fp, "some updates\n");
rc3 = fgetc(fp2); /* gets 'i' ..doesn't know about update */
printf("value is now %c\n", rc3);

fflush(fp); /* ensure update makes it to file */

fflush(fp2); /* this updates reader's buffer */

rc4 = fgetc(fp2); /* gets 'm', 3rd char of updated record */
printf("value is now %c\n", rc4);

return(0);
}

Figure 14. Example of Reading Updated Records

130 OS/390 V2R10.0 C/C++ Programming Guide

For files in FB format, fflush() always flushes out all complete records in the
current block. For sequential DASD files, new completed records are added to the
end of the flushed block if it is short. For non-DASD or non-sequential files, any
new record will start a new block.

Text Streams
v Line-Buffered Streams

fflush() has no effect on line-buffered text files, because OS/390 C/C++ writes
all records to the system as they are completed. All incomplete new records
remain in the buffer.

v Fully Buffered Streams

Calling fflush() flushes all completed records in the buffer, that is, all records
ending with a new-line or carriage return (or form feed character, if you are using
ASA), to the system. OS/390 C/C++ holds any incomplete record in the buffer
until you complete the record or close the file.

For ASA text files, if a flush occurs while an ASA character that indicates more than
one new-line is being updated, the remaining new-lines will be discarded and a
read will continue at the first data character. For example, if '\n\n\n' is updated to
be '\n\n' and a flush occurs, then a '0' will be written out in the ASA character
position.

Record I/O
OS/390 C/C++ treats line buffering and full buffering the same way for record I/O.
For files in FB format, calling fflush() writes all records in the buffer to the system.
For single-volume disk files in FBS format, fflush() will flush complete records in an
incomplete block out to the file. For all other types of FBS files, fflush() will not
flush an incomplete block out to the file. For all other formats, calling fflush() has
no effect, because fwrite() has already written the records to disk.

ungetc() Considerations
ungetc() pushes characters back onto the input stream for binary and text files.
ungetc() handles only single-byte characters. You can use it to push back as many
as four characters onto the ungetc() buffer. For every character pushed back with
ungetc(), fflush() backs up the file position by one character and clears all the
pushed-back characters from the stream. Backing up the file position may end up
going across a record boundary. Remember that for text files, OS/390 C/C++
counts the new-lines added to the records as single-byte characters when it
calculates the file position.

For example, given the stream you can run the following code fragment:
fgetc(fp); /* Returns A and puts the file position at */

/* the beginning of the character B */
ungetc('Z',fp); /* Logically inserts Z ahead of B */
fflush(fp); /* Moves the file position back by one to A, */

/* removes Z from the logical stream */

A B C D

file pointer

Chapter 11. Performing OS I/O Operations 131

If you want fflush() to ignore ungetc() characters, you can set the _EDC_COMPAT
environment variable. See “Chapter 33. Using Environment Variables” on page 471
for more information.

Repositioning within Files
You can use the following library functions to help you position within an OS file:
v fseek()
v ftell()
v fgetpos()
v fsetpos()
v rewind()

See OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Opening a file with fopen() and specifying the NOSEEK parameter disables all of
these library functions except rewind(). A call to rewind() causes the file to be
reopened, unless the file is a non-disk file opened for write-only. In this case,
rewind() sets errno and raises SIGIOERR (if SIGIOERR is not set to SIG_IGN, which is
its default).

Calling any of these functions flushes all complete and updated records out to the
system. If a repositioning operation fails, OS/390 C/C++ attempts to restore the
original file position and treats the operation as a call to fflush(), except that it
does not account for the presence of ungetc() or ungetwc() characters, which are
lost. After a successful repositioning operation, feof() always returns 0, even if the
position is just after the last byte of data in the file.

The fsetpos() and fgetpos() library functions are generally more efficient than
ftell() and fseek(). The fgetpos() function can encode the current position into a
structure that provides enough room to hold the system position as well as position
data specific to C or C++. The ftell() function must encode the position into a
single word of storage, which it returns. This compaction forces fseek() to calculate
certain position information specific to C or C++ at the time of repositioning. For
variable-format binary files, you can choose to have ftell() return relative byte
offsets. In previous releases, ftell() returned only encoded offsets, which
contained the relative block number. Since you cannot calculate the block number
from a relative byte offset in a variable-format file, fseek() may have to read
through the file to get to the new position. fsetpos() has system position
information available within the the fpos_t structure and can generally reposition
directly to the desired location.

You can use the ftell() and fseek() functions to set the current position within all
types of files except for the following:
v Files on non-seekable devices (for example, printers)
v Files on tapes opened for write
v Partitioned data sets opened in w or wb mode.

ungetc() Considerations
For binary and text files, the library functions fgetpos() and ftell() take into
account the number of characters you have pushed back onto the input stream with
ungetc(), and adjust the file position accordingly. ungetc() backs up the file position

132 OS/390 V2R10.0 C/C++ Programming Guide

by a single byte each time you call it. For text files, OS/390 C/C++ counts the
new-lines added to the records as single-byte characters when it calculates the file
position.

If you make so many calls to ungetc() that the logical file position is before the
beginning of the file, the next call to ftell() or fgetpos() fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point for
the reposition also accounts for the presence of ungetc() characters and
compensates as ftell() and fgetpos() do.

If you want fgetpos() and fseek() to ignore ungetc() characters, you can set the
_EDC_COMPAT environment variable. See “Chapter 33. Using Environment Variables”
on page 471 for details. ftell() is not affected by the setting of _EDC_COMPAT.

How Long fgetpos() and ftell() Values Last
As long as you do not re-create a file or shorten logical records, you can rely on the
values returned by ftell() and fgetpos(), even across program boundaries and
calls to fclose(). (Calling fopen() or freopen() with any of the w modes re-creates
a file.) Using ftell() and fgetpos() values that point to information deleted or
re-created results in undefined behavior. For more information about shortening
records, see “Writing to Variable-Format Text Files” on page 127.

Using fseek() and ftell() in Binary Files
With binary files, ftell() returns two types of positions:
v Relative byte offsets
v Encoded offsets

Relative Byte Offsets
You get byte offsets by default when you are seeking or positioning in fixed-format
binary files. You can also use byte offsets on a variable or undefined format file
opened in binary mode with the BYTESEEK parameter specified on the fopen() or
freopen() function call. You can specify BYTESEEK to be the default for fopen() calls
by setting the environment variable _EDC_BYTE_SEEK to Y. See “Chapter 33. Using
Environment Variables” on page 471 for information on how to set environment
variables.

You do not need to acquire an offset from ftell() to seek to a relative position; you
may specify a relative offset to fseek() with a whence value of SEEK_SET. However,
you cannot specify a negative offset to fseek() when you have specified SEEK_SET,
because a negative offset would indicate a position before the beginning of the file.
Also, you cannot specify a negative offset with whence values of SEEK_CUR or
SEEK_END such that the resulting file position would be before the beginning of the
file. If you specify such an offset, fseek() fails.

If your file is not opened read-only, you can specify a position that is beyond the
current EOF. In such cases, a new end-of-file position is created; null characters are
automatically added between the old EOF and the new EOF.

fseek() support of byte offsets in variable-format files generally requires reading all
records from the whence value to the new position. The impact on performance is
greatest if you open an existing file for append in BYTESEEK mode and then call
ftell(). In this case, ftell() has to read from the beginning of the file to the
current position to calculate the required byte offset. Support for byteseeking is

Chapter 11. Performing OS I/O Operations 133

intended to ease portability from other platforms. If you need better performance,
consider using ftell()-encoded offsets, discussed in the next section.

Encoded Offsets
If you do not specify the BYTESEEK parameter and you set the _EDC_BYTE_SEEK
variable to N, any variable- or undefined-format binary file gets encoded offsets from
ftell(). This keeps this release of OS/390 C/C++ compatible with code generated
by old releases of C/370.

Encoded offsets are values representing the block number and the relative byte
within that block, all within one long int. Because OS/390 C/C++ does not
document its encoding scheme, you cannot rely on any encoded offset not returned
by ftell(), except 0, which is the beginning of the file. This includes encoded
offsets that you adjust yourself (for example, with addition or subtraction). When
you call fseek() with the whence value SEEK_SET, you must use either 0 or an
encoded offset returned from ftell(). For whence values of SEEK_CUR and SEEK_END,
however, you specify relative byte offsets. If you want to seek to a certain relative
byte offset, you can use SEEK_SET with an offset of 0 to rewind the file to the
beginning, and then you can use SEEK_CUR to specify the desired relative byte
offset.

In earlier releases, ftell() could determine position only for files with no more than
131,071 blocks. In the new design, this number increases depending on the block
size. From a maximum block size of 32,760, every time this number decreases by
half, the number of blocks that can be represented doubles.

If your file is not opened read-only, you can use SEEK_CUR or SEEK_END to specify a
position that is beyond the current EOF. In such cases, a new end-of-file position is
created; null characters are automatically added between the old EOF and the new
EOF. This does not apply to PDS members, as they cannot be extended. For
SEEK_SET, because you are restricted to using offsets returned by ftell(), any
offset that indicates a position outside the current file is invalid and causes fseek()
to fail.

Using fseek() and ftell() in Text Files (ASA and Non-ASA)
In text files, ftell() produces only encoded offsets. It returns a long int, in which
the block number and the byte offset within the block are encoded. You cannot rely
on any encoded offset not returned by ftell() except 0. This includes encoded
offsets that you adjust yourself (for example, with addition or subtraction).

When you call fseek() with the whence value SEEK_SET, you must use an encoded
offset returned from ftell(). For whence values of SEEK_CUR and SEEK_END, however,
you specify relative byte offsets. If you want to seek to a certain relative byte offset,
you can use SEEK_SET with an offset of 0 to rewind the file to the beginning, and
then you can use SEEK_CUR to specify the desired relative byte offset. OS/390
C/C++ counts new-line characters and skips to the next record each time it reads
one.

Unlike binary files you cannot specify offsets for SEEK_CUR and SEEK_END that set the
file position past the end of the file. Any offset that indicates a position outside the
current file is invalid and causes fseek() to fail.

In earlier releases, ftell() could determine position only for files with no more than
131071 blocks. In the new design, this number increases depending on the block
size. From a maximum block size of 32760, every time this number decreases by
half, the number of blocks that can be represented doubles.

134 OS/390 V2R10.0 C/C++ Programming Guide

Repositioning flushes all updates before changing position. An invalid call to
fseek() is now always treated as a flush. It flushes all updated records or all
complete new records in the block, and leaves the file position unchanged. If the
flush fails, any characters in the ungetc() buffer are lost. If a block contains an
incomplete new record, the block is saved and will be completed by another write or
by closing the file.

Using fseek() and ftell() in Record Files
For files opened with type=record, ftell() returns relative record numbers. The
behavior of fseek() and ftell() is similar to that when you use relative byte offsets
for binary files, except that the unit is a record rather than a byte. For example,

fseek(fp,-2,SEEK_CUR);

seeks backward two records from the current position.
fseek(fp,6,SEEK_SET);

seeks to relative record 6. You do not need to get an offset from ftell().

You cannot seek past the end or before the beginning of a file.

The first record of a file is relative record 0.

Porting Old C Code That Uses fseek() or ftell()
The encoding scheme used by ftell() in non-BYTESEEK mode in the OS/390 C/C++
RTL is different from that used in older versions of the C/370 RTL. By older
versions of the RTL we mean versions of the C/370 RTL prior to version 2.2 and
versions of LE/370 prior to version 1.3.

v If your code obtains ftell() values and passes them to fseek(), the change to
the encoding scheme should not affect your application. On the other hand, your
application may not work if you have saved encoded ftell() values in a file and
your application reads in these encoded values to pass to fseek(). For
non-record I/O files, you can set the environment variable _EDC_COMPAT with the
ftell() encoding set to tell OS/390 C/C++ that you have old ftell() values.
Files opened for record I/O do not support old ftell() values saved across the
program boundary.

v In previous versions, the fseek() support for the ftell() encoding scheme
inadvertently supported seeking from SEEK_SET with a byte offset up to 32K. This
will no longer be supported. Users of this support will have to change to BYTESEEK
mode. You can do this without changing your source code; just use the
_EDC_BYTE_SEEK environment variable.

Closing Files
Use the fclose() library function to close a file. OS/390 C/C++ automatically closes
files on normal program termination and attempts to do so under abnormal program
termination or abend. See OS/390 C/C++ Run-Time Library Reference for more
information on this library function.

For files opened in fixed binary mode, incomplete records will be padded with null
characters when you close the file.

For files opened in variable binary mode, incomplete records are flushed to the
system. In a spanned file, closing a file can cause a zero-length segment to be

Chapter 11. Performing OS I/O Operations 135

written. This segment will still be part of the non-zero-length record. For files
opened in undefined binary mode, any incomplete output is flushed on close.

Closing files opened in text mode causes any incomplete new record to be
completed with a new-line character. All records not yet flushed to the file are
written out when the file is closed.

For files opened for record I/O, closing causes all records not yet flushed to the file
to be written out.

Renaming and Removing Files
You can remove or rename an MVS data set that has an uppercase filename by
using the remove() or rename() library functions, respectively. rename() and
remove() both accept data-set names. rename() does not accept ddnames, but
remove() does. You can use remove() or rename() on individual members or entire
PDSs or PDSEs. If you use rename() for a member, you can change only the name
of the member, not the name of the entire data set. To rename both the member
and the data set, make two calls to rename(), one for the member and one for the
whole PDS or PDSE.

fldata() Behavior
The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename,
fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure.

For more information on the fldata() function, refer to OS/390 C/C++ Run-Time
Library Reference.

136 OS/390 V2R10.0 C/C++ Programming Guide

Notes:

1. If you have opened the file by its data set name, filename is fully qualified,
including quotation marks. If you have opened the file by ddname, filename is
dd:ddname, without any quotation marks. The ddname is uppercase. If you
specified a member on the fopen() or freopen() function call, the member is
returned as part of filename.

2. Any of the __recfm bits may be set on for OS files.

3. The __dsorgPO bit will be set on only if you are reading a directory or member
of a partitioned data set, either regular or extended, regardless of whether the
member is specified on a DD statement or on the fopen() or freopen()
function call. The __dsorgPS bit will be set on for all other OS files.

4. The __dsorgPDSE bit will be set when processing an extended partitioned data
set (PDSE).

struct __fileData {
unsigned int __recfmF : 1, /* */

__recfmV : 1, /* */
__recfmU : 1, /* */
__recfmS : 1, /* */
__recfmBlk : 1, /* */
__recfmASA : 1, /* */
__recfmM : 1, /* */
__dsorgPO : 1, /* */
__dsorgPDSmem : 1, /* */
__dsorgPDSdir : 1, /* */
__dsorgPS : 1, /* */
__dsorgConcat : 1, /* */
__dsorgMem : 1, /* N/A -- always off */
__dsorgHiper : 1, /* N/A -- always off */
__dsorgTemp: 1, /* */
__dsorgVSAM: 1, /* N/A -- always off */
__dsorgHFS : 1, /* N/A -- always off */
__openmode : 2, /* one of: */

/* __TEXT */
/* __BINARY */
/* __RECORD */

__modeflag : 4, /* combination of: */
/* __READ */
/* __WRITE */
/* __APPEND */
/* __UPDATE */

__dsorgPDSE: 1, /* */
__reserve2 : 8; /* */

__device_t __device; /* one of: */
/* __DISK */
/* __TAPE */
/* __PRINTER */
/* __DUMMY */
/* __OTHER */

unsigned long __blksize, /* */
__maxreclen; /* */

unsigned short __vsamtype; /* N/A */
unsigned long __vsamkeylen; /* N/A */
unsigned long __vsamRKP; /* N/A */
char * __dsname; /* */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 15. fldata() Structure

Chapter 11. Performing OS I/O Operations 137

5. The __dsorgConcat bit will be set on for a concatenation of sequential data
sets, but not for a concatenation of partitioned data sets.

6. The __dsorgTemp bit will be set on only if the file was created using the
tmpfile() function.

7. The __blksize value may include BDW and RDWs.

8. The __maxreclen value may include the ASA character.

9. The __recfm bits and the __blksize and __maxreclen values correspond to the
attributes of the open stream. They do not necessarily reflect the attributes of
the existing data set.

10. The __dsname field is filled in for __DISK files with the data set name. The
member name is added if the file is a member of a partitioned data set, either
regular or extended. The __dsname value is uppercase unless the asis option
was specified on the fopen() or freopen() function call. The __dsname field is
set to NULL for all other OS files.

138 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 12. Performing Hierarchical File System I/O
Operations

You can create the following HFS file types:

v Regular

v Link

v Directory

v Character special

v FIFO

The Single UNIX Specification defines another type of file called STREAMS. Even
though the system interfaces are provided, it is impossible to have a valid STREAMS
file descriptor. These interfaces will always return a return code of -1 with errno set
to indicate an error such as, EBADF, EINVAL, or ENOTTY.

HFS streams follow the binary model, regardless of whether they are opened for
text, binary, or record I/O. You can simulate record I/O by using new-line characters
as record boundaries.

For information on the hierarchical file system and access to files within it from
other than the C or C++ language, see OS/390 UNIX System Services User’s
Guide. For an introduction to and description of the behavior of a POSIX-defined file
system, see The POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick,
(Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc., 1991).

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 75
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the I/O Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 47 for
general information and OS/390 C/C++ IBM Open Class Library User’s
Guide and OS/390 C/C++ IBM Open Class Library Reference for specifics.

Creating Files
You can use library functions to create the following types of HFS files.

v Regular Files

v Link and Symbolic Link Files

v Directory Files

v Character Special Files

v FIFO Files

Regular Files
Use any of the following C functions to create HFS regular files:

v creat()

v fopen()

v freopen()

v open()

© Copyright IBM Corp. 1996, 2000 139

For a description of these and other I/O functions, see OS/390 C/C++ Run-Time
Library Reference.

Link and Symbolic Link Files
Use either of the following C functions to create HFS link or symbolic link files:

v link()

v symlink()

Directory Files
Use the following C function to create an HFS directory file:

v mkdir()

Character Special Files
Use the following C function to create an HFS character special file:

v mknod()

You must have superuser authority to create a character special file.

Other functions used for character special files are:

v ptsname()

v grantpt()

v unlockpt()

v tcgetsid()

v ttyname()

v isatty()

FIFO Files
Use the following C function to create an HFS FIFO file (named pipe):

v mkfifo()

To create an unnamed pipe, use the following C function:

v pipe()

Opening Files
This section discusses the use of the fopen() or freopen() library functions to open
Hierarchical File System (HFS) I/O files. You can also access HFS files using
low-level I/O open() function. See “Low-Level OS/390 UNIX I/O” on page 152 for
information about low-level I/O, and OS/390 C/C++ Run-Time Library Reference for
information about any of the functions listed above.

The name of an HFS file can include characters chosen from the complete set of
character values, except for null characters. If you want a portable filename, then
choose characters from the POSIX .1 portable filename character set.

The complete pathname can begin with a slash and be followed by zero, one, or
more filenames, each separated by a slash. If a directory is included within the
pathname, it may have one or more trailing slashes. Multiple slashes following one
another are interpreted as one slash.

140 OS/390 V2R10.0 C/C++ Programming Guide

If your program is running under POSIX(ON), all valid POSIX names are passed asis
to the POSIX open function.

You can access either HFS files or MVS data sets from programs. Programs
accessing files or data sets can be executed with either the POSIX(OFF) or
POSIX(ON) run-time options. There are basic file naming rules that apply for HFS
files and MVS data sets. However, there are also special OS/390 C/C++ naming
considerations that depend on how you execute your program.

The POSIX run-time option determines the type of OS/390 C/C++ services and I/O
available to your program. (See OS/390 C/C++ User’s Guide for a discussion of the
OS/390 UNIX programming environment and overview of binding OS/390 UNIX
C/C++ applications.)

Both the basic and special OS/390 C/C++ file naming rules for HFS files are
described in the sections that follow. Examples are provided. All examples must be
run with the POSIX(ON) option. For information about MVS data sets, see
“Chapter 11. Performing OS I/O Operations” on page 103.

Using fopen() or freopen()
When you open a file with fopen() or freopen(), you must specify the file name (a
data-set name) or a ddname.

File Naming Considerations
Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode").

HFS Files: The following is the format for the pathname argument on the fopen()
or freopen() function:

%% pathname
" /

.
dd: ddname

// DD: (member) "

%&

The POSIX.1 standard defines pathname as the information that identifies a file. For
the OS/390 UNIX implementation of the POSIX.1 standard, a pathname can be up
to 1024 characters—including the null-terminating character. Optionally, it can begin
with a slash character (/) followed by directory names separated by slash
characters and a filename. For the pathname, each directory name or the filename
can be up to 255 characters long.

Note:

Regardless of whether your program is run as an OS/390 UNIX application
or a traditional MVS application, if the pathname that you attempt to open
using fopen() or freopen() contains a slash character but does not begin
with exactly two slashes, an HFS file is opened. For example, if you code:
fopen("tradnsell/parts.order", "w+")

the HFS file tradnsell/parts.order from the working directory is opened.

Chapter 12. Performing Hierarchical File System I/O Operations 141

If you begin the pathname value with ./, the specified HFS file in the
working directory is opened:
fopen("./parts.order", "w+")

Likewise, if you begin the pathname value with /, the specified HFS file in
the root directory is opened:
fopen("/parts.order", "w+")

If you specify more than two consecutive slash characters anywhere in a pathname,
all but the first slash character is ignored, as in the following examples:

"//a.b" MVS data set prefix.a.b

"///a.b" HFS file /a.b

"////a.b" HFS file /a.b

"a////b.c" HFS file a/b.c

"/a.b" HFS file /a.b

"/a///b.c" HFS file /a/b.c

If you specify /dd:pathname or ./dd:pathname, a file named dd:pathname is opened
in the file system root directory or your working directory, respectively. For example,
if you code:
fopen("/dd:parder", "w+")

the file dd:parder is opened in the HFS root directory.

For HFS files, leading and trailing white spaces are significant.

Opening a File by Name
Which type of file (HFS or MVS data set) you open may depend on whether the
OS/390 C/C++ application program is running under POSIX(ON).

For an application program that is to be run under POSIX(ON), you can include in
your program statements similar to the following to open the HFS file parts.instock
for reading in the working directory:
FILE *stream;

stream = fopen("parts.instock", "r");

To open the MVS data set user-prefix.PARTS.INSTOCK for reading, include statements
similar to the following in your program:
FILE *stream;

stream = fopen("//parts.instock", "r");

For an application program that is to be run as a traditional OS/390 C/C++
application program, with POSIX(OFF), to open the MVS data set
user-prefix.PARTS.INSTOCK for reading, include statements similar to the following in
your program:
FILE *stream;

stream = fopen("parts.instock", "r");

To open the HFS file parts.instock in the working directory for reading, include
statements similar to the following in your program:

142 OS/390 V2R10.0 C/C++ Programming Guide

FILE *stream;

stream = fopen("./parts.instock", "r");

Opening a File by DDname
The DD statement enables you to write OS/390 C/C++ source programs that are
independent of the files and I/O devices they will use. You can modify the
parameters of a file or process different files without recompiling your program.

When dd:ddname is specified to fopen() or freopen(), the OS/390 C/C++ library
looks to find and resolve the data definition information for the filename to open. If
the data definition information points to an MVS data set, MVS data set naming
rules are followed. If an HFS file is indicated using the PATH parameter, a ddname is
resolved to the associated pathname.

Note: Use of the OS/390 C/C++ fork() library function from an OS/390 UNIX
application program does not replicate the data definition information of the
parent process for the child process. Use of any of the exec() library
functions deallocates the data definition information for the application
process.

For the declaration just shown for the HFS file parts.instock, you should write a
JCL DD statement similar to the following:
//PSTOCK DD PATH='/u/parts.instock',...

For more information on writing DD statements, you should refer to the job control
language (JCL) manual OS/390 MVS JCL Reference.

To open the file by DD name under TSO/E, you must write an ALLOCATE command.

For the declaration of an HFS file parts.instock, you should write a TSO/E
ALLOCATE command similar to the following:
ALLOCATE DDNAME(PSTOCK) PATH('/u/parts.instock')...

See OS/390 TSO/E Command Reference for more information on TSO ALLOCATE.

fopen() and freopen() Parameters
The following table lists the parameters that are available on the fopen() and
freopen() functions, tells you which ones are useful for HFS I/O, and lists the
values that are valid for the applicable ones.

Table 21. Parameters for the fopen() and freopen() functions for HFS I/O

Parameter Allowed? Applicable? Notes

recfm= Yes No HFS I/O uses a continuous stream of data
as its file format.

lrecl= Yes No HFS I/O uses a continuous stream of data
as its file format.

blksize= Yes No HFS I/O uses a continuous stream of data
as its file format.

space= Yes No Not used for HFS I/O.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes No Not used for HFS I/O.

password= Yes No Not used for HFS I/O.

Chapter 12. Performing Hierarchical File System I/O Operations 143

Table 21. Parameters for the fopen() and freopen() functions for HFS I/O (continued)

Parameter Allowed? Applicable? Notes

asis Yes No Not used for HFS I/O.

byteseek Yes No Not used for HFS I/O.

noseek Yes No Not used for HFS I/O.

OS Yes No Not used for HFS I/O.

recfm=
Ignored for HFS I/O.

lrecl= and blksize=
Ignored for HFS I/O, except that lrecl affects the value returned in the
__maxreclen field of fldata() as described below.

acc=
Ignored for HFS I/O.

password
Ignored for HFS I/O.

space=
Ignored for HFS I/O.

type=
The only valid value for this parameter under HFS is type=record. If you specify
this, your file follows the HFS record I/O rules:

1. One record is defined to be the data up to the next new-line character.

2. When an fread() is done the data will be copied into the user buffer as if
an fgets(buf, size_item*num_items, stream) were issued. Data is read
into the user buffer up to the number of bytes specified on the fread(), or
until a new-line character or EOF is found. The new-line character is not
included.

3. When an fwrite() is done the data will be written from the user buffer with
a new-line character added by the RTL code. Data is written up to the
number of bytes specified on the fwrite(); the new-line is added by the
RTL and is not included in the return value from fwrite().

4. If you have specified an lrecl and type=record, fldata() of this stream will
return the lrecl you specified, in the __maxreclen field of the __fileData
return structure of stdio.h. If you specified type=record but no lrecl, the
__maxreclen field will contain 1024.

If type=record is not in effect, fldata() of this stream will return 0 in the
__maxreclen field of the __fileData return structure of stdio.h.

asis
Ignored for HFS I/O.

byteseek
Ignored for HFS I/O.

noseek
Ignored for HFS I/O.

OS Ignored for HFS I/O.

144 OS/390 V2R10.0 C/C++ Programming Guide

Reading from HFS Files
You can use the following library functions to read in information from HFS files:

v fread()

v fgets()

v gets()

v fgetc()

v getc()

v getchar()

v scanf()

v fscanf()

v read()

fread() is the only interface allowed for reading record I/O files. See OS/390 C/C++
Run-Time Library Reference for more information on all of the above library
functions.

For OS/390 UNIX low-level I/O, you can use the read() and readv() function.

See “Low-Level OS/390 UNIX I/O” on page 152.

Opening and Reading from HFS Directory Files
To open an HFS directory, you can use the opendir() function.

You can use the following library functions to read from and position within HFS
directories:

v readdir()

v seekdir()

v telldir()

To close a directory, use the closedir() function.

Writing to HFS Files
You can use the following library functions to write to HFS files:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputs()

v fputc()

v putc()

v putchar()

v write()

Chapter 12. Performing Hierarchical File System I/O Operations 145

fwrite() is the only interface allowed for writing to record I/O files. See OS/390
C/C++ Run-Time Library Reference for more information on all of the above library
functions. For OS/390 UNIX low-level I/O, you can use the write() and writev()
function.

Flushing Records
You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see OS/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of streams. If you call one OS/390 C/C++
program from another OS/390 C/C++ program by using the ANSI system() function,
all open streams are flushed before control is passed to the callee, and again
before control is returned to the caller. A call to the POSIX system() function does
not flush any streams.

For HFS files, the fflush() function copies the data from the run time buffer to the
file system. The fsync() function copies the data from the file system buffer to the
storage device.

Setting Positions within Files
You can use the following library functions to help you reposition within a regular
file:

v fseek()

v ftell()

v fgetpos()

v fsetpos()

v rewind()

v lseek()

You can use the following library functions for 64 bit offset and file sizes.

v fseeko()

v ftello()

See OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Closing Files
You can use fclose(), freopen(), or close() to close a file. OS/390 C/C++
automatically closes files on normal program termination, and attempts to do so
under abnormal program termination or abend. See OS/390 C/C++ Run-Time
Library Reference for more information on these library functions. For OS/390 UNIX
low-level I/O, you can use the close() function. When you use any exec() or
fork() function, files defined as “marked to be closed” are closed before control is
returned.

146 OS/390 V2R10.0 C/C++ Programming Guide

|

|

|

|

Deleting Files
Use the unlink() or remove() OS/390 C/C++ function to delete the following types
of HFS files:

v Regular

v Character special

v FIFO

v Link files

Use the rmdir() OS/390 C/C++ function to delete an HFS directory file. See
OS/390 C/C++ Run-Time Library Reference for more information about these
functions.

Pipe I/O
POSIX.1 pipes represent an I/O channel that processes can use to communicate
with other processes. Pipes are conceptually like HFS files. One process can write
data into a pipe, and another process can read data from the pipe.

OS/390 UNIX C/C++ supports two types of POSIX.1-defined pipes: unnamed pipes
and named pipes (FIFO files).

An unnamed pipe is accessible only by the process that created the pipe and its
child processes. An unnamed pipe does not have to be opened before it can be
used. It is a temporary file that lasts only until the last file descriptor that references
it is closed. You can create an unnamed pipe by coding the pipe() function.

A named pipe can be used by independent processes and must be explicitly
opened and closed. Named pipes are also referred to as first-in, first-out (FIFO)
files, or FIFOs. You can create a named pipe by coding the mkfifo() function. If
you want to do stream I/O after a pipe() function, call the fdopen() function to build
a stream on one of the file descriptors returned by pipe(). If you want to do stream
I/O on a FIFO, you must open the file with fopen(), freopen(), or open() and
fdopen() together. When the stream is built, you can then use normal C
programming language I/O functions such as fgets(), printf(), and so forth to
carry out input and output.

Using Unnamed Pipes
If your OS/390 UNIX C/C++ application program forks processes that need to
communicate among themselves for work to be done, you can take advantage of
POSIX.1-defined unnamed pipes. If your application program’s processes need to
communicate with other processes that it did not fork, you should use the
POSIX.1-defined named pipe (FIFO special file) support. See “Using Named Pipes”
on page 149 for more information.

When you code the pipe() function to create a pipe, you pass a pointer to a
two-element integer array where pipe() puts the file descriptors it creates. One
descriptor is for the input end of the pipe, and the other is for the output end of the
pipe. You can code your application so that one process writes data to the input
end of the pipe and another process reads from the output end on a first-in-first-out
basis. You can also build a stream on the pipe by using fdopen(), and use buffered
I/O functions. The result is that you can communicate data between a parent
process and any of its child processes.

Chapter 12. Performing Hierarchical File System I/O Operations 147

The opened pipe is assigned the two lowest-numbered file descriptors available.

OS/390 UNIX provide no security checks for unnamed pipes, because such a pipe
is accessible only by the parent process that creates the pipe and any of the parent
process’s descendent processes. When the parent process ends, an unnamed pipe
created by the process can still be used, if needed, by any existing descendant
process that has an open file descriptor for the pipe.

Consider the following example, where you open a pipe, do a write operation, and
later do a read operation from the pipe.

CBC3GHF1

For more information on the pipe() function and the file I/O functions, see OS/390
C/C++ Run-Time Library Reference.

/* this example shows how unnamed pipes may be used */

#include <unistd.h>
#include <stdio.h>
#include <errno.h>

int main() {
int ret_val;
int pfd[2];
char buff[32];
char string1[]="String for pipe I/O";

ret_val = pipe(pfd); /* Create pipe */
if (ret_val != 0) { /* Test for success */

printf("Unable to create a pipe; errno=%d\n",errno);

exit(1); /* Print error message and exit */
}

Figure 16. Unnamed Pipes Example (Part 1 of 2)

if (fork() == 0) {
/* child program */
close(pfd[0]); /* close the read end */
ret_val = write(pfd[1],string1,strlen(string1)); /*Write to pipe*/
if (ret_val != strlen(string1)) {

printf("Write did not return expected value\n");
exit(2); /* Print error message and exit */

}
}
else {

/* parent program */
close(pfd[1]); /* close the write end of pipe */
ret_val = read(pfd[0],buff,strlen(string1)); /* Read from pipe */
if (ret_val != strlen(string1)) {

printf("Read did not return expected value\n");
exit(3); /* Print error message and exit */

}
printf("parent read %s from the child program\n",buff);

}
exit(0);
}

Figure 16. Unnamed Pipes Example (Part 2 of 2)

148 OS/390 V2R10.0 C/C++ Programming Guide

Using Named Pipes
If the OS/390 UNIX C/C++ application program you are developing requires its
active processes to communicate with other processes that are active but may not
be from the same program, code your application program to create a named pipe
(FIFO file). Named pipes allow transfer of data between processes in a FIFO
manner and synchronization of process execution. Use of a named pipe allows
processes to communicate even though they do not know what processes are on
the other end of the pipe. Named pipes differ from standard unnamed pipes,
created using the pipe() function, in that they involve the creation of a real file that
is available for I/O operations to properly authorized processes.

Within the application program, you create a named pipe by coding a mkfifo() or
mknod() function. You give the FIFO a name and an access mode when you create
it. If the access mode allows all users read and write access to the named pipe,
any process that knows its name can use it to send or receive data.

Processes can use the open() function to access named pipes and then use the
regular I/O functions for files, such as read(), write(), and close(), when
manipulating named pipes. Buffered I/O functions can also be used to access and
manipulate named pipe files. For more information on the mkfifo() and mknod()
functions and the file I/O functions, see OS/390 C/C++ Run-Time Library
Reference.

OS/390 UNIX does security checks on named pipes.

The following steps outline how to use a named pipe from an OS/390 UNIX C/C++
application program:

1. Create a named pipe using the mkfifo() function. Only one of the processes
that use the named pipe needs to do this.

2. Access the named pipe using the appropriate I/O method.

3. Communicate through the pipe with another process using file I/O functions:

a. Write data to the named pipe.

b. Read data from the named pipe.

4. Close the named pipe.

5. If the process created the named pipe file and the named pipe is no longer
needed, remove the named pipe using the unlink() function.

A process running the following simple example program creates a new named pipe
with the file pathname pointed to by the path value coded in the mkfifo() function.
The access mode of the new named pipe file is initialized from the mode value
coded in the mkfifo() function. The file permission bits of the mode argument are
modified by the process file creation mask.

As an example, a process running the following program code creates a child
process and then creates a named pipe called fifo.test. The child process then
writes a data string to the pipe file. The parent process reads from the pipe file and
verifies that the data string it reads is the expected one.

Note: The two processes are related and have agreed to communicate through the
named pipe. They need not be related, however. Other authorized users can
run the same program and participate in (or interfere with) the process
communication.

Chapter 12. Performing Hierarchical File System I/O Operations 149

CBC3GHF2

/* this example shows how named pipes may be used */
#define _OPEN_SYS
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <wait.h>

Figure 17. Named Pipes Example (Part 1 of 4)

/* *
* Sample use of mkfifo() *
* */

main()

{ /* start of program */

int flags, ret_value, c_status;
pid_t pid;
size_t n_elements;
char char_ptr[32];
char str[] = "string for fifo ";
char fifoname[] = "temp.fifo";
FILE *rd_stream,*wr_stream;

if ((mkfifo(fifoname,S_IRWXU)) != 0) {
printf("Unable to create a fifo; errno=%d\n",errno);
exit(1); /* Print error message and return */

}

if ((pid = fork()) < 0) {
perror("fork failed");
exit(2);

}

if (pid == (pid_t)0) { /* CHILD process */
/* issue fopen for write end of the fifo */

wr_stream = fopen(fifoname,"w");
if (wr_stream == (FILE *) NULL) {

printf("In child process\n");
printf("fopen returned a NULL, expected valid stream\n");
exit(100);

}

/* perform a write */
n_elements = fwrite(str,1,strlen(str),wr_stream);

if (n_elements != (size_t) strlen(str)) {
printf("Fwrite returned %d, expected %d\n",

(int)n_elements,strlen(str));
exit(101);
}

exit(0); /* return success to parent */
}

Figure 17. Named Pipes Example (Part 2 of 4)

150 OS/390 V2R10.0 C/C++ Programming Guide

else { /* PARENT process */

/* issue fopen for read */
rd_stream = fopen(fifoname,"r");
if (rd_stream == (FILE *) NULL) {

printf("In parent process\n");
printf("fopen returned a NULL, expected valid pointer\n");
exit(2);

}

/* get current flag settings of file */
if ((flags = fcntl(fileno(rd_stream),F_GETFL)) == -1) {

printf("fcntl returned -1 for %s\n",fifoname);
exit(3);

}

/* clear O_NONBLOCK and reset file flags */
flags &= (O_NONBLOCK);
if ((fcntl(fileno(rd_stream),F_SETFL,flags)) == -1) {

printf("\nfcntl returned -1 for %s",fifoname);
exit(4);

}

/* try to read the string */
ret_value = fread(char_ptr,sizeof(char),strlen(str),rd_stream);
if (ret_value != strlen(str)) {

printf("\nFread did not read %d elements as expected ",
strlen(str));

printf("\nret_value is %d ",ret_value);
exit(6);

}

if (strncmp(char_ptr,str,strlen(str))) {
printf("\ncontents of char_ptr are %s ",

char_ptr);
printf("\ncontents of str are %s ",

str);
printf("\nThese should be equal");
exit(7);

}

ret_value = fclose(rd_stream);
if (ret_value != 0) {

printf("\nFclose failed for %s",fifoname);
printf("\nerrno is %d",errno);
exit(8);

}

Figure 17. Named Pipes Example (Part 3 of 4)

Chapter 12. Performing Hierarchical File System I/O Operations 151

Character Special File I/O
A named pipe (FIFO file) is a type of character special file. Therefore, it obeys the
I/O rules for character special files rather than the rules for regular files:

v It cannot be opened in read/write mode. A process must open a named pipe in
either write-only or read-only mode.

v It must be opened in read mode by a process before it can be opened in write
mode by another process. Otherwise, the file is blocked from use for I/O by
processes. Blocked processes can cause an application program to hang.

A single process intending to access a named pipe can use an open() function
with O_NONBLOCK to open the read end of the named pipe. It can then open the
named pipe in write mode.

Note: The fopen() function cannot be used to accomplish this.

Low-Level OS/390 UNIX I/O
Low-level OS/390 UNIX I/O is the POSIX.1-defined I/O method. All input and output
is processed using the defined read(), readv(), write(), and writev() functions.

For application programmers used to a UNIX environment, OS/390 UNIX behaves
in familiar and predictable ways. Standard UNIX programming practices for shared
resources, along with designing applications to respect locks put on files by multiple
threads running in a process, will ensure that data is handled predictably.

For a discussion of POSIX.1-defined low-level I/O and some of the practical
considerations to take into account when designing an application, see The
POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick (Redwood City, CA:
The Benjamin/Cummings Publishing Company, Inc., 1991).

Example of HFS I/O Functions
The following example demonstrates the use of OS/390 UNIX stream input/output
by writing streams to a file, reading the input lines, and replacing a line.

ret_value = remove(fifoname);
if (ret_value != 0) {

printf("\nremove failed for %s",fifoname);
printf("\nerrno is %d",errno);
exit(9);

}

pid = wait(c_status);
if ((WIFEXITED(c_status) !=0) &&; (WEXITSTATUS(c_status) !=0)) {

printf("\nchild exited with code %d",WEXITSTATUS(c_status));
exit(10);

}
} /* end of else clause */
printf("About to issue exit(0), \

processing completed successfully\n");
exit(0);

}

Figure 17. Named Pipes Example (Part 4 of 4)

152 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GHF3

/* this example uses HFS stream I/O */

#define _OPEN_SYS
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#undef _OPEN_SYS
FILE *stream;

char string1[] = "A line of text."; /* NOTE: There are actually 16 */
char string2[] = "Find this line."; /* characters in each line of */
char string3[] = "Another stream."; /* text. The 16th is a null */
char string4[16]; /* terminator on each string. */
long position, strpos; /* Since the null character */
int i, result, fd; /* is not being written to */
int rc; /* the file, 15 is used as */

/* the data stream length. */
ssize_t x;
char buffer[16];

int main(void)
{

/* Write continuous streams to file */

if ((stream = fopen("./myfile.data","wb"))==NULL) {
perror("Error opening file");
exit(0);

}

for(i=0; i<12;i++) {
int len1 = strlen(string1);
rc = fwrite(string1, 1, len1, stream);
if (rc != len1) {

perror("fwrite failed");
printf("i = %d\n", i);
exit(99);

}
}

Figure 18. Example of HFS Stream Input and Output Functions (Part 1 of 3)

Chapter 12. Performing Hierarchical File System I/O Operations 153

rc = fwrite(string2,1,sizeof(string2)-1,stream);

if (rc != sizeof(string2)-1) {
perror("fwrite failed");
exit(99);

}

for(i=0;i<12;i++) {
rc = fwrite(string1,1,sizeof(string1)-1,stream);

if (rc != sizeof(string1)-1) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);

}
}
fclose(stream);
/* Read data stream and search for location of string2. */
/* EOF is not set until an attempt is made to read past the */
/* end-of-file, thus the fread is at the end of the while loop */

stream = fopen("./myfile.data", "rb");

if ((position = ftell(stream)) == -1L)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);

while(!feof(stream)) {
if (rc != sizeof(string2)-1) {

perror("fread failed");
exit(99);

}

if (strstr(string4,string2) != NULL) /* If string2 is found */
strpos = position ; /* then save position. */

if ((position=ftell(stream)) == -1L)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);
}

Figure 18. Example of HFS Stream Input and Output Functions (Part 2 of 3)

154 OS/390 V2R10.0 C/C++ Programming Guide

To use 64 bit offset and file sizes, you must make the following changes in your
code:

1. Change any variables used for offsets in fseek() or ftell() that are int
or long to the off_t data type.

2. Define the _LARGE_FILES 1 feature test macro.

3. Replace fseek()/ftell() with fseeko()/ftello(). See OS/390 C/C++ Run-Time
Library Reference for descriptions of these functions.

4. Compile with the LANGLVL(EXTENDED) compiler option.

Note: These changes are compatible with your older files.

The following example provides the same function as CBC3GHF3, but it uses 64 bit
offsets. The changed lines are marked in a bold font.

fclose(stream);
/* Replace line containing string2 with string3 */

fd = open("test.data",O_RDWR);

if (fd < 0){
perror("open failed\n");

}

x = write(fd,"a record",8);

if (x < 8){
perror("write failed\n");

}

rc = lseek(fd,0,SEEK_SET);
x = read(fd,buffer,8);

if (x < 8){
perror("read failed\n");

}
printf("data read is %.8s\n",buffer);

close(fd);
}

Figure 18. Example of HFS Stream Input and Output Functions (Part 3 of 3)

Chapter 12. Performing Hierarchical File System I/O Operations 155

|
|

|
|

|

|
|

|

|

|
|

CBC3GHF4

/* this example uses HFS stream I/O and 64 bit offsets*/

#define _OPEN_SYS
#define _LARGE_FILES 1
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#undef _OPEN_SYS
FILE *stream;

char string1[] = "A line of text."; /* NOTE: There are actually 16 */
char string2[] = "Find this line."; /* characters in each line of */
char string3[] = "Another stream."; /* text. The 16th is a null */
char string4[16]; /* terminator on each string. */
off_t position,strpos; /* Since the null character */
int i, result, fd; /* is not being written to */
int rc; /* the file, 15 is used as */

/* the data stream length. */
ssize_t x;
char buffer[16];

int main(void)
{

/* Write continuous streams to file */

if ((stream = fopen("./myfile.data","wb"))==NULL) {
perror("Error opening file");
exit(0);

}

for(i=0; i<12;i++) {
int len1 = strlen(string1);
rc = fwrite(string1, 1, len1, stream);
if (rc != len1) {

perror("fwrite failed");
printf("i = %d\n", i);
exit(99);

}
}

Figure 19. Example of HFS Stream Input and Output Functions (Part 1 of 3)

156 OS/390 V2R10.0 C/C++ Programming Guide

|

|

|

rc = fwrite(string2,1,sizeof(string2)-1,stream);

if (rc != sizeof(string2)-1) {
perror("fwrite failed");
exit(99);

}

for(i=0;i<12;i++) {
rc = fwrite(string1,1,sizeof(string1)-1,stream);

if (rc != sizeof(string1)-1) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);

}
}
fclose(stream);
/* Read data stream and search for location of string2. */
/* EOF is not set until an attempt is made to read past the */
/* end-of-file, thus the fread is at the end of the while loop */

stream = fopen("./myfile.data", "rb");

if ((position=ftello(stream)) == -1LL)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);

while(!feof(stream)) {
if (rc != sizeof(string2)-1) {

perror("fread failed");
exit(99);

}

if (strstr(string4,string2) != NULL) /* If string2 is found */
strpos = position ; /* then save position. */

if ((position=ftello(stream)) == -1LL)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);
}

Figure 19. Example of HFS Stream Input and Output Functions (Part 2 of 3)

Chapter 12. Performing Hierarchical File System I/O Operations 157

|

fldata() Behavior
The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename,
fldata_t
*info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure.

For more information on the fldata() function, refer to OS/390 C/C++ Run-Time
Library Reference.

fclose(stream);
/* Replace line containing string2 with string3 */

fd = open("test.data",O_RDWR);

if (fd < 0){
perror("open failed\n");

}

x = write(fd,"a record",8);

if (x < 8){
perror("write failed\n");

}

strpos = lseek(fd,0LL,SEEK_SET); /* Note off_t is 64bits with _LARGE_FILES */
/* set and the off_t variable */
/* needs a 64bit constant of 0LL */

x = read(fd,buffer,8);

if (x < 8){
perror("read failed\n");

}
printf("data read is %.8s\n",buffer);

close(fd);
}

Figure 19. Example of HFS Stream Input and Output Functions (Part 3 of 3)

158 OS/390 V2R10.0 C/C++ Programming Guide

|

Notes:

1. The filename is the same as specified on the fopen() or freopen() function call.

2. The __maxreclen value is 0 for regular I/O (binary). For record I/O the value is
lrecl or the default of 1024 when lrecl is not specified.

3. The __dsname value is the real POSIX pathname.

struct __fileData {
unsigned int __recfmF : 1, /* always off */

__recfmV : 1, /* always off */
__recfmU : 1, /* always on */
__recfmS : 1, /* always off */
__recfmBlk : 1, /* always off */
__recfmASA : 1, /* always off */
__recfmM : 1, /* always off */
__dsorgPO : 1, /* N/A -- always off */
__dsorgPDSmem : 1, /* N/A -- always off */
__dsorgPDSdir : 1, /* N/A -- always off */
__dsorgPS : 1, /* N/A -- always off */
__dsorgConcat : 1, /* N/A -- always off */
__dsorgMem : 1, /* N/A -- always off */
__dsorgHiper : 1, /* N/A -- always off */
__dsorgTemp: 1, /* N/A -- always off */
__dsorgVSAM: 1, /* N/A -- always off */
__dsorgHFS : 1, /* always on */
__openmode : 2, /* one of: */

/* __BINARY */
/* __RECORD */

__modeflag : 4, /* combination of: */
/* __READ */
/* __WRITE */
/* __APPEND */
/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */
__reserve2 : 8; /* */

__device_t __device; /* __HFS */
unsigned long __blksize, /* 0 */

__maxreclen; /* */
unsigned short __vsamtype; /* N/A */
unsigned long __vsamkeylen; /* N/A */
unsigned long __vsamRKP; /* N/A */
char * __dsname; /* */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 20. fldata() Structure

Chapter 12. Performing Hierarchical File System I/O Operations 159

160 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 13. Performing VSAM I/O Operations

This chapter outlines the use of Virtual Storage Access Method (VSAM) data sets in
OS/390 C/C++. Three I/O processing modes for VSAM data sets are available in
OS/390 C/C++:

v Record

v Text Stream

v Binary Stream

Because VSAM is a record-based access method, record mode is the logical
processing mode and is specified by coding the type=record keyword parameter on
the fopen() function call. OS/390 C/C++ also provides limited support for VSAM
text streams and binary streams. Because of the record-based nature of VSAM, this
chapter is organized differently from the other chapters in this section. The focus of
this chapter is on record I/O. Only those aspects of text and binary I/O that are
specific to VSAM are discussed, at the end of the chapter.

For more information about the facilities of VSAM, see the list of “DFSMS” on
page 873.

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 75
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the I/O Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 47 for
general information and OS/390 C/C++ IBM Open Class Library User’s
Guide and OS/390 C/C++ IBM Open Class Library Reference for specifics.

VSAM Types (Data Set Organization)
There are three types of VSAM data sets supported by OS/390 C/C++, all of which
are held on direct-access storage devices.

v Key-Sequenced Data Set (KSDS) is used when a record is accessed through a
key field within the record (for example, an employee directory file where the
employee number can be used to access the record). KSDS also supports
sequential access. Each record in a KSDS must have a unique key value.

v Entry-Sequenced Data Set (ESDS) is used for data that is primarily accessed in
the order it was created (or the reverse order). It supports direct access by
Relative Byte Address (RBA), and sequential access.

v Relative Record Data Set (RRDS) is used for data in which each item has a
particular number, and the relevant record is accessed by that number (for
example, a telephone system with a record associated with each number). It
supports direct access by Relative Record Number (RRN), and sequential
access.

In addition to the primary VSAM access described above, for KSDS and ESDS,
there is also direct access by one or more additional key fields within each record.
These additional keys can be unique or nonunique; they are called an alternate
index (AIX).

Note: VSAM Linear Data Sets are not supported in OS/390 C/C++ I/O.

© Copyright IBM Corp. 1996, 2000 161

Access Method Services
Access Method Services are generally known by the name IDCAMS on MVS. For
more information, see OS/390 DFSMS Access Method Services for Catalogs.

Before a VSAM data set is used for the first time, its structure is defined to the
system by the Access Method Services DEFINE CLUSTER command. This command
defines the type of VSAM data set, its structure, and the space it requires.

Before a VSAM alternate index is used for the first time, its structure is defined to
the system by the Access Method Services DEFINE ALTERNATEINDEX command. To
enable access to the base cluster records through the alternate index, use the
DEFINE PATH command. Finally, to build the alternate index, use the BLDINDEX
command.

When you have built the alternate index, you call fopen() and specify the PATH in
order to access the base cluster through the alternate index. Do not use fopen() to
access the alternate index itself.

Note: You cannot use the BLDINDEX command on an empty base cluster.

Choosing VSAM Data Set Types
When you plan your program, you must first decide the type of data set to use.
Figure 21 on page 163 shows you the possibilities available with the types of VSAM
data sets.

162 OS/390 V2R10.0 C/C++ Programming Guide

When choosing the VSAM data set type, you should base your choice on the most
common sequence in which you require data. You should follow a procedure similar
to the one suggested below to help ensure a combination of data sets and indexes
that provide the function you require.

The diagrams show how the information contained in the family tree below could be held in VSAM data sets of different types.

VALERIE SUZIE ANN MORGAN (1967)

FRED (1969) ANDY (1970) SUZAN (1972) JANE (1975)

Key-Sequenced Data Set

Entry-Sequenced Data Set

Relative Record Data Set

ANDY

FRED

JANE

SUZAN

Prime
Index

Alternate Indexes
By Birthdate (unique)

69

70

72

75

F

M

empty space

ANDY

FRED

empty space

empty space

JANE

SUZAN

70 M

69 M

75 F

72 F

Alternate Indexes

Alphabetically by name

(unique)

ANDY

FRED

JANE

SUZAN

F

M

FRED 69 M

By sex (non-unique)

By sex (non-unique)

No Alternate IndexesRelative record numbers

can be accessed and

used as keys

Each slot corresponds to a year

ANDY

SUZAN

JANE

70 M

72 F

75 F

FRED

ANDY

empty space for 71

SUZAN

empty space for 73

empty space for 74

JANE

empty space for 76

69 M

70 M

72 F

75 F

1

2

3

4

5

6

7

8

Slot

Data component

Data component

Data component

Relative byte addresses

can be accessed and

used as keys

ANDREW M SMITH &

Figure 21. Types and Advantages of VSAM Data Sets

Chapter 13. Performing VSAM I/O Operations 163

1. Determine the type of data and its primary access.

v sequentially — favors ESDS

v by key — favors KSDS

v by number — favors RRDS

2. Determine whether you require access through an alternate index path. These
are only supported on KSDS and ESDS. If you do, determine whether the
alternate index is to have unique or nonunique keys. You should keep in mind
that making an assumption that all future records will have unique keys may not
be practical, and an attempt to insert a record with a nonunique key in an index
that has been created for unique keys causes an error.

3. When you have determined the data sets and paths that you require, ensure
that the operations you have in mind are supported.

Keys, RBAs and RRNs
All VSAM data sets have keys associated with their records. For KSDS, KSDS AIX,
and ESDS AIX, the key is a defined field within the logical record. For ESDS, the
key is the relative byte address (RBA) of the record. For RRDS, the key is a relative
record number (RRN).

Keys for Indexed VSAM Data Sets
For KSDS, KSDS AIX, and ESDS AIX, keys are part of the logical records recorded
on the data set. For KSDS, the length and location of the keys are defined by the
DEFINE CLUSTER command of Access Method Services. For KSDS AIX and ESDS
AIX, the keys are defined by the DEFINE ALTERNATEINDEX command.

Relative Byte Addresses
Relative byte addresses enable you to access ESDS files directly. The RBAs are
unsigned long int fields, and their values are computed by VSAM.

Notes:

1. KSDS can also use RBAs. However, because the RBA of a KSDS record can
change if an insert, delete or update operation is performed elsewhere in the
file, it is not recommended.

2. You can call flocate() with RBA values in an RRDS cluster, but flocate() with
RBA values does not work across control intervals. Therefore, using RBAs with
RRDS clusters is not recommended. The RRDS access method does not
support RBAs. OS/390 C/C++ supports the use of RBAs in an RRDS cluster by
translating the RBA value to an RRN. It does this by dividing the RBA value by
the LRECL.

3. Alternate indexes do not allow positioning by RBA.

The RBA value is stored in the C structure __amrc, which is defined in the C
<stdio.h> header file. You can access the field __amrc->__RBA as shown in the
following example.

164 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GVS1

For more information about the __amrc structure, refer to “Chapter 18. Debugging
I/O Programs” on page 227.

Relative Record Numbers
Records in an RRDS are identified by a relative record number that starts at 1 and
is incremented by 1 for each succeeding record position. Only RRDS files support
accessing a record by its relative record number.

Summary of VSAM I/O Operations
Table 22 summarizes VSAM data set characteristics and the allowable I/O
operations on them.

Table 22. Summary of VSAM Data Set Characteristics and Allowable I/O Operations

KSDS ESDS RRDS

Record Length Variable. Length can
be changed by
update.

Variable. Length
cannot be changed
by update.

Fixed.

Alternate index Allows access using
unique or nonunique
keys.

Allows access using
unique or nonunique
keys.

Not supported by
VSAM.

/* this example shows how to access the __amrc->__RBA field */
/* it assumes that an ESDS has already been defined, and has been */
/* assigned the ddname ESDSCLUS */

#include <stdio.h>
#include <stdlib.h>

main() {
FILE *ESDSfile;
unsigned long myRBA;
char recbuff[100]="This is record one.";
int w_retcd;
int l_retcd;
int r_retcd;

printf("calling fopen(\"dd:esdsclus\",\"rb+,type=record\");\n");
ESDSfile = fopen("dd:esdsclus", "rb+,type=record");
printf("fopen() returned 0X%.8x\n",ESDSfile);
if (ESDSfile==NULL) exit;

w_retcd = fwrite(recbuff, 1, sizeof(recbuff), ESDSfile);
printf("fwrite() returned %d\n",w_retcd);
if (w_retcd != sizeof(recbuff)) exit;
myRBA = __amrc->__RBA;

l_retcd = flocate(ESDSfile, &myRBA, sizeof(myRBA), __RBA_EQ);
printf("flocate() returned %d\n",l_retcd);
if (l_retcd !=0) exit;

r_retcd = fread(recbuff, 1, sizeof(recbuff), ESDSfile);
printf("fread() returned %d\n",r_retcd);
if (l_retcd !=0) exit;

return(0);
}

Figure 22. VSAM Example

Chapter 13. Performing VSAM I/O Operations 165

Table 22. Summary of VSAM Data Set Characteristics and Allowable I/O
Operations (continued)

KSDS ESDS RRDS

Record Read
(Sequential)

The order is
determined by the
VSAM key

By entry sequence.
Reads proceed in key
sequence for the key
of reference.

By relative record
number.

Record Write (Direct) Position determined
by the value in the
field designated as
the key.

Record written at the
end of the file.

By relative record
number.

Positioning for
Record Read

By key or by RBA
value. Positioning by
RBA value is not
recommended
because changes to
the file change the
RBA.

By RBA value.
Alternate index allows
use by key.

By relative record
number.

Delete (Record) If not already in
correct position,
reposition the file;
read the record using
fread(); delete the
record using
fdelrec(). fread()
must immediately
precede fdelrec().

Not supported by
VSAM.

If not already in
correct position,
position the file; read
the record using
fread(); delete the
record using
fdelrec(). fread()
must immediately
precede fdelrec().

Update (Record) If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

Empty the file Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode. Not supported
for alternate indexes.

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode. Not supported
for alternate indexes.

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode.

Stream Read Supported by OS/390
C/C++.

Supported by OS/390
C/C++.

Supported by OS/390
C/C++.

Stream Write/Update Not supported by
OS/390 C/C++.

Supported by OS/390
C/C++.

Supported by OS/390
C/C++.

Stream Repositioning Supported by OS/390
C/C++.

Supported by OS/390
C/C++.

Supported by OS/390
C/C++.

166 OS/390 V2R10.0 C/C++ Programming Guide

Opening VSAM Data Sets
To open a VSAM data set, use the standard C library functions fopen() and
freopen() just as you would for opening non-VSAM data sets. The fopen() and
freopen() functions are described in OS/390 C/C++ Run-Time Library Reference.

This section describes considerations for using fopen() and freopen() with VSAM
files. Remember that a VSAM file must exist and be defined as a VSAM cluster
before you call fopen().

Using fopen() or freopen()
This section covers using file names for MVS data sets, specifying fopen() and
freopen() keywords, and buffering.

File Names for MVS Data Sets: Using a Data Set Name
The following diagram shows the syntax for the filename argument on your fopen()
or freopen() call:

%%
// '

'

.

qualifier
'

%&

The following is a sample construct:
'qualifier1.qualifier2'

’ Single quotation marks indicate that you are passing a fully-qualified data set
name, that is, one which includes the high-level qualifier. If you pass a data set
name without single quotation marks, the OS/390 C/C++ compiler prefixes the
high-level qualifier (usually the user ID) to the name. See “Chapter 11.
Performing OS I/O Operations” on page 103 for information on fully qualified
data set names.

// Specifying these slashes indicates that the file names refer to MVS data sets.

qualifier
Each qualifier is a 1- to 8-character name. These characters may be
alphanumeric, national ($, #, @), the hyphen, or the character \xC0. The first
character should be either alphabetic or national. Do not use hyphens in names
for RACF-protected data sets.

You can join qualifiers with periods. The maximum length of a data set name is
generally 44 characters, including periods.

To open a data set by its name, you can code something like the following in your
C or C++ program:

infile=fopen("VSAM.CLUSTER1", "ab+, type=record");

File Names for MVS Data Sets: Using a DDname
To access a cluster or path by ddname, you can write the required DD statement
and call fopen() as shown in the following example.

If your data set is VSAM.CLUSTER1, your C or C++ program refers to this data set by
the ddname CFILE, and you want exclusive control of the data set for update, you
can write the DD statement:

Chapter 13. Performing VSAM I/O Operations 167

//CFILE DD DSNAME=VSAM.CLUSTER1,DISP=OLD

and code the following in your C or C++ source program:
#include <stdio.h>

FILE *infile;
main()
{

infile=fopen("DD:CFILE", "ab+, type=record");...
}

To share your data set, use DISP=SHR on the DD statement. DISP=SHR is the default
for fopen() calls that use a data set name and specify any of the r,rb, rb+, and
r+b open modes.

Note: OS/390 C/C++ does not check the value of shareoptions at fopen() time,
and does not provide support for read-integrity and write-integrity, as
required to share files under shareoptions 3 and 4.

For more information on shareoptions, see the information on DEFINE CLUSTER in
the books listed in “DFSMS” on page 873.

Specifying fopen() and freopen() Keywords
The mode argument is a character string specifying the type of access requested
for the file.

The mode argument contains one positional parameter (access mode) followed by
keyword parameters. A description of these parameters, along with an explanation
of how they apply to VSAM data sets is given the following sections.

Specifying Access Mode: The access mode is specified by the positional
parameter of the fopen() function call. The possible record I/O and binary modes
you can specify are:

rb Open for reading. If the file is empty, fopen() fails.

wb Open for writing. If the cluster is defined as reusable, the existing
contents of the cluster are destroyed. If the cluster is defined as not
reusable (clusters with paths are, by definition, not reusable),
fopen() fails. However, if the cluster has been defined but not
loaded, this mode can be used to do the initial load of both
reusable and non reusable clusters.

ab Open for writing.

rb+ or r+b Open for reading, writing, and/or updating.

wb+ or w+b Open for reading, writing, and/or updating. If the cluster is defined
as reusable, the existing contents of the cluster are destroyed. If
the cluster is defined as not reusable (clusters with paths are, by
definition, not reusable), the fopen() fails. However, if the cluster
has been defined but not loaded, this mode can be used to do the
initial load of both reusable and non reusable clusters.

ab+ or a+b Open for reading, writing, and/or updating.

For text files, you can specify the following modes: r, w, a, r+, w+, and a+.

168 OS/390 V2R10.0 C/C++ Programming Guide

Note: For KSDS, KSDS AIX and ESDS AIX in text and binary I/O, the only valid
modes are r and rb, respectively.

fopen() and freopen() Keywords
The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for VSAM I/O, and lists the
values that are valid for the applicable ones.

Table 23. Keywords for the fopen() and freopen() Functions for VSAM Data Sets

Keyword Allowed? Applicable? Notes

recfm= Yes No Ignored.

lrecl= Yes No Ignored.

blksize= Yes No Ignored.

space= Yes No Ignored.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes Yes Specifies the access direction for VSAM
data sets. Valid values are BWD and FWD.

password= Yes Yes Specifies the password for a VSAM data
set.

asis Yes No Enables the use of mixed-case file names.
Not supported for VSAM.

byteseek Yes Yes Used for binary stream files to specify that
the seeking functions should use relative
byte offsets instead of encoded offsets.
This is the default setting.

noseek Yes No Ignored.

OS Yes No Ignored.

rls= Yes Yes Indicates the VSAM RLS access mode in
which a VSAM file is to be opened.

Keyword Descriptions
recfm=

Any values passed into fopen() are ignored.

lrecl= and blksize=
These keywords are set to the maximum record size of the cluster as initialized
in the cluster definition. Any values passed into fopen() are ignored.

space=
This keyword is not supported under VSAM.

type=
If you use the type= keyword, the only valid value for VSAM data sets is
type=record. This opens a file for record I/O.

acc=
For VSAM files opened with the keyword type=record, you can specify the
direction by using the acc=access_type keyword on the fopen() function call.
For text and binary files, the access direction is always forward. Attempts to
open a VSAM data set with acc=BWD for either binary or text stream I/O will fail.

The access_type can be one of the following:

Chapter 13. Performing VSAM I/O Operations 169

FWD The acc=FWD keyword specifies that the file be processed in a forward
direction. When the file is opened, it will be positioned at the beginning
of the first physical record, and any subsequent read operations sets
the file position indicator to the beginning of the next record.

The default value for the access keyword is acc=FWD.

BWD The acc=BWD keyword specifies that the file be processed in a backward
direction. When the file is opened, it is positioned at the beginning of
the last physical record and any subsequent read operation sets the file
position indicator to the beginning of the preceding record.

You can change the direction of sequential processing (from forward to
backward or from backward to forward) by using the flocate() library function.
For more information about flocate(), see “Repositioning within Record I/O
Files” on page 175.

Note: When opening paths, records with duplicate alternate index keys are
processed in order of arrival time (oldest to newest) regardless of the
current processing direction.

password=
VSAM facilities provide password protection for your data sets. You access a
data set that has password protection by specifying the password on the
password keyword parameter of the fopen() function call; the password resides
in the VSAM catalog entry for the named file. There can be more than one
password in the VSAM catalog entry; data sets can have different passwords
for different levels of authorization such as reading, writing, updating, inserting,
or deleting. For a complete description of password protection on VSAM files,
see the list of publications given on “DFSMS” on page 873.

The password keyword has the form:
password=nx

where x is a 1- to 8-character password, and n is the exact number of
characters in the password. The password can contain special characters such
as blanks and commas.

If a required password is not supplied, or if an incorrect password is given,
fopen() fails.

asis
This keyword is not supported for VSAM.

byteseek
When you specify this keyword and open a file in binary stream mode, fseek()
and ftell() use relative byte offsets from the beginning of the file. This is the
default setting.

noseek
This keyword is ignored for VSAM data sets.

OS
This keyword is ignored for VSAM data sets.

rls=
Indicates the VSAM RLS access mode in which a VSAM file is to be opened.
This keyword is ignored for non-VSAM files. The following values are valid:

v nri — No Read Integrity

170 OS/390 V2R10.0 C/C++ Programming Guide

v cr — Consistent Read

Note: When the RLS keyword is specified, DISP is changed to default to SHR
when dynamic allocation of the data set is performed. In the rare case
when a batch job wants to use RLS without sharing the data set with
other tasks, DISP should be OLD. To set DISP to OLD, the application
must specify DISP=OLD in the DD statement and start the application
using JCL. You cannot specify DISP in the fopen() mode argument.

Buffering
Full buffering is the default. You can specify line buffering, but OS/390 C/C++ treats
line buffering as full buffering for VSAM data sets. Unbuffered I/O is not supported
under VSAM; if you specify it, your setvbuf() call fails.

To find out how to optimize VSAM performance by controlling the number of VSAM
buffers used for your data set, refer to OS/390 DFSMS Access Method Services for
Catalogs.

Record I/O in VSAM
This section describes how to use record I/O in VSAM. The following topics are
covered:

v RRDS Record Structure

v RRDS Record Structure

v Reading Record I/O Files

v Writing to Record I/O Files

v Updating Record I/O Files

v Deleting Records

v Repositioning within Record I/O Files

v Flushing Buffers

v Summary of VSAM Record I/O Operations

v Reading from Text and Binary I/O Files

v Writing to and Updating Text and Binary I/O Files

v Deleting Records in Text and Binary I/O Files

v Repositioning within Text and Binary I/O Files

v Flushing Buffers

v Summary of VSAM Text I/O Operations

v Summary of VSAM Binary I/O Operations

RRDS Record Structure
For RRDS files opened in record mode, OS/390 C/C++ defines the following key
structure in the C header file <stdio.h>:
typedef struct {

long unsigned int __fill,
__recnum; /* the RRN, starting at 1 */

}__rrds_key_type;

In your source program, you can define an RRDS record structure as either:
struct {

__rrds_key_type rrds_key; /* __fill value always 0 */
char data[MY_REC_SIZE];

} rrds_rec_0;

Chapter 13. Performing VSAM I/O Operations 171

or:
struct {

__rrds_key_type rrds_key; /* __fill value always 1 */
char *data;

} rrds_rec_1;

The OS/390 C/C++ library recognizes which type of record structures you have
used by the value of rrds_key.__fill. Zero indicates that the data is contiguous
with rrds_key and 1 indicates that a pointer to the data follows rrds_key.

Reading Record I/O Files
To read from a VSAM data set opened with type=record, use the standard C
fread() library function. If you set the size argument to 1 and the count argument
to the maximum record size, fread() returns the number of bytes read successfully.
For more information on fread(), see OS/390 C/C++ Run-Time Library Reference.

fread() reads one record from the system from the current file position. Thus, if
you want to read a certain record, you can call flocate() to position the file pointer
to point to it; the subsequent call to fread() reads in that record.

If you use an fread() call to request more bytes than the record about to be read
contains, fread() reads the entire record and returns the number of bytes read. If
you use fread() to request fewer bytes than the record about to read contains,
fread() reads the number of bytes that you specified and returns your request.

OS/390 C/C++ VSAM Record I/O does not allow a read operation to immediately
follow a write operation without an intervening reposition. OS/390 C/C++ treats the
following as read operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

Calling fread() several times in succession, with no other operations on this file in
between, reads several records in sequence (sequential processing), which can be
forward or backward, depending on the access direction, as described in the
following.

v KSDS, KSDS AIX and ESDS AIX

The records are retrieved according to the sequence of the key of reference, or
in reverse key sequence.

Note: Records with duplicate alternate index keys are processed in order of
arrival time (oldest to newest) regardless of the current processing
direction.

v ESDS

The records are retrieved according to the sequence they were written to the file
(entry sequence), or in reverse entry sequence.

v RRDS

The records are retrieved according to relative record number sequence or
reverse relative record number sequence.

When records are being read, RRNs without an associated record are ignored.
For example, if a file has relative records of 1, 2, and 5, the nonexistent records
3 and 4 are ignored.

172 OS/390 V2R10.0 C/C++ Programming Guide

By default, in record mode, fread() must be called with a pointer to an RRDS
record structure. The field __rrds_key_type.__fill must be set to either 0 or 1
indicating the type of the structure, and the count argument must include the
length of the __rrds_key_type. fread() returns the RRN number in the __recnum
field, and includes the length of the __rrds_key_type in the return value. You can
override these operations by setting the _EDC_RRDS_HIDE_KEY environment
variable to Y. Once this variable is set, fread() is called with a data buffer and
not an RRDS data structure. The return value of fread() is now only the length
of the data read. In this case, fread() cannot return the RRN. For information on
setting environment variables, see “Chapter 33. Using Environment Variables” on
page 471.

Writing to Record I/O Files
To write new records to a VSAM data set opened with type=record, use the
standard C fwrite() library function. If you set size to 1 and count to the desired
record size, fwrite() returns the number of bytes written successfully. For more
information on fwrite() and the type=record parameter, see OS/390 C/C++
Run-Time Library Reference.

In general, C I/O does not allow a write operation to follow a read operation without
an intervening reposition or fflush(). OS/390 C/C++ counts a call to a write
function writing 0 bytes or a write request that fails because of a system error as a
write operation. However, OS/390 C/C++ VSAM record I/O allows a write to directly
follow a read. This feature has been provided for compatibility with earlier releases.

The process of writing to a data set for the first time is known as initial loading.
Using the fwrite() function, you can write to a new VSAM file in initial load mode
just as you would to a file not in initial load mode. Writing to a KSDS PATH or an
ESDS PATH in initial load mode is not supported.

If your fwrite() call does not try to write more bytes than the maximum record
size, fwrite() writes a record of the length you asked for and returns your request.
If your fwrite() call asks for more than the maximum record size, fwrite() writes
the maximum record size, sets errno, and returns the maximum record size. In
either case, the next call to fwrite() writes to the following record.

Note: If an fwrite() fails, you must reposition the file before you try to read or
write again.

v KSDS, KSDS AIX

Records are written to the cluster according to the value stored in the field
designated as the prime key.

You can load a KSDS in any key order but it is most efficient to perform the
fwrite() operations in key sequence.

v ESDS, ESDS AIX

Records are written to the end of the file.

v RRDS

Records are written according to the value stored in the relative record number
field.

fwrite() is called with the RRDS record structure.

By default, in record mode, fwrite() and fupdate() must be called with a pointer
to an RRDS record structure. The __rrds_key_type fields __fill and __recnum
must be set. __fill is set to 0 or 1 to indicate the type of the structure. The
__recnum field specifies the RRN to write, and is required for fwrite() but not

Chapter 13. Performing VSAM I/O Operations 173

fupdate(). The count argument must include the length of the __rrds_key_type.
fwrite() and fupdate() include the length of the __rrds_key_type in the return
value.

Updating Record I/O Files
The fupdate() function, a OS/390 C/C++ extension to the SAA C library, is used to
update records in a VSAM file. For more information on this function, see OS/390
C/C++ Run-Time Library Reference.

v KSDS, ESDS, and RRDS

To update a record in a VSAM file, you must perform the following operations:

1. Open the VSAM file in update mode (rb+/r+b, wb+/w+b, or ab+/a+b specified
as the required positional parameter of the fopen() function call and
type=record).

2. If the file is not already positioned at the record you want to update,
reposition to that record.

3. Read in the record using fread().

Once the record you want to update has been read in, you must ensure that
no reading, writing, or repositioning operations are performed before
fupdate().

4. Make the necessary changes to the copy of the record in your buffer area.

5. Update the record from your local buffer area using the fupdate() function.

If an fupdate() fails, you must reposition using flocate() before trying to
read or write.

Notes:

1. If a file is opened in update mode, a read operation can result in the locking
of control intervals, depending on shareoptions specification of the VSAM
file. If after reading a record, you decide not to update it, you may need to
unlock a control interval by performing a file positioning operation to the same
record, such as an flocate() using the same key.

2. If fupdate() wrote out a record the file position is the start of the next record.
If the fupdate() call did not write out a record, the file position remains the
same.

v KSDS and KSDS PATH

You can change the length of the record being updated. If your request does not
exceed the maximum record size of the file, fupdate() writes a record of the
length requested and returns the request. If your request exceeds the maximum
record size of the file, fupdate() writes a record that is the maximum record size,
sets errno, and returns the maximum record size.

You cannot change the prime key field of the record, and in KSDS AIX, you
cannot change the key of reference of the record.

v ESDS

You cannot change the length of the record being updated. If the size of the
record being updated is less than the current record size, fupdate() updates the
amount you specify and does not alter the data remaining in the record. If your
request exceeds the length of the record that was read, fupdate() writes a
record that is the length of the record that was read, sets errno, and returns the
length of the record that was read.

v ESDS PATH

You cannot change the length of the record being updated or the key of
reference of the record. If the size of the record being updated is less than the

174 OS/390 V2R10.0 C/C++ Programming Guide

current record size, fupdate() updates the amount you specify and does not
alter the data remaining in the record. If your request exceeds the length of the
record that was read, fupdate() writes a record that is the length of the record
that was read, sets errno, and returns the length of the record that was read.

v RRDS

RRDS files have fixed record length. If you update the record with less than the
record size, only those characters specified are updated, and the remaining data
is not altered. If your request exceeds the record size of the file, fupdate() writes
a record that is the record size, sets errno, and returns the length of the record
that was read.

Deleting Records
To delete records, use the library function fdelrec(), a OS/390 C/C++ extension to
the SAA C library. For more information on this function, see OS/390 C/C++
Run-Time Library Reference.

v KSDS, KSDS PATH, and RRDS

To delete records, you must perform the following operations:

1. Open the VSAM file in update mode (rb+/r+b, ab+/a+b, or wb+/w+b specified
as the required positional parameter of the fopen() function call and
type=record).

2. If the file is not already positioned at the record you want to delete, reposition
to that record.

3. Read the record using the fread() function.

Once the record you want to delete has been read in, you must ensure that
no reading, writing, or repositioning operations are performed before
fdelrec().

4. Delete the record using the fdelrec() function.

Note: If the data set was opened with an access mode of rb+ or r+b, a read
operation can result in the locking of control intervals, depending on
shareoptions specification of the VSAM file. If after reading a record, you
decide not to delete it, you may need to unlock a control interval by
performing a file-positioning operation to the same record, such as an
flocate() using the same key.

v ESDS and ESDS PATH

VSAM does not support deletion of records in ESDS files.

Repositioning within Record I/O Files
You can use the following functions to locate a record within a VSAM data set:

v flocate()

v ftell() and fseek()

v fgetpos() and fsetpos()

v rewind()

For complete details on these library functions, see OS/390 C/C++ Run-Time
Library Reference.

flocate()
The flocate() C library function can be used to locate a specific record within a
VSAM data set given the key, relative byte address, or the relative record number.
The flocate() function also sets the access direction.

Chapter 13. Performing VSAM I/O Operations 175

The following flocate() parameters set the access direction to forward:

v __KEY_FIRST (the key and key_len parameters are ignored)

v __KEY_EQ

v __KEY_GE

v __RBA_EQ

The following flocate() parameters all set the access direction to backward and are
only valid for record I/O:

v __KEY_LAST (the key and key_len parameters are ignored)

v __KEY_EQ_BWD

v __RBA_EQ_BWD

Note: The __RBA_EQ and __RBA_EQ_BWD parameters are not valid for paths and are
not recommended for KSDS and RRDS data sets.

You can use the rewind() library function instead of calling flocate() with
__KEY_FIRST.

v KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ, __KEY_GE, and
__KEY_EQ_BWD is a pointer to the key of reference of the data set. The key_len
parameter is the key length as defined for the data set for a full key search, or
less than the defined key length for a generic key search (a partial key match).

For KSDSs, __RBA_EQ and __RBA_EQ_BWD are supported, but are not
recommended.

Alternate indexes do not allow positioning by RBA.

v ESDS

The key parameter of flocate() is a pointer to an unsigned long integer
containing the specified RBA value. The key_len parameter is 4, because RBAs
are unsigned long integers.

v RRDS

For __KEY_EQ, __KEY_GE, and __KEY_EQ_BWD, the key parameter of flocate() is a
pointer to an unsigned long integer containing the specified relative record
number. For __RBA_EQ and __RBA_EQ_BWD, the key parameter of flocate() is a
pointer to an unsigned long integer containing the specified RBA. However,
seeking to RBA values is not recommended, because it is not supported across
control intervals. The key_len parameter is 4, because RRNs and RBAs are
unsigned long integers.

fgetpos() and fsetpos()
fgetpos() is used to store the current file position and access direction. fsetpos()
is used to relocate to a file position stored by fgetpos() and restore the saved
access direction.

v KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by
subsequent insertions, deletions, or updates.

v KSDS AIX and ESDS AIX

fgetpos() and fsetpos() are not supported for PATHs.

v ESDS and RRDS

There are no special considerations.

176 OS/390 V2R10.0 C/C++ Programming Guide

ftell() and fseek()
ftell() is used to store the current file position. fseek() is used to relocate to one
of the following:

v A file position stored by ftell()

v A calculated record number (SEEK_SET)

v A position relative to the current position (SEEK_CUR)

v A position relative to the end of the file (SEEK_END).

ftell() and fseek() offsets in record mode I/O are relative record offsets. For
example, the following call moves the file position to the start of the previous
record:

fseek(fp, -1L, SEEK_CUR);

You cannot use fseek() to reposition to a file position before the beginning of the
file or to a position beyond the end of the file.

Note: In general, the performance of this method is inferior to flocate().

The access direction is unchanged by the repositioning.

v KSDS and RRDS

There are no special considerations.

v KSDS AIX and ESDS AIX

ftell() and fseek() are not supported.

v ESDS

ftell() is not supported.

v RRDS

fseek() seeks to a relative position in the file, and not to an RRN value. For
example, in a file consisting of RRNs 1, 3, 5 and 7, fseek(fp, 3L, SEEK_SET);
followed by an fread() would read in RRN 7, which is at offset 3 in the file.

rewind()
The rewind() function repositions the file position to the beginning of the file, and
clears the error setting for the file.

rewind() does not reset the file access direction. For example, a call to flocate()
with __KEY_LAST sets the file pointer to the end of the file and sets the access
direction to backwards. A subsequent call to rewind() sets the file pointer to the
beginning of the file, but the access direction remains backwards.

Flushing Buffers
You can use the C library function fflush() to flush buffers. However, fflush()
writes nothing to the system, because all records have already been written there
by fwrite().

fflush() after a read operation does not refresh the contents of the buffer.

For more information on fflush(), see OS/390 C/C++ Run-Time Library Reference.

Chapter 13. Performing VSAM I/O Operations 177

Summary of VSAM Record I/O Operations
Table 24. Summary of VSAM Record I/O Operations

KSDS ESDS RRDS PATH

fopen(),
freopen()

rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb, rb+, ab, ab+

fwrite() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

rb+, ab, ab+

fread() rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+

ftell() rb, rb+, ab, ab+,
wb, wb+ 3

rb, rb+, ab, ab+,
wb, wb+

fseek() rb, rb+, ab, ab+,
wb, wb+ 3

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fgetpos() rb, rb+, ab, ab+,
wb, wb+ 4

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fsetpos() rb, rb+, ab, ab+,
wb, wb+ 4

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

flocate() rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+

rewind() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

fflush() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

fdelrec() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+ (not
ESDS)

fupdate() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+

ferror() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

feof() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

clearerr() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

fclose() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

fldata() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

VSAM Record Level Sharing
VSAM Record Level Sharing (RLS) provides for the sharing of VSAM data at the
record level, using the locking and caching functions of the coupling facility
hardware. For more information on Record Level Sharing, see OS/390 DFSMS
Introduction.

3. The saved position is based on the relative position of the record within the data set. Subsequent insertions or deletions may
invalidate the saved position.

4. The saved position is based on the RBA of the record. Subsequent insertions, deletions or updates may invalidate the saved
position.

178 OS/390 V2R10.0 C/C++ Programming Guide

The C/C++ run-time library provides the following support for VSAM RLS:

v Specification of RLS-related keywords in the mode string of fopen() and
freopen().

v Specification of RLS-related text unit key values in the __dyn_t structure, which is
used as input to the dynalloc() function.

v Provides the application with VSAM return and reason codes for VSAM I/O
errors.

v Performs implicit positioning for files opened for RLS access.

VSAM RLS has 2 read integrity file access modes. These modes tell VSAM the
level of locking to perform when records are accessed within a file that has not
been opened in update mode. The access modes are:

nri No Read Integrity indicates that requests performed by the application are
not to be serialized with updates or erases of the records by other calling
programs. VSAM accesses the records without obtaining a lock on the
record.

cr Consistent Read indicates that requests performed by the application are to
be serialized with updates or erases of the records by other calling
programs. VSAM obtains a share lock when accessing the record. This lock
is released once the record has been returned to the caller.

VSAM RLS locks records to support record integrity. An application may wait for an
exclusive record lock if another user has the record locked. The application is also
subject to new locking errors such as deadlock or timeout errors.

If the file has been opened in update mode, and RLS=CR is specified, VSAM also
serializes access to the records within the file. However, the type of serialization
differs from non-update mode in the following ways:

v A reposition within the file causes VSAM to obtain a share lock for the record.

v A read of a record causes VSAM to obtain an exclusive lock for the record. The
lock is held until the record is updated in the file, or another record is read.

Notes:

1. When a file is opened, it is implicitly positioned to the first record to be
accessed.

2. You can also specify the RLS keyword on the JCL DD statement. When
specified on both the JCL DD statement and in the mode string on fopen() or
freopen(), the read integrity options specified in the mode string override those
specified on the JCL DD statement.

3. VSAM RLS access is supported for the 3 types of VSAM files that the C/C++
run-time library supports: Key-Sequenced (KSDS), Entry-Sequenced (ESDS),
and Relative Record (RRDS) data sets.

4. VSAM RLS functions require the use of a Coupling Facility. For more
information on using the Coupling Facility, see OS/390 DFSMS Introduction, and
OS/390 Parallel Sysplex Overview.

5. In an environment where one thread opens and another thread issues record
management requests, VSAM RLS requires that record management requests
be issued from a thread whose Task Control Block (TCB) is subordinate to the
TCB of the thread which opened the file.

6. VSAM RLS does not support the following:

v Key range data sets.

v Direct open of an AIX cluster as a KSDS.

Chapter 13. Performing VSAM I/O Operations 179

v Access to individual components of a cluster.

v OS Checkpoint and Restart.

Error Reporting
Errors are reported through the __amrc structure and the SIGIOERR signal. The
following are additional considerations for error reporting in a VSAM RLS
application:

v VSAM RLS uses the SMSVSAM server address space. When a file open fails for
the rare condition that the server is not available, the C run-time library places
the error return code and error value in the __amrc structure, and returns a null
file descriptor. Record management requests return specific error return/reason
codes, if the SMSVSAM server is not available. The server address space is
automatically restarted. To recover from this type of error, an application should
first close the file to clean up the file status, and then open the file prior to
attempting record management requests. The close for the file returns a return
code of 4, and an error code of 170(X’AA’). This is the expected result. It is not
an error.

v Opening a recoverable file for output is not supported. If you attempt to do so,
the open will fail with error return code 255 in the __amrc structure.

v Some of the VSAM errors, that are reported in the __amrc structure, are
situations from which an application can recover. These are problems that can
occur unpredictably in a sharing environment. Usually, the application can
recover by simply accessing another record. Examples of such errors are the
following:

– RC 8, 21(X’15’): Request cancelled as part of deadlock resolution.

– RC 8, 22(X’16’): Request cancelled as part of timeout resolution.

– RC 8, 24(X’18’): Request cancelled because transaction backout is pending
on the requested record.

– RC 8, 29(X’14’): Intra-luwid contention between threads under a given TCB.

The application can intercept errors by registering a condition handler for the
SIGIOERR condition. Within the condition handler, the application can examine
the information in the __amrc structure and determine how to recover from each
specific situation.

Refer to OS/390 DFSMS Macro Instructions for Data Sets for a complete list of
return and reason codes.

Text and Binary I/O in VSAM
Because VSAM is primarily record-based, this section only discusses those aspects
of text and binary I/O that are specific to VSAM. For general information on text and
binary I/O, refer to the respective sections in “Chapter 11. Performing OS I/O
Operations” on page 103.

Reading from Text and Binary I/O Files
v RRDS

All the read functions support reading from text and binary RRDS files. fread() is
called with a character buffer instead of an RRDS record structure.

Writing to and Updating Text and Binary I/O Files
v KSDS, KSDS AIX, and ESDS AIX

180 OS/390 V2R10.0 C/C++ Programming Guide

OS/390 C/C++ VSAM support for streams does not provide for writing and
updating these types of data sets opened for text or binary stream I/O.

v ESDS

Writes are supported for ESDSs opened as binary or text streams. Updating data
in an ESDS stream cannot change the length of the record in the external file.
Therefore, in a binary stream:

– updates for less than the existing record length leave existing data beyond the
updated length unchanged;

– updates for longer than the existing record length flow over the record
boundary and update the start of the next record.

In text streams:

– updates that specify records shorter than the original record pad the updated
record to the existing record length with blanks;

– updates for longer than the existing record length result in truncation, unless
the original record contained only a new-line character, in which case it may
be updated to contain one byte of data plus a new-line character.

v RRDS

fwrite() is called with a character buffer instead of an RRDS record structure.

Records are treated as contiguous. Once the current record is filled, the next
record in the file is written to. For example, if the file consisted of only record 1,
record 5, and record 28, a write would complete record 1 and then go directly to
record 5.

Writing past the last record in the file is allowed, up to the maximum size of the
RRDS data set. For example, if the last record in the file is record 28, the next
record to be written is record 29.

Insertion of records is not supported. For example, in a file of records 1, 5, and
28, you cannot insert record 3 into the file.

Deleting Records in Text and Binary I/O Files
fdelrec() is not supported for text and binary I/O in VSAM.

Repositioning within Text and Binary I/O Files
You can use the following functions to locate a record within a VSAM data set:

v flocate()

v ftell() and fseek()

v fgetpos() and fsetpos()

v rewind()

For complete details on these library functions, see OS/390 C/C++ Run-Time
Library Reference.

flocate()
The flocate() C library function can be used to reposition to the beginning of a
specific record within a VSAM data set given the key, relative byte address, or the
relative record number. For more information on this function, see OS/390 C/C++
Run-Time Library Reference.

The following flocate() parameters set the direction access to forward:

v __KEY_FIRST (the key and key_len parameters are ignored)

v __KEY_EQ

Chapter 13. Performing VSAM I/O Operations 181

v __KEY_GE

v __RBA_EQ

The following flocate() parameters all set the access direction to backward and are
not valid for text and binary I/O, because backwards access is not supported:

v __KEY_LAST (the key and key_len parameters are ignored)

v __KEY_EQ_BWD

v __RBA_EQ_BWD

You can use the rewind() library function instead of calling flocate() with
__KEY_FIRST.

v KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ and __KEY_GE is a
pointer to the key of reference of the data set. The key_len parameter is the key
length as defined for the data set for a full key search, or less than the defined
key length for a generic key search (a partial key match).

Alternate indexes do not allow positioning by RBA.

Note: The __RBA_EQ parameter is not valid for paths and is not recommended.

v ESDS

The key parameter of flocate() is a pointer to an unsigned long integer
containing the specified RBA value. The key_len parameter is 4, because RBAs
are unsigned long integers.

v RRDS

For __KEY_EQ and __KEY_GE, the key parameter of flocate() is a pointer to an
unsigned long integer containing the specified relative record number. For
__RBA_EQ, the key parameter of flocate() is a pointer to an unsigned long
integer containing the specified RBA. However, seeking to RBA values is not
recommended, because it is not supported across control intervals. The key_len
parameter is 4, because RRNs and RBAs are unsigned long integers.

fgetpos() and fsetpos()
fgetpos() saves the access direction, an RBA value, and the file position, and
fsetpos() restores the saved access direction.

fgetpos() accounts for the presence of characters in the ungetc() buffer unless you
have set the _EDC_COMPAT variable. See “Chapter 33. Using Environment Variables”
on page 471 for information about _EDC_COMPAT. If ungetc() characters back the file
position up to before the start of the file, calls to fgetpos() fail.

v KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by
subsequent insertions, deletions or updates.

v KSDS PATH and ESDS PATH

fgetpos() and fsetpos() are not supported for PATHs.

v ESDS and RRDS

There are no special considerations.

ftell() and fseek()
Using fseek() to seek beyond the current end of file in a writable ESDS or RRDS
binary file results in the file being extended with nulls to the new position. An
incomplete last record is completed with nulls, records of length lrecl are added as
required, and the current record is filled with the remaining number of nulls and left

182 OS/390 V2R10.0 C/C++ Programming Guide

in the current buffer. This is supported for relative byte offset from SEEK_SET,
SEEK_CUR and SEEK_END. Table 25 provides a summary of the fseek() and ftell()
parameters in binary and text.

Table 25. Summary of fseek() and ftell() parameters in text and binary

Type Mode ftell() return
values

fseek() SEEK_SET SEEK_CUR SEEK_END

KSDS Binary relative byte offset relative byte offset relative byte offset relative byte offset

Text not supported zero only relative byte offset relative byte offset

ESDS Binary relative byte offset relative byte offset relative byte offset relative byte offset

Text not supported zero only relative byte offset relative byte offset

RRDS Binary encoded byte
offset

encoded byte
offset

relative byte offset relative byte offset

Text encoded byte
offset

encoded byte
offset

relative byte offset relative byte offset

PATH Binary not supported not supported not supported not supported

Text not supported not supported not supported not supported

Flushing Buffers
You can use the C library function fflush() to flush data.

For text files, calling fflush() to flush an update to a record causes the new data
to be written to the file.

If you call fflush() while you are updating, the updates are flushed out to VSAM.

For more information on fflush(), see OS/390 C/C++ Run-Time Library Reference.

Summary of VSAM Text I/O Operations
Table 26. Summary of VSAM Text I/O Operations

KSDS ESDS RRDS PATH

fopen(),
freopen()

r r, r+, a, a+, w,
w+ (empty
cluster or reuse
specified for w &
w+)

r, r+, a, a+, w,
w+ (empty
cluster or reuse
specified for w &
w+)

r

fwrite() r+, a, a+, w, w+ r+, a, a+, w, w+

fprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

fputs() r+, a, a+, w, w+ r+, a, a+, w, w+

fputc() r+, a, a+, w, w+ r+, a, a+, w, w+

putc() r+, a, a+, w, w+ r+, a, a+, w, w+

vfprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

vprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

fread() r r, r+, a+, w+ r, r+, a+, w+ r

fscanf() r r, r+, a+, w+ r, r+, a+, w+ r

fgets() r r, r+, a+, w+ r, r+, a+, w+ r

fgetc() r r, r+, a+, w+ r, r+, a+, w+ r

Chapter 13. Performing VSAM I/O Operations 183

Table 26. Summary of VSAM Text I/O Operations (continued)

KSDS ESDS RRDS PATH

getc() r r, r+, a+, w+ r, r+, a+, w+ r

ungetc() r r, r+, a+, w+ r, r+, a+, w+ r

ftell() r, r+, a, a+, w,
w+

fseek() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

fgetpos() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

fsetpos() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

flocate() r r, r+, a+, w+ r, r+, a+, w+ r

rewind() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

fflush() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

ferror() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

fdelrec()

fupdate()

feof() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

clearerr() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

fclose() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

fldata() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

Summary of VSAM Binary I/O Operations
Table 27. Summary of VSAM Binary I/O Operations

KSDS ESDS RRDS PATH

fopen(),
freopen()

rb rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb

fwrite() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

fprintf() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

fputs() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

fputc() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

184 OS/390 V2R10.0 C/C++ Programming Guide

Table 27. Summary of VSAM Binary I/O Operations (continued)

KSDS ESDS RRDS PATH

putc() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

vfprintf() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

vprintf() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

fread() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fscanf() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fgets() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fgetc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

getc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

ungetc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

ftell() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fseek() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fgetpos() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fsetpos() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

flocate() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

rewind() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

fflush() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

ferror() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

fdelrec()

fupdate()

feof() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

clearerr() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

fclose() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

fldata() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

Closing VSAM Data Sets
To close a VSAM data set, use the standard C fclose() library function as you
would for closing non-VSAM files. See OS/390 C/C++ Run-Time Library Reference
for more details on the fclose() library function.

For ESDS binary files, if fclose() is called and there is a new record in the buffer
that is less than the maximum record size, this record is written to the file at its

Chapter 13. Performing VSAM I/O Operations 185

current size. A new RRDS binary record that is incomplete when the file is closed is
filled with null characters to the record size.

A new ESDS or RRDS text record that is incomplete when the file is closed is
completed with a new-line.

VSAM Return Codes
When failing return codes are received from OS/390 C/C++ VSAM I/O functions,
you can access the __amrc structure to help you diagnose errors. The __amrc_type
structure is defined in the header file stdio.h (when the compiler option
LANGLVL(EXTENDED) is used).

Note: The __amrc struct is global and can be reset by another I/O operation (such
as printf()).

The following fields of the structure are important to VSAM users:

__amrc.__co de.__feedback.__rc
Stores the VSAM R15.

__amrc.__code.__feedback.__fdbk
Stores the VSAM error code or reason code.

__amrc.__RBA
Stores the RBA after some operations.

__amrc.__last_op
Stores a code for the last operation. The codes are defined in the header
file stdio.h.

__amrc.__rplfdbwd
Stores the feedback code from the IFGRPL control block.

For definitions of these return codes and feedback codes, refer to the publications
listed in “DFSMS” on page 873.

You can set up a SIGIOERR handler to catch read or write system errors. See
“Chapter 18. Debugging I/O Programs” on page 227 for more information.

VSAM Examples
This section provides several examples of using I/O under VSAM.

KSDS Example
The example below shows two functions from an employee record entry system
with a mainline driver to process selected options (display, display next, update,
delete, create).

The update routine is an example of KSDS clusters, and the display routine is an
example of both KSDS clusters and alternate indexes.

For these examples, the clusters and alternate indexes should be defined as
follows:

v The KSDS cluster has a record size of 150 with a key length of 4 with offset 0.

v The unique KSDS AIX has a key length of 20 with an offset of 10.

v The non-unique KSDS AIX has a key length of 40 with an offset of 30.

186 OS/390 V2R10.0 C/C++ Programming Guide

|
|

The update routine is passed the following:

v data_ptr, which points to the information that is to be updated

v orig_data_ptr, which points to the information that was originally displayed using
the display option

v A file pointer to the KSDS cluster

The display routine is passed the following:

v data_ptr, which points to the information that was entered on the screen for the
search query

v orig_data_ptr, which is returned with the information for the record to be
displayed if it exists

v File pointers for the primary cluster, unique alternate index and non-unique
alternate index

By definition, the primary key is unique and therefore the employee number was
chosen for this key. The user_id is also a unique key; therefore, it was chosen as
the unique alternate index key. The name field may not be unique; therefore, it was
chosen as the non-unique alternate index key.

CBC3GVS2

/* this example demonstrates the use of a KSDS file */
/* part 1 of 2-other file is CBC3GVS3 */

#include <stdio.h>
#include <string.h>

/* global definitions */

struct data_struct {
char emp_number[4];
char user_id[8];
char name[20];
char pers_info[37];

};

#define REC_SIZE 69
#define CLUS_KEY_SIZE 4
#define AIX_UNIQUE_KEY_SIZE 8
#define AIX_NONUNIQUE_KEY_SIZE 20

static void print_amrc() {
__amrc_type currErr = *__amrc; /* copy contents of __amrc */

/* structure so that values */
/* don't get jumbled by printf */

printf("R15 value = %d\n", currErr.__code.__feedback.__rc);
printf("Reason code = %d\n", currErr.__code.__feedback.__fdbk);
printf("RBA = %d\n", currErr.__RBA);
printf("Last op = %d\n", currErr.__last_op);
return;

}

Figure 23. KSDS Example (Part 1 of 6)

Chapter 13. Performing VSAM I/O Operations 187

/* update_emp_rec() function definition */

int update_emp_rec (struct data_struct *data_ptr,
struct data_struct *orig_data_ptr,
FILE *fp)

{
int rc;
char buffer[REC_SIZE+1];

/* Check to see if update will change primary key (emp_number) */
if (memcmp(data_ptr->emp_number,orig_data_ptr->emp_number,4) != 0) {

/* Check to see if changed primary key exists */
rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,__KEY_EQ);
if (rc == 0) {

print_amrc();
printf("Error: new employee number already exists\n");
return 10;

}

clearerr(fp);

/* Write out new record */
rc = fwrite(data_ptr,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();
printf("Error: write with new employee number failed\n");
return 20;

}

/* Locate to old employee record so it can be deleted */
rc = flocate(fp,&(orig_data_ptr->emp_number),CLUS_KEY_SIZE,

__KEY_EQ);
if (rc != 0) {

print_amrc();
printf("Error: flocate to original employee number failed\n");
return 30;

}

rc = fread(buffer,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();
printf("Error: reading old employee record failed\n");
return 40;

}

rc = fdelrec(fp);
if (rc != 0) {

print_amrc();
printf("Error: deleting old employee record failed\n");
return 50;

}

Figure 23. KSDS Example (Part 2 of 6)

188 OS/390 V2R10.0 C/C++ Programming Guide

} /* end of checking for change in primary key */
else { /* Locate to current employee record */

rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,__KEY_EQ);
if (rc == 0) {

/* record exists, so update it */
rc = fread(buffer,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();
printf("Error: reading old employee record failed\n");
return 60;

}

rc = fupdate(data_ptr,REC_SIZE,fp);
if (rc == 0) {

print_amrc();
printf("Error: updating new employee record failed\n");
return 70;

}
}
else { /* record doesn't exist so write out new record */

clearerr(fp);
printf("Warning: record previously displayed no longer\n");
printf(" : exists, new record being created\n");
rc = fwrite(data_ptr,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();
printf("Error: write with new employee number failed\n");
return 80;

}
}

}
return 0;

}

/* display_emp_rec() function definition */

int display_emp_rec (struct data_struct *data_ptr,
struct data_struct *orig_data_ptr,
FILE *clus_fp, FILE *aix_unique_fp,
FILE *aix_non_unique_fp)

{
int rc = 0;
char buffer[REC_SIZE+1];

/* Primary Key Search */
if (memcmp(data_ptr->emp_number, "\0\0\0\0", 4) != 0) {

rc = flocate(clus_fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,
__KEY_EQ);

if (rc != 0) {
printf("Error: flocate with primary key failed\n");
return 10;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,clus_fp);
if (rc != REC_SIZE || ferror(clus_fp)) {

printf("Error: reading employee record failed\n");
return 15;

}
}

Figure 23. KSDS Example (Part 3 of 6)

Chapter 13. Performing VSAM I/O Operations 189

/* Unique Alternate Index Search */
else if (data_ptr->user_id[0] != '\0') {

rc = flocate(aix_unique_fp,data_ptr->user_id,AIX_UNIQUE_KEY_SIZE,
__KEY_EQ);

if (rc != 0) {
printf("Error: flocate with user id failed\n");
return 20;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,aix_unique_fp);
if (rc != REC_SIZE || ferror(aix_unique_fp)) {

printf("Error: reading employee record failed\n");
return 25;

}
}
/* Non-unique Alternate Index Search */
else if (data_ptr->name[0] != '\0') {

rc = flocate(aix_non_unique_fp,data_ptr->name,
AIX_NONUNIQUE_KEY_SIZE,__KEY_GE);

if (rc != 0) {
printf("Error: flocate with name failed\n");
return 30;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,aix_non_unique_fp);
if (rc != REC_SIZE || ferror(aix_non_unique_fp)) {

printf("Error: reading employee record failed\n");
return 35;

}
}
else {

printf("Error: invalid search argument; valid search arguments\n"
" : are either employee number, user id, or name\n");

return 40;
}
/* display record data */
printf("Employee Number: %.4s\n", orig_data_ptr->emp_number);
printf("Employee Userid: %.8s\n", orig_data_ptr->user_id);
printf("Employee Name: %.20s\n", orig_data_ptr->name);
printf("Employee Info: %.37s\n", orig_data_ptr->pers_info);
return 0;

}

Figure 23. KSDS Example (Part 4 of 6)

190 OS/390 V2R10.0 C/C++ Programming Guide

/* main() function definition */

int main() {
FILE* clus_fp;
FILE* aix_ufp;
FILE* aix_nufp;
int i;
struct data_struct buf1, buf2;

char data[3][REC_SIZE+1] = {
" 1LARRY LARRY HI, I'M LARRY, ",
" 2DARRYL1 DARRYL AND THIS IS MY BROTHER DARRYL, ",
" 3DARRYL2 DARRYL "

};

/* open file three ways */
clus_fp = fopen("dd:cluster", "rb+,type=record");
if (clus_fp == NULL) {

print_amrc();
printf("Error: fopen(\"dd:cluster\"...) failed\n");
return 5;

}
/* assume base cluster was loaded with at least one dummy record */
/* so aix could be defined */
aix_ufp = fopen("dd:aixuniq", "rb,type=record");
if (aix_ufp == NULL) {

print_amrc();
printf("Error: fopen(\"dd:aixuniq\"...) failed\n");
return 10;

}
/* assume base cluster was loaded with at least one dummy record */
/* so aix could be defined */
aix_nufp = fopen("dd:aixnuniq", "rb,type=record");
if (aix_nufp == NULL) {

print_amrc();
printf("Error: fopen(\"dd:aixnuniq\"...) failed\n");
return 15;

}

/* load sample records */
for (i = 0; i < 3; ++i) {

if (fwrite(data[i],1,REC_SIZE,clus_fp) != REC_SIZE) {
print_amrc();
printf("Error: fwrite(data[%d]...) failed\n", i);
return 66+i;

}
}

Figure 23. KSDS Example (Part 5 of 6)

Chapter 13. Performing VSAM I/O Operations 191

The following JCL can be used to test the previous example.

CBC3GVS3

/* display sample record by primary key */
memcpy(buf1.emp_number, " 1", 4);
if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

return 69;

/* display sample record by nonunique aix key */
memset(buf1.emp_number, '\0', 4);
buf1.user_id[0] = '\0';
memcpy(buf1.name, "DARRYL ", 20);
if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

return 70;

/* display sample record by unique aix key */
memcpy(buf1.user_id, "DARRYL2 ", 8);
if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

return 71;

/* update record just read with new personal info */
memcpy(&buf1, &buf2, REC_SIZE);
memcpy(buf1.pers_info, "AND THIS IS MY OTHER BROTHER DARRYL. ", 37);
if (update_emp_rec(&buf1, &buf2, clus_fp) != 0) return 72;

/* display sample record by unique aix key */
if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

return 73;

return 0;
}

Figure 23. KSDS Example (Part 6 of 6)

//* this example illustrates the use of a KSDS file
//* part 2 of 2-other file is CBC3GVS2
//*--
//* Delete cluster, and AIX and PATH
//*--
//DELETEC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE -
userid.KSDS.CLUSTER -
CLUSTER -
PURGE -
ERASE

Figure 24. KSDS Example (Part 1 of 3)

192 OS/390 V2R10.0 C/C++ Programming Guide

/*
//*--
//* Define KSDS
//*--
//DEFINE EXEC PGM=IDCAMS
//VOLUME DD UNIT=SYSDA,DISP=SHR,VOL=SER=(XXXXXX)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER -
(NAME(userid.KSDS.CLUSTER) -
FILE(VOLUME) -
VOL(XXXXXX) -
TRK(4 4) -
RECSZ(69 100) -
INDEXED -
NOREUSE -
KEYS(4 0) -
OWNER(userid)) -

DATA -
(NAME(userid.KSDS.DA)) -

INDEX -
(NAME(userid.KSDS.IX))

/*
//*--
//* Repro data into KSDS
//*--
//REPRO EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

REPRO INDATASET(userid.DUMMY.DATA) -
OUTDATASET(userid.KSDS.CLUSTER)

/*
//*--
//* Define unique AIX, define and build PATH
//*--
//DEFAIX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE AIX -
(NAME(userid.KSDS.UAIX) -
RECORDS(25) -
KEYS(8,4) -
VOL(XXXXXX) -
UNIQUEKEY -
RELATE(userid.KSDS.CLUSTER)) -

DATA -
(NAME(userid.KSDS.UAIXDA)) -

INDEX -
(NAME(userid.KSDS.UAIXIX))

DEFINE PATH -
(NAME(userid.KSDS.UPATH) -
PATHENTRY(userid.KSDS.UAIX))

BLDINDEX -
INDATASET(userid.KSDS.CLUSTER) -
OUTDATASET(userid.KSDS.UAIX)

/*

Figure 24. KSDS Example (Part 2 of 3)

Chapter 13. Performing VSAM I/O Operations 193

RRDS Example
The following program illustrates the use of an RRDS file. It performs the following
operations:

1. Opens an RRDS file in record mode (the cluster must be defined)

2. Writes three records (RRN 2, RRN 10, and RRN 32)

3. Sets the file position to the first record

4. Reads the first record in the file

5. Deletes it

/*
//*--
//* Define nonunique AIX, define and build PATH
//*--
//DEFAIX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE AIX -
(NAME(userid.KSDS.NUAIX) -
RECORDS(25) -
KEYS(20, 12) -
VOL(XXXXXX) -
NONUNIQUEKEY -
RELATE(userid.KSDS.CLUSTER)) -

DATA -
(NAME(userid.KSDS.NUAIXDA)) -

INDEX -
(NAME(userid.KSDS.NUAIXIX))

DEFINE PATH -
(NAME(userid.KSDS.NUPATH) -
PATHENTRY(userid.KSDS.NUAIX))

BLDINDEX -
INDATASET(userid.KSDS.CLUSTER) -
OUTDATASET(userid.KSDS.NUAIX)

/*
//*--
//* Run the testcase
//*--
//GO EXEC PGM=CBC3GVS2,REGION=5M
//STEPLIB DD DSN=userid.TEST.LOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//PLIDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CLUSTER DD DSN=userid.KSDS.CLUSTER,DISP=SHR
//AIXUNIQ DD DSN=userid.KSDS.UPATH,DISP=SHR
//AIXNUNIQ DD DSN=userid.KSDS.NUPATH,DISP=SHR
//*--
//* Print out the cluster
//*--
//PRINTF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

PRINT -
INDATASET(userid.KSDS.CLUSTER) CHAR

/*

Figure 24. KSDS Example (Part 3 of 3)

194 OS/390 V2R10.0 C/C++ Programming Guide

6. Locates the last record in the file and sets the access direction to backwards

7. Reads the record

8. Updates the record

9. Sets the _EDC_RRDS_HIDE_KEY environment variable

10. Reads the next record in sequence (RRN 10) into a character string

CBC3GVS4

/* this example illustrates the use of an RRDS file */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <env.h>

struct rrds_struct {
__
rrds_key_type rrds_key;

char *rrds_buf;
};

typedef struct rrds_struct RRDS_STRUCT;

main() {

FILE *fileptr;
RRDS_STRUCT RRDSstruct;
RRDS_STRUCT *rrds_rec = &RRDSstruct;
char buffer1[80] =

"THIS IS THE FIRST RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 2. ";

char buffer2[80] =
"THIS IS THE SECOND RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 10. ";

char buffer3[80] =
"THIS IS THE THIRD RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 32. ";

char outputbuf[80];
unsigned long flocate_key = 0;

Figure 25. RRDS Example (Part 1 of 3)

Chapter 13. Performing VSAM I/O Operations 195

/*--*/
/*| select RRDS record structure 2 by setting __fill to 1 */
/*| */
/*| 1. open an RRDS file record mode (the cluster must be defined) */
/*| 2. write three records (RRN 2, RRN 10, RRN 32) */
/*--*/

rrds_rec->rrds_key.__fill = 1;

fileptr = fopen("DD:RRDSFILE", "wb+,type=record");
if (fileptr == NULL) {

perror("fopen");
exit(99);

}
rrds_rec->rrds_key.__recnum = 2;
rrds_rec->rrds_buf = buffer1;
fwrite(rrds_rec,1,88, fileptr);

rrds_rec->rrds_key.__recnum = 10;
rrds_rec->rrds_buf = buffer2;
fwrite(rrds_rec,1,88, fileptr);

rrds_rec->rrds_key.__recnum = 32;
rrds_rec->rrds_buf = buffer3;
fwrite(rrds_rec,1,88, fileptr);

/*--*/
/*| 3. set file position to the first record */
/*| 4. read the first record in the file */
/*| 5. delete it */
/*--*/

flocate(fileptr, &flocate_key,; sizeof(unsigned long), __KEY_FIRST);

memset(outputbuf,0x00,80);
rrds_rec->rrds_buf = outputbuf;

fread(rrds_rec,1, 88, fileptr);
printf("The first record in the file (this will be deleted):\n");
printf("RRN %d: %s\n\n",rrds_rec->rrds_key.__recnum,outputbuf);

fdelrec(fileptr);

Figure 25. RRDS Example (Part 2 of 3)

196 OS/390 V2R10.0 C/C++ Programming Guide

fldata() Behavior
The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure.

For more information on the fldata() function, refer to OS/390 C/C++ Run-Time
Library Reference.

/*--*/
/*| 6. locate last record in file and set access direction backwards*/
/*| 7. read the record */
/*| 8. update the record */
/*--*/

flocate(fileptr, &flocate_key,; sizeof(unsigned long), __KEY_LAST);

memset(outputbuf,0x00,80);
rrds_rec->rrds_buf = outputbuf;

fread(rrds_rec,1, 88, fileptr);
printf("The last record in the file (this one will be updated):\n");
printf("RRN %d: %s\n\n",rrds_rec->rrds_key.__recnum,outputbuf);

memset(outputbuf,0x00,80);
memcpy(outputbuf,"THIS IS THE UPDATED STRING... ",30);
fupdate(rrds_rec,88,fileptr);

/*--*/
/*| 9. set _EDC_RRDS_HIDE_KEY environment variable */
/*|10. read the next record in sequence (ie. RRN 10) into a */
/*| + character string */
/*--*/

setenv("_EDC_RRDS_HIDE_KEY","Y",1);
memset(outputbuf,0x00,80);
fread(outputbuf, 1, 80, fileptr);
printf("The middle record in the file (read into char string):\n");
printf("%80s\n\n",outputbuf);

fclose(fileptr);
}

Figure 25. RRDS Example (Part 3 of 3)

Chapter 13. Performing VSAM I/O Operations 197

Notes:

1. If you have opened the file by its data set name, the filename is fully qualified,
including quotation marks. If you have opened the file by ddname, filename is
dd:ddname, without any quotation marks. The ddname is uppercase.

2. The __dsname field is filled in with the data set name. The __dsname value is
uppercase unless the asis option was specified on the fopen() or freopen()
function call.

struct __fileData {
unsigned int __recfmF : 1, /* */

__recfmV : 1, /* */
__recfmU : 1, /* */
__recfmS : 1, /* always off */
__recfmBlk : 1, /* always off */
__recfmASA : 1, /* always off */
__recfmM : 1, /* always off */
__dsorgPO : 1, /* N/A -- always off */
__dsorgPDSmem : 1, /* N/A -- always off */
__dsorgPDSdir : 1, /* N/A -- always off */
__dsorgPS : 1, /* N/A -- always off */
__dsorgConcat : 1, /* N/A -- always off */
__dsorgMem : 1, /* N/A -- always off */
__dsorgHiper : 1, /* N/A -- always off */
__dsorgTemp: 1, /* N/A -- always off */
__dsorgVSAM: 1, /* always on */
__dsorgHFS : 1, /* N/A -- always off */
__openmode : 2, /* one of: */

/* __TEXT */
/* __BINARY */
/* __RECORD */

__modeflag : 4, /* combination of: */
/* __READ */
/* __WRITE */
/* __APPEND */
/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */
__vsamRLS : 3, /* One of: */

/* __NORLS */
/* __RLS */

__reserve2 : 5; /* */
__device_t __device; /* __DISK */
unsigned long __blksize, /* */

__maxreclen; /* */
unsigned short __vsamtype; /* one of: */

/* __ESDS */
/* __KSDS */
/* __RRDS */
/* __ESDS_PATH */
/* __KSDS_PATH */

unsigned long __vsamkeylen; /* */
unsigned long __vsamRKP; /* */
char * __dsname; /* */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 26. fldata() Structure

198 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 14. Performing Terminal I/O Operations

This chapter describes how to use input and output interactively with a terminal
(using TSO or OS/390 UNIX).

Terminal I/O supports text, binary, and record I/O, in undefined, variable and
fixed-length formats, except that ASA format is not valid for any text terminal files.

Note: You cannot use the OS/390 C/C++ I/O functions for terminal I/O under either
IMS or CICS. Terminal I/O under CICS is supported through the CICS
command level interface.

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 75
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the IO Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 47 for
general information and OS/390 C/C++ IBM Open Class Library User’s
Guide and OS/390 C/C++ IBM Open Class Library Reference for specifics.

Opening Files
You can use the library functions fopen() or freopen() to open a file.

Using fopen() and freopen()
This section covers:
v Opening a file by data set name
v Opening a file by DD name
v fopen() and freopen() keywords
v Opening a terminal file under a shell

Opening a File by Data Set Name
Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode"). The first character of the filename must be an asterisk
(*).

OS/390 UNIX Considerations: If you have specified POSIX(ON),
fopen("*file.data","r"); does not open a terminal file. Instead, it opens a file
called *file.data in the HFS file system. To open a terminal file under POSIX, you
must specify two slashes before the asterisk, as follows:

fopen("//*file.data","r"):

Terminal files cannot be opened in update mode.

Terminal files opened in append mode are treated as if they were opened in write
mode.

Opening a File by DD Name
The dataset name that is associated with the DD statement must be an asterisk(*).
For example:
TSO ALLOC f(ddname) DA(*)
fopen("dd:ddname", "mode");

© Copyright IBM Corp. 1996, 2000 199

fopen() and freopen() Keywords
The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for terminal I/O, and lists the
values that are valid for the applicable ones.

Table 28. Keywords for the fopen() and freopen() Functions for Terminal I/O

Parameter Allowed? Applicable? Notes

recfm= Yes Yes F, V, U and additional keywords A, B, S,
M are the valid values. A, B, S, and M are
ignored.

lrecl= Yes Yes See below.

blksize= Yes Yes See below.

space= Yes No Has no effect for terminal I/O.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= No No Not used for terminal I/O.

password= No No Not used for terminal I/O.

asis Yes No Has no effect for terminal I/O.

byteseek Yes No Has no effect for terminal I/O.

noseek Yes No Has no effect for terminal I/O.

OS Yes No Not used for terminal I/O.

recfm=
OS/390 C/C++ allows you to specify any of the 27 possible RECFM types (listed
on pages 36, 39, and 42). The default is recfm=U.

Any specification of ASA for the record format is ignored.

lrecl= and blksize=
The lrecl and blksize parameters allow you to set the record size and block
size, respectively.

The maximum limits on lrecl values are as follows:

32771 For input OS/390 variable terminals (data length of 32767)

32767 For input OS/390 fixed and undefined terminals

32770 For output OS/390 variable terminals (data length of 32766)

32766 For output OS/390 fixed and undefined terminals

In fixed and undefined terminal files, blksize is always the size of lrecl. In
variable terminal files, blksize is always the size of lrecl plus 4 bytes. It is not
necessary to specify values for lrecl and blksize. If neither is specified, the
default values are used. The default lrecl sizes (not including the extra 4 bytes
in the lrecl of variable length types) are as follows:
v Screen width for output terminals
v 1000 for input OS/390 text terminals
v 254 for all other input terminals

space=
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

200 OS/390 V2R10.0 C/C++ Programming Guide

type=
type=record specifies that the file is to be opened for sequential record I/O. The
file must be opened as a binary file.

acc=
This parameter is not valid for terminal I/O. If you specify it, your fopen() call
fails.

password=
This parameter is not valid for terminal I/O. If you specify it, your fopen() call
fails.

asis
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

byteseek
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

noseek
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

OS
This parameter is not valid for terminal I/O. If you specify it, your fopen() call
fails.

When you perform input and output in an interactive mode with the terminal, all
standard streams and all files with * as the first character of their names are
associated with the terminal. Output goes to the screen; input comes from the
keyboard.

An input EOF can be generated by a /* if you open a stream in text mode. If you
open the stream in binary or record mode, you can generate an EOF by entering a
null string.

ASA characters are not interpreted in terminal I/O.

Opening a Terminal File Under a Shell
Files are opened with a call to fopen() in the format fopen("/dev/tty", "mode").

Buffering
OS/390 C/C++ uses buffers to map byte-level I/O (data stored in records and
blocks) to system-level C I/O.

In terminal I/O, line buffering is always in effect.

The setvbuf() and setbuf() functions can be used to control buffering before any
read or write operation to the file. If you want to reset the buffering mode, you must
call setvbuf() or setbuf() before any other operation occurs on a file, because you
cannot change the buffering mode after an I/O operation to the file.

Reading from Files
You can use the following library functions to read in information from terminal files:
v fread()
v fgets()
v gets()

Chapter 14. Performing Terminal I/O Operations 201

v fgetc()
v getc()
v getchar()
v scanf()
v fscanf()

See OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

You can set up a SIGIOERR handler to catch read or write system errors. See
“Chapter 18. Debugging I/O Programs” on page 227 for more information.

A call to the rewind() function clears unread input data in the terminal buffer so that
on the next read request, the system waits for more user input.

With OS/390 Language Environment, an empty record is considered EOF in binary
mode or record mode. This remains in effect until a rewind() or clearerr() is
issued. When the rewind() is issued, the buffer is cleared and reading can
continue.

Under TSO, the virtual line size of the terminal is used to determine the line length.

When reading from the terminal and the RECFM has been set to be F (for example,
by an ALLOCATE under TSO) in binary or record mode, the input is padded with
blanks to the record length.

On input, all terminal files opened for output flush their output, no matter what type
of file they are and whether a record is complete or not. This includes fixed terminal
files that would normally withhold output until a record is completed, as well as text
records that normally wait until a new-line or carriage return. In all cases, the data
is placed into one line with a blank added to separate output from different terminal
files. Fixed terminal files do not pad the output with blanks when flushing this way.

Note: This flush is not the same as a call to fflush(), because fixed terminal files
do not have incomplete records and text terminal files do not output until the
new-line or carriage return. This flush occurs only when actual input is
required from the terminal. When data is still in the buffer, that data is read
without flushing output terminal files.

Reading from Binary Files
This discussion includes reading from fixed binary files and from variable or
undefined binary files.

Reading from Fixed Binary Files
v Any input that is smaller than the record length is padded with blanks to the

record length. The default record length is 254.

v The carriage return or new-line is not included as part of the data.

v An input line longer than the record length is returned to the calling program on
subsequent system reads.

For example, suppose a program requests 30 bytes of user input from an input
fixed binary terminal with record length 25. The full 30 bytes of user input returns
to satisfy the request, so that you do not need to enter a second line of input.

v An empty input line indicates EOF.

202 OS/390 V2R10.0 C/C++ Programming Guide

Reading from Variable or Undefined Binary Files
These files behave like fixed-length binary files, except that no padding is
performed if the input is smaller than the record length.

Reading from Text Files
This discussion includes reading from fixed text files and from variable or undefined
text files.

Reading from Fixed Text Files
v The carriage return indicates the end of the record.

v A new-line character is added as part of the data to indicate the end of an input
line.

v If the input is larger than the record length, it is truncated to the record length.
The truncation causes SIGIOERR to be raised, if the default action for SIGIOERR is
not SIG_IGN.

v When an input line is smaller than the record length, it is not padded with blanks.

v The character sequence /* indicates that the end of the file has been reached.

Reading from Variable or Undefined Text Files
These files behave like fixed-length text files.

Reading from Record I/O Files
This discussion includes reading from fixed record I/O files and from variable or
undefined record I/O files.

Reading from Fixed Record I/O Files
v Records smaller than the record length are padded with blanks up to the record

length. The default record length is 254.

v Input record terminal records have an implicit logical record boundary at the
record length if the input size exceeds the record length.

If you enter input data larger than the record length, each subsequent block of
record-length bytes from the user input satisfies successive read requests.

v The carriage return or new-line is not included as part of the data.

v An empty line indicates an EOF.

Reading from Variable or Undefined Record I/O Files
These files behave like fixed-length record files, except that no padding is
performed.

Writing to Files
You can use the following library functions to write to a terminal file:
v fwrite()
v printf()
v fprintf()
v vprintf()
v vfprintf()
v puts()
v fputs()
v fputc()
v putc()
v putchar()

Chapter 14. Performing Terminal I/O Operations 203

See OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

If no record length is specified for the output terminal file, it defaults to the virtual
line size of the terminal.

On output, records are written one line at a time up to the record length. For all
output terminal files, records are not truncated. If you are printing a long string, it
wraps around to another line.

Writing to Binary Files
This discussion includes writing to fixed binary files and to variable or undefined
binary files.

Writing to Fixed Binary Files
v Output data is sent to the terminal when the last character of a record is written.

v When closing an output terminal, any unwritten data is padded to the record
length with blanks before it is flushed.

Writing to Variable or Undefined Binary Files
These files behave the same as fixed-length binary files, except that no padding
occurs for output that is smaller than the record length.

Writing to Text Files
The following control characters are supported:

\a Alarm. Causes the terminal to generate an audible beep.

\b Backspace. Backs up the output position by one byte. If you are at the start
of the record, you cannot back up to previous record, and backspace is
ignored.

\f Form feed. Sends any unwritten data to the terminal and clears the screen
if the environment variable _EDC_CLEAR_SCREEN is set. If the variable is not
set, the \f character is written to the screen.

\n New-line. Sends the preceding unwritten character to the terminal. If no
preceding data exists, it sends a single blank character.

\t Horizontal tab. Pads the output record with blanks up to the next tab stop
(set at eight characters).

\v Vertical tab. Placed in the output as is.

\r Carriage return. Treated as a new-line, sends preceding unwritten data to
the terminal.

Writing to Fixed Text Files
v Lines that are longer than the record length are not truncated. They are split

across multiple lines, each LRECL bytes long. Subsequent writes begin on a new
line.

v Output data is sent to the terminal when one character more than the record
length is written, or when a \r, \n, or \f character is written. In the case of \f,
output is displayed only if the _EDC_CLEAR_SCREEN environment variable is set.

v No padding occurs on output when a record is smaller than the record length.

Writing to Variable or Undefined Text Files
These terminal files behave like fixed-length terminal files.

204 OS/390 V2R10.0 C/C++ Programming Guide

Writing to Record I/O Files
This discussion includes writing to fixed record I/O files and to variable or undefined
record I/O files.

Writing to Fixed Record I/O Files
v Any output record that is smaller than the record length is padded to the record

length with blanks, and trailing blanks are displayed.

v If a record is longer than the record length, all data is written to the terminal,
wrapping at the record length.

v Output data is sent to the terminal with every record write.

Writing to Variable or Undefined Record I/O Files
These files behave like fixed-length record files except that no padding occurs when
the output record is smaller than the record length.

Flushing Records
The action taken by the fflush() library function depends on the file mode. The
fflush() function only flushes buffers in binary files with Variable or Undefined
record format.

If you call one OS/390 C/C++ program from another OS/390 C/C++ program by
using the ANSI system() function, all open streams are flushed before control is
passed to the callee, and again before control is returned to the caller. If you are
running with POSIX(ON), a call to the POSIX system() function does not flush any
streams to the system.

Text Streams
v Writing a new record:

Because a new-line character has not been encountered to indicate the
end-of-line, fflush() takes no action. The record is written as a new record
when one of the following takes place:
– A new-line character is written.
– The file is closed.

v Reading a record:

fflush() clears a previous ungetc() character.

Binary Streams
v Writing a new record:

If the file is variable or undefined length in record format, fflush() causes the
current record to be written out, which in turn causes a new record to be created
for subsequent writes. If the file is of fixed record length, no action is taken.

v Reading a record:

fflush() clears a previous ungetc() character.

Record I/O
v Writing a new record: fflush() takes no action.
v Reading a record: fflush() takes no action.

Chapter 14. Performing Terminal I/O Operations 205

Repositioning within Files
In terminal I/O, rewind() is the only positioning library function available. Using the
library functions fseek(), fgetpos(), fsetpos(), and ftell() generates an error.

See OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

When an input terminal reaches an EOF, the rewind() function:

1. Clears the EOF condition.

2. Enables the terminal to read again.

You can also use rewind() when reading from the terminal to flush out your record
buffer for that stream.

Closing Files
Use the fclose() library function to close a file. OS/390 C/C++ automatically closes
files on normal program termination and attempts to do so under abnormal program
termination or abend. When closing a fixed binary terminal, OS/390 C/C++ pads the
last record with blanks if it is incomplete.

See OS/390 C/C++ Run-Time Library Reference for more information on this library
function.

fldata() Behavior
The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure.

For more information on the fldata() function, refer to OS/390 C/C++ Run-Time
Library Reference.

206 OS/390 V2R10.0 C/C++ Programming Guide

Notes:

1. The filename value is dd:ddname if the file is opened by ddname; otherwise, the
value is *. The ddname is uppercase.

2. Either __recfmF, __recfmV, or __recfmU will be set according to the recfm
parameter specified on the fopen() or freopen() function call.

struct __fileData {
unsigned int __recfmF : 1, /* */

__recfmV : 1, /* */
__recfmU : 1, /* */
__recfmS : 1, /* always off */
__recfmBlk : 1, /* always off */
__recfmASA : 1, /* always off */
__recfmM : 1, /* always off */
__dsorgPO : 1, /* N/A -- always off */
__dsorgPDSmem : 1, /* N/A -- always off */
__dsorgPDSdir : 1, /* N/A -- always off */
__dsorgPS : 1, /* N/A -- always off */
__dsorgConcat : 1, /* N/A -- always off */
__dsorgMem : 1, /* N/A -- always off */
__dsorgHiper : 1, /* N/A -- always off */
__dsorgTemp: 1, /* N/A -- always off */
__dsorgVSAM: 1, /* N/A -- always off */
__dsorgHFS : 1, /* N/A -- always off */
__openmode : 2, /* one of: */

/* __TEXT */
/* __BINARY */
/* __RECORD */

__modeflag : 4, /* combination of: */
/* __READ */
/* __WRITE */
/* __APPEND */

__dsorgPDSE: 1, /* N/A -- always off */
__reserve2 : 8; /* */

__device_t __device; /* __TERMINAL */
unsigned long __blksize, /* */

__maxreclen; /* */
unsigned short __vsamtype; /* N/A */
unsigned long __vsamkeylen; /* N/A */
unsigned long __vsamRKP; /* N/A */
char * __dsname; /* N/A -- always NULL */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 27. fldata() Structure

Chapter 14. Performing Terminal I/O Operations 207

208 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 15. Performing Memory File and Hiperspace I/O
Operations

This chapter describes how to perform memory file and hiperspace I/O operations.

OS/390 C/C++ supports files known as memory files. Memory files are temporary
work files that are stored in main memory rather than in external storage.

There are two types of memory files:

v Regular memory files, which exist in your virtual storage

v Hiperspace memory files, which use special storage areas called hiperspaces.
You cannot share hiperspace memory files with an AMODE=24 OS/390 C or
OS/390 C++ program.

Memory files can be written to, read from, and repositioned within like any other
type of file. Memory files exist for the life of your root program, unless you explicitly
delete them by using the remove() or clrmemf() functions. The root program is the
first main() to be invoked. Any main() program called by a system() call is known
as a child program. When the root program terminates, OS/390 C/C++ removes
memory files automatically. Memory files may give you better performance than
other types of files.

Note: There may not be a one-to-one correspondence between the bytes in a
memory file and the bytes in some other external representation of the file,
such as a disk file. Applications that mix open modes on a file (for example,
writing a file as text file and reading it back as binary) may not port readily
from external I/O to memory file I/O.

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 75
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the I/O Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 47 for
general information and OS/390 C/C++ IBM Open Class Library User’s
Guide and OS/390 C/C++ IBM Open Class Library Reference for specifics.

Using Hiperspace Operations
On MVS/ESA systems that support hiperspaces, large memory files can be placed
in hiperspaces to reduce memory requirements within your address space.

If your installation is MVS/ESA and supports hiperspaces, and you are not using
CICS, you can use hiperspace memory files (see the appropriate book as listed in
OS/390 Information Roadmap for more information on hiperspaces). Whereas a
regular memory file stores all the file data in your address space, a hiperspace
memory file uses one buffer in your address space, and keeps the rest of the data
in the hiperspace. Therefore, a hiperspace memory file requires only a certain
amount of storage in your address space, regardless of how large the file is. If you
use setvbuf(), OS/390 C/C++ may or may not accept your buffer for its internal
use. For a hiperspace memory file, if the size of the buffer specified to setvbuf() is
4K or more, it will affect the number of hiperspace blocks read or written on each
call to the operating system; the size is rounded down to the nearest multiple of 4K.

© Copyright IBM Corp. 1996, 2000 209

Opening Files
Use the standard C fopen() or freopen() library functions to open a memory file.
Details about these functions that apply to all OS/390 C/C++ I/O operations are
discussed in “Chapter 6. Opening Files” on page 49.

Using fopen() or freopen()
This section describes considerations for using fopen() and freopen() with memory
files. Memory files are always treated as binary streams of bytes, regardless of the
parameters you specify on the function call that opens them.

File-Naming Considerations
When you open a file using fopen() or freopen(), you must specify the filename (a
data set name) or the ddname.

Using a Data Set Name: Files are opened with a call to fopen() or freopen() in
the format fopen("filename", "mode"). The following diagram shows the syntax for
the filename argument on your fopen() or freopen() call:

%%
// '

'

.

qualifier
(member)

0 '

%&

The following is a sample construct:
'qualifier1.qualifier2(member)'

// Ignored for memory files.

qualifier
Each qualifier is a 1- to 8-character name. There is no restriction on the length
of each qualifier. All characters are considered valid.

(member)
If you specify a member, the data set you are opening is considered to be a
simulated PDS or a PDSE. For more information about PDSes and PDSEs, see
“Simulating Partitioned Data Sets” on page 213. For members, the member
name (including trailing blanks) can be up to 8 characters long. A member
name cannot begin with leading blanks.

When you enclose a name in single quotation marks, the name is fully qualified.
The file opened is the one specified by the name inside the quotation marks. If the
name is not fully qualified, OS/390 C/C++ does one of the following:

v If your system does not use RACF, OS/390 C/C++ does not add a high-level
qualifier to the name you specified.

v If you are running under TSO (batch or interactive), OS/390 C/C++ appends the
TSO user prefix to the front of the name. For example, the statement
fopen("a.b","w"); opens a data set tsoid.A.B, where tsoid is the user prefix.
You can set the user prefix by using the TSO PROFILE command with the PREFIX
parameter.

v If you are running under MVS batch or IMS (batch or online), OS/390 C/C++
appends the RACF user ID to the front of the name.

210 OS/390 V2R10.0 C/C++ Programming Guide

Using a DDname: You can specify names that begin with dd:, but OS/390 C/C++
treats the dd: as part of the file name.

OS/390 UNIX Considerations: Using the fork() library function from an OS/390
UNIX application program causes the memory file to be copied into the child
process. The memory file data in the child is identical to that of the parent at the
time of the fork(). The memory file can be used in either the child or the parent,
but the data is not visible in the other process.

fopen() and freopen() Keywords
The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for memory file I/O, and lists
the values that are valid for the applicable ones.

Table 29. Keywords for the fopen() and freopen() Functions for Memory File I/O

Keyword Allowed? Applicable? Notes

recfm= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify a RECFM,
it must have correct syntax. Otherwise the
fopen() call fails.

lrecl= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify an LRECL,
it must have correct syntax. Otherwise
fopen() call fails.

blksize= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify a
BLKSIZE, it must have correct syntax.
Otherwise fopen() call fails.

acc= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify an ACC,
it must have correct syntax. Otherwise
fopen() fails.

password= No No Ignored for memory files.

space= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify a
SPACE, it must have correct syntax.
Otherwise, fopen() call fails.

type= Yes Yes Valid values are memory and
memory(hiperspace). See the parameter list
below.

asis Yes Yes Enables the use of mixed-case file names.

byteseek Yes No Ignored for memory files, as they use
byteseeking by default.

noseek Yes No This parameter is ignored for memory file
and hiperspace I/O.

OS No No This parameter is not valid for memory file
and hiperspace I/O. If you specify OS, your
fopen() call fails.

recfm=
OS/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 211

lrecl= and blksize=
OS/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

acc=
OS/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

password=
This parameter is not valid for memory file and hiperspace I/O. If you specify
PASSWORD, your fopen() call fails.

space=
OS/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

type=
To create a memory file, you must specify type=memory. You cannot specify
type=record; if you do, fopen() or freopen() fails.

To create a hiperspace memory file, you must specify
type=memory(hiperspace).

asis
If you use this parameter, you can specify mixed-case filenames such as JaMeS
dAtA or pErCy.FILE. If you are running with POSIX(ON), asis is the default.

byteseek
This parameter is ignored for memory file and hiperspace I/O.

noseek
This parameter is ignored for memory file and hiperspace I/O.

OS This parameter is not allowed for memory file and hiperspace I/O. If you specify
OS, your fopen() call fails.

Once a memory file has been created, it can be accessed by the module that
created it as well as by any function or module that is subsequently invoked
(including modules that are called using the system() library function), and by any
modules in the current chain of system() calls, if you are running with POSIX(OFF). If
you are running with POSIX(ON), the system() function is the POSIX one, not the
ANSI one, and it does not propagate memory files to a child program. Once the file
has been created, you can open it with the same name, without specifying the
type=memory parameter. You cannot specify type=record for a memory file.

This is how OS/390 C/C++ searches for memory files:

1. fopen("my.file","w....,type=memory"); OS/390 C/C++ checks the open files
to see whether a file with that name is already open. If not, it creates a memory
file.

2. fopen("my.file","w......"); OS/390 C/C++ checks the open files to see
whether a file with that name is already open. If not, it then checks to see
whether a memory file exists with that name. If so, it opens the memory file; if
not, it creates a disk file.

3. fopen("my.file","a.....,type=memory"); OS/390 C/C++ checks the open files
to see whether a file with that name is already open. If not, it searches the

212 OS/390 V2R10.0 C/C++ Programming Guide

existing memory files to see whether a memory file exists with that name. If so,
OS/390 C/C++ opens it; if not, it creates a new memory file.

4. fopen("my.file","a...."); OS/390 C/C++ checks the open files to see
whether a file with that name is already open. If not, OS/390 C/C++ searches
existing files (both disk and memory) according to file mode, and opens the first
file that has that name. If there is no such file, OS/390 C/C++ creates a disk file.

5. fopen("my.file","r....,type=memory"); OS/390 C/C++ searches the memory
files to see whether a file with that name exists. If one does, OS/390 C/C++
opens it. Otherwise, the fopen() call fails.

6. fopen("my.file","r...."); OS/390 C/C++ searches first through memory files.
If it does not find the specified one, it then tries to open a disk file.

If you specify a memory file name that has an asterisk (*) as the first character, a
name is created for that file. (You can acquire this name by using fldata().) For
example, you can specify fopen("*","type=memory");. Opening a memory file this
way is faster than using the tmpnam() function.

You cannot have any blanks or periods in the member name of a memory file.
Otherwise, all valid data set names are accepted for memory files. Note that if
invalid disk file names are used for memory files, difficulties could occur when you
try to port memory file applications to disk-file applications.

Memory files are always opened in fixed binary mode regardless of the open mode.
There is no blank padding, and control characters such as the new line are written
directly into the file (even if the fopen() specifies text mode).

Opening Hiperspace Files
To create a memory file in hiperspace, specify type=memory(hiperspace) on the
fopen() call that creates the file. If hiperspace is not available, you get a regular
memory file. Under systems that do not support hiperspaces, as well as when you
are running with POSIX(ON) and TRAP(OFF), a specification of
type=memory(hiperspace) is treated as type=memory. Use of TRAP(OFF) is not
recommended.

You must decide whether a file is to be a hiperspace memory file before you create
it. You cannot change a memory file to a hiperspace memory file by specifying
type=memory(hiperspace) on a subsequent call to fopen() or freopen(). If the
hiperspace to store the file cannot be created, the fopen() or freopen() call fails.

Once you have created a hiperspace memory file, you do not have to specify
type=memory(hiperspace) on subsequent function calls that open the file.

If you open a hiperspace memory file for read at the same time that it is opened for
write, you can attempt to read extensions made by the writer, even after the EOF
flag has been set on by a previous read. If such a read succeeds, the EOF flag is
set off until the new EOF is reached. If you have opened a file once for write and
one or more times for read, a reader can now read past the original EOF.

Simulating Partitioned Data Sets
You can create memory files that are conceptually grouped as a partitioned data set
(PDS). Grouping the files in this way offers the following advantages:

v You can remove all the members of a PDS by stating the data set name.

v You can rename the qualifiers of a PDS without renaming each member
individually.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 213

Once you have established that a memory file has members, you can rename and
remove all the members by specifying the file name and no members, just as with a
PDS or PDSE. None of the members can be open for you to perform this action.
Once a memory file is created with or without a member, another memory file with
the same name (with or without a member) cannot be created as well. For example,
if you open memory file a.b and write to it, OS/390 C/C++ does not allow a memory
file named a.b(c) until you close and remove a.b. Also, if you create a memory file
named a.b(mbr1), you cannot open a file named a.b until you close and remove
a.b(mbr1).

The following example demonstrates the removal of all the members of the data set
a.b. After the call to remove(), neither a.b(mbr1) nor a.b(mbr2) exists.

CBC3GMF1

The following example demonstrates the renaming of a PDS from a.b to c.d.

/* this example shows how to remove members of a PDS */

#include <stdio.h>

int main(void)
{

FILE * fp1, * fp2;
fp1=fopen("a.b(mbr1)","w,type=memory");
fp2=fopen("a.b(mbr2)","w,type=memory");
fwrite("hello, world\n", 1, 13, fp1);
fwrite("hello, world\n", 1, 13, fp2);
fclose(fp1);
fclose(fp2);
remove("a.b");
fp1=fopen("a.b(mbr1)","r,type=memory");
if (fp1 == NULL) {

perror("fopen():");
printf("fopen(\"a.b(mbr1)\"...) failed as expected: "

"the file has been removed\n");
}
else {

printf("fopen() should have failed\n");
}

return(0);
}

Figure 28. Removing Members of a PDS

214 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GMF2

Note: If you are using simulated PDSs, you can change either the name of the
PDS, or the member name. You cannot rename a.b(mbr1) to either
c.d(mbr2) or c.d, but you can rename a.b(mbr1) to a.b(mbr2), and a.b to
c.d.

Memory files that are open as a sequential data set cannot be opened again with a
member name specified. Also, if a data set is already open with a member name,
the sequential data set version with only the data set name cannot be opened.
These operations result in fopen() returning NULL. For example, fopen() returns
NULL in the second line of the following:

fp = fopen("a.b","w,type=memory");
fp1 = fopen("a.b(m1)","w,type=memory");

You cannot use the rename() or remove() functions on open files.

Buffering
Regular memory files are not buffered. Any parameters passed to setvbuf() are
ignored. Each character that you write is written directly to the memory file.

/* this example shows how to rename a PDS */

#include <stdio.h>

int main(void)
{

FILE * fp1, * fp2;

fp1=fopen("a.b(mbr1)","w,type=memory");
fp2=fopen("a.b(mbr2)","w,type=memory");
fclose(fp1);
fclose(fp2);
rename("a.b","c.d");

/* after renaming, you cannot access members of PDS a.b */

fp1=fopen("a.b(mbr1)","r,type=memory");
if (fp1 == NULL) {

perror("fopen():");
printf("fopen(\"a.b(mbr1)\"...) failed as expected: "

"the file has been renamed\n");
}
else {

printf("fopen() should have failed\n");
}

fp2=fopen("c.d(mbr2)","r,type=memory");
if (fp2 != NULL) {

printf("fopen(\"c.c(mbr1)\"...) worked as expected: "
"the file has been renamed\n");

}
else {

perror("fopen():");
printf("fopen() should have worked\n");

}

return(0);
}

Figure 29. Renaming Members of a PDS

Chapter 15. Performing Memory File and Hiperspace I/O Operations 215

Hiperspace memory files are fully buffered. The default size of the I/O buffer in your
own address space is 16KB. You can override this buffer size by using the
setvbuf() function (see OS/390 C/C++ Run-Time Library Reference for more
information).

If you call setvbuf() for a hiperspace memory file:

v If the size value is greater than or equal to 4K, it will be rounded down to the
nearest multiple of 4K and this buffer size will be used. Otherwise, the size value
is ignored.

v If a pointer to a buffer is passed, the buffer size is greater than or equal to 4K,
and the buffer is aligned on a 4K boundary, the buffer may be used. Otherwise,
OS/390 C/C++ will allocate a buffer.

Reading from Files
You can use the following library functions to read information from memory files:

v fread()

v fgets()

v gets()

v fgetc()

v getc()

v getchar()

v scanf()

v fscanf()

See OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

The gets(), getchar(), and scanf() functions read from stdin, which can be
redirected to a memory or hiperspace memory file.

You can open an existing file for read one or more times, even if it is already open
for write. You cannot open a file for write if it is already open (for either read or
write). If you want to update or truncate a file or append to a file that is already
open for reading, you must first close all the other streams that refer to that file.

For memory files, a read operation directly after a write operation without an
intervening call to fflush(), fsetpos(), fseek(), or rewind() fails. OS/390 C/C++
treats the following as read operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

You can set up a SIGIOERR handler to catch read or write system errors that happen
when you are using hiperspace memory files. See “Chapter 18. Debugging I/O
Programs” on page 227 for more information.

216 OS/390 V2R10.0 C/C++ Programming Guide

Writing to Files
You can use the following library functions to write to a file:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputs()

v fputc()

v putc()

v putchar()

See OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

The printf(), puts(), putchar(), and vprintf() functions write to stdout, which
can be redirected to a memory or hiperspace memory file.

In hiperspace memory files, each library function causes your data to be moved into
the buffer in your address space. The buffer is written to hiperspace each time it is
filled, or each time you call the fflush() library function.

OS/390 C/C++ counts a call to a write function writing 0 bytes or or a write request
that fails because of a system error as a write operation. For regular memory files,
the only possible system error that can occur is an error in acquiring storage.

Flushing Records
fflush() does not move data from an internal buffer to a memory file, because the
data is written to the memory file as it is generated. However, fflush() does make
the data visible to readers who have a regular or hiperspace memory file open for
reading while a user has it open for writing.

Hiperspace memory files are fully buffered. The fflush() function writes data from
the internal buffer to the hiperspace.

Any repositioning operation writes data to the hiperspace.

The fclose() function also invokes fflush() when it detects an incomplete buffer
for a file that is open for writing or appending.

ungetc() Considerations
ungetc() pushes characters back onto the input stream for memory files. ungetc()
handles only single-byte characters. You can use it to push back as many as four
characters onto the ungetc() buffer. For every character pushed back with ungetc(),
fflush() backs up the file position by one character and clears all the pushed-back
characters from the stream. Backing up the file position may end up going across a
record boundary.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 217

If you want fflush() to ignore ungetc() characters, you can set the _EDC_COMPAT
environment variable. See “Chapter 33. Using Environment Variables” on page 471
for more information.

Repositioning within Files
You can use the following library functions to help you position within a memory or
hiperspace memory file:

v fgetpos()

v fsetpos()

v fseek()

v ftell()

v rewind()

See OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Using fseek() to seek past the end of a memory file extends the file using null
characters. This may cause OS/390 C/C++ to attempt to allocate more storage than
is available as it tries to extend the memory file.

When you use the fseek() function with memory files, it supports byte offsets from
SEEK_SET, SEEK_CUR, and SEEK_END.

All file positions from ftell() are relative byte offsets from the beginning of the file.
fseek() supports these values as offsets from SEEK_SET.

fgetpos(), fseek() with an offset of SEEK_CUR, and and ftell() handle ungetc()
characters unless you have set the _EDC_COMPAT environment variable, in which
case fgetpos() and fseek() do not. See “Chapter 33. Using Environment
Variables” on page 471 for more information about _EDC_COMPAT. If in handling these
characters, if the current position goes beyond the start of the file, fgetpos()
returns the EOF value, and ftell() returns -1.

fgetpos() values generated by code from previous releases of the OS/390 C/C++
compiler are not supported by fsetpos().

Closing Files
Use the fclose() library function to close a regular or hiperspace memory file. See
OS/390 C/C++ Run-Time Library Reference for more information on this library
function. OS/390 C/C++ automatically closes memory files at the termination of the
C root main environment.

Performance Tips
You should use hiperspace memory files instead of regular memory files when they
will be large (1MB or greater).

Regular memory files perform more efficiently if large amounts of data (10K or
more) are written in one request (that is, if you pass 10K or more of data to the
fwrite() function). You should use fopen("*", "type=memory") both to generate a
name for a memory file and to open the file instead of calling fopen() with a name
returned by tmpnam(). You can acquire the file’s generated name by using fldata().

218 OS/390 V2R10.0 C/C++ Programming Guide

Removing Memory Files
The memory file remains accessible until the file is removed by the remove() or
clrmemf() library functions or until the root program has terminated. You cannot
remove an open memory file, except when you use clrmemf(). See OS/390 C/C++
Run-Time Library Reference for more information on these library functions.

fldata() Behavior
The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure. For more information on the fldata()
function, refer to OS/390 C/C++ Run-Time Library Reference.

struct __fileData {
unsigned int __recfmF : 1, /* always on */

__recfmV : 1, /* always off */
__recfmU : 1, /* always off */
__recfmS : 1, /* always off */
__recfmBlk : 1, /* always off */
__recfmASA : 1, /* always off */
__recfmM : 1, /* always off */
__dsorgPO : 1, /* N/A -- always off */
__dsorgPDSmem : 1, /* N/A -- always off */
__dsorgPDSdir : 1, /* N/A -- always off */
__dsorgPS : 1, /* N/A -- always off */
__dsorgConcat : 1, /* N/A -- always off */
__dsorgMem : 1, /* */
__dsorgHiper : 1, /* */
__dsorgTemp: 1, /* N/A -- always off */
__dsorgVSAM: 1, /* N/A -- always off */
__dsorgHFS : 1, /* N/A -- always off */
__openmode : 2, /* __BINARY */
__modeflag : 4, /* combination of: */

/* __READ */
/* __WRITE */
/* __APPEND */
/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */
__reserve2 : 8; /* */

__device_t __device; /* one of: */
/* __MEMORY */
/* __HIPERSPACE */

unsigned long __blksize, /* */
__maxreclen; /* */

unsigned short __vsamtype; /* N/A */
unsigned long __vsamkeylen; /* N/A */
unsigned long __vsamRKP; /* N/A */
char * __dsname; /* */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 30. fldata() Structure

Chapter 15. Performing Memory File and Hiperspace I/O Operations 219

Notes:

1. The filename is the fully qualified version of the filename specified on the
fopen() or freopen() function call. There are no quotation marks. However, if
the filename specified on the fopen() or freopen() function call begins with an
*, a unique filename is generated in the format ((n)), where n is an integer.

2. The __dsorgMem bit will be set on only for regular memory files.

3. The __dsorgHiper bit will be set on only for hiperspace memory files.

4. The __dsname is identical to the filename value.

Example Program
The following example shows the use of a memory file. The program PROGA creates
a memory file, calls program PROGB, and redirects the output of the called program
to the memory file. When control returns to the first program, the program reads
and prints the string in the memory file.

For more information on the system() library function, see OS/390 C/C++ Run-Time
Library Reference.

CBC3GMF3

/* this example demonstrates the use of a memory file */
/* part 1 of 2-other file is CBC3GMF4 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
char buffer[20];
char *rc;

/* Open the memory file to create it */
if ((fp = fopen("PROG.DAT","wb+,type=memory")) != NULL)
{

/* Close the memory file so that it can be used as stdout */
fclose(fp);

/* Call CBC3GMF4 and redirect its output to memory file */
/* CBC3GMF4 must be an executable MODULE */
system("CBC3GMF4 >PROG.DAT");

/* Now print the string contained in the file */

fp = fopen("PROG.DAT","rb");
rc = fgets(buffer,sizeof(buffer),fp);
if (rc == NULL)
{

perror(" Error reading from file ");
exit(99);

}
printf("%s", buffer);

}

return(0);

}

Figure 31. Memory File Example

220 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GMF4

/* this example demonstrates the use of a memory file */
/* part 2 of 2-other file is CBC3GMF3 */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char item1[] = "Hello World\n";
int rc;

/* Write the data to the stdout which, at this point, has been
redirected to the memory file */

rc = fputs(item1,stdout);
if (rc == 0) {

perror("Error putting to file ");
exit(99);

}

return(0);

}

Figure 32. Memory File Example

Chapter 15. Performing Memory File and Hiperspace I/O Operations 221

222 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 16. Performing CICS I/O Operations

OS/390 C/C++ under CICS supports only three kinds of I/O:

CICS I/O
OS/390 C/C++ applications can access the CICS I/O commands through the
CICS command level interface. CICS Application Programming Guide,
SC34-5702 and CICS Application Programming Reference, SC34-5703 discuss
this interface in detail.

Files
Memory files are the only type of file that OS/390 C/C++ supports under CICS.
Hiperspace files are not supported.

VSAM files can be accessed through the CICS command level interface.

CICS data queues
Under CICS, OS/390 C/C++ implements the standard output (stdout) and
standard error (stderr) streams as CICS transient data queues. These data
queues must be defined in the CICS Destination Control table (DCT) by the
CICS system administrator before the CICS cold start. Output from all users’
transactions that use stdout (or stderr) is written to the queue in the order of
occurrence. To help differentiate the output, place a user’s terminal name, the
CICS transaction identifier, and the time at the beginning of each line printed to
the queue.

The queues are as follows:

Stream Queue

stdout CESO

stderr CESE

stdin Not supported

To access any other queues, you must use the command level interface.

Note: If you are using the I/O Streams class library, cout maps to stdout, which
maps to CESO. cerr and clog both map to stderr, which maps to CESE. cin is
not supported under CICS. For more information about C++ I/O and the I/O
Stream class library, refer to “Chapter 5. Using the I/O Stream Class Library
in C++” on page 47 for general information and OS/390 C/C++ IBM Open
Class Library User’s Guide and OS/390 C/C++ IBM Open Class Library
Reference for specifics.

For complete information about using OS/390 C/C++ and OS/390 C/C++ I/O under
CICS, see “Using Input and Output” on page 586.

For information on using wide characters in the CICS environment, see “Chapter 9.
OS/390 C Support for the Double-Byte Character Set” on page 75.

© Copyright IBM Corp. 1996, 2000 223

224 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 17. Language Environment Message File Operations

This chapter describes input and output with the OS/390 Language Environment
message file. This file is write-only; it is nonreadable and nonseekable.

The default open mode for the OS/390 Language Environment Message File is text.
Binary and record I/O modes are not supported.

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 75
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the IO Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 47 for
general information and OS/390 C/C++ IBM Open Class Library User’s
Guide and OS/390 C/C++ IBM Open Class Library Reference for specifics.

The standard stream stderr defaults to using the OS/390 Language Environment
message file. stderr will be directed to file descriptor 2, which is typically your
terminal if you are running under one of the OS/390 UNIX shells. There are some
exceptions, however:

v If the application has allocated the ddname in the MSGFILE(ddname) run-time
parameter, your output will go there. The default is MSGFILE(SYSOUT).

v If the application has issued one of the POSIX exec() functions, or it is running
in an address space created by the POSIX fork() function and the application
has not dynamically allocated a ddname for MSGFILE, then the default is to use
file descriptor 2, if one exists. If it doesn’t, then the default is to create a
message file in the user’s current working directory. The message file will have
the name that is specified on the message file run-time option, the default being
SYSOUT.

Opening Files
The default is for stderr to go to the message file automatically. The message file
is available only as stderr; you cannot use the fopen() or freopen() library
function to open it.

v freopen() with the null string (″″) as filename string will fail.

v Record format (RECFM) is always treated as undefined (U). Logical record length
(LRECL) is always treated as 255 (the maximum length defined by OS/390
Language Environment Message File system write interface).

Reading from Files
The OS/390 Language Environment Message file is non-readable.

Writing to Files
v Data written to the OS/390 Language Environment Message File is always

appended to the end of the file.

v When the data written is longer than 255 bytes, it is written to the OS/390
Language Environment Message File 255 bytes at a time, with the last write
possibly less than 255 bytes. No truncation will occur.

© Copyright IBM Corp. 1996, 2000 225

v When the output data is shorter than the actual LRECL of the OS/390 Language
Environment Message File, it is padded with blank characters by the OS/390
Language Environment system write interface.

v When the output data is longer than the actual LRECL of the OS/390 Language
Environment Message File, it is split into multiple records by the OS/390
Language Environment system write interface. The OS/390 Language
Environment system write interface splits the output data at the last blank before
the LRECL-th byte, and begins writing the next record with the first non-blank
character. Note that if there are no blanks in the first LRECL bytes (DBCS for
instance), the OS/390 Language Environment system write interface splits the
output data at the LRECL-th byte. It also closes off any DBCS string on the first
record with a X'0F' character, and begins the DBCS string on the next record
with a X'0E' character.

v The hex characters X'0E' and X'0F' have special meaning to the OS/390
Language Environment system write interface. The OS/390 Language
Environment system write interface removes adjacent pairs of these characters
(normalization).

v You can set up a SIGIOERR handler to catch system write errors. See
“Chapter 18. Debugging I/O Programs” on page 227 for more information.

Flushing Buffers
The fflush() function has no effect on the OS/390 Language Environment
Message File.

Repositioning within Files
The ftell(), fgetpos(), fseek(), and fsetpos() functions are not allowed,
because OS/390 Language Environment Message File is a non-seekable file. The
rewind() function only resets error flags.

You cannot call fseek() on stderr when it is mapped to MSGFILE (the default routing
of stderr).

Closing Files
Do not use the fclose() library function to close the OS/390 Language
Environment message file. OS/390 C/C++ automatically closes files on normal
program termination and attempts to do so under abnormal program termination or
abend.

226 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 18. Debugging I/O Programs

This chapter will help you locate and diagnose problems in programs that use input
and output. It discusses several diagnostic methods specific to I/O. Diagnostic
methods for I/O errors include:
v Using return codes from I/O functions
v Using errno values and the associated perror() message
v Using the __amrc structure
v Using the __amrc2 structure

The information provided with the return code of I/O functions and with the perror()
message associated with errno values may help you locate the source of errors and
the reason for program failure. Because return codes and errno values do not exist
for every possible system I/O failure, return codes and errno values are not useful
for diagnosing all I/O errors. This chapter discusses the use of the __amrc structure
and the __amrc2 structure.

Using the __amrc Structure
__amrc is a structure defined in stdio.h (when the compile-time option
LANGLVL(EXTENDED) is in effect) to help you determine errors resulting from an I/O
operation. This structure is changed during system I/O and some C specific error
situations.

Note: __amrc is not used to record I/O errors in HFS files.

When looking at __amrc, be sure to copy the structure into a temporary structure of
__amrctype since any I/O function calls will change the value of __amrc.

Figure 33 on page 228 shows the __amrc structure as it appears in stdio.h.

© Copyright IBM Corp. 1996, 2000 227

�1� __code
The error or warning value from an I/O operation is in either __error,
__abend, __feedback, or __alloc. You must look at __last_op to determine
how to interpret the __code union.

�2� __error
__error contains the return code from the system macro or utility. Refer to
Table 30 on page 231 for further information.

�3� __abend
This struct contains the abend code when errno is set to indicate a
recoverable I/O abend. __syscode is the system abend code and __rc is
the return code. For more information on the abend codes, see the System
Codes manual as listed in OS/390 Information Roadmap. The macros
__abendcode() and __rsncode() may be set to the abend code and reason
code of a TSO CLIST or command when invoked with system().

�4� __feedback
This struct is used for VSAM only. The __rc stores the VSAM register 15,
__fdbk stores the VSAM error code or reason code, and __RBA stores the
RBA after some operations.

�5� __alloc
This struct contains errors during fopen() or freopen() calls when defining

typedef struct __amrctype {

union { �1�
long int __error; �2�

struct {
unsigned short __syscode,

__rc;
} __abend; �3�
struct {

unsigned char __fdbk_fill,
__rc,
__ftncd,
__fdbk;

} __feedback; �4�
struct {

unsigned short __svc99_info,
__svc99_error;

} __alloc; �5�
} __code;
unsigned long __RBA; �6�

unsigned int __last_op; �7�
struct {
unsigned long __len_fill;
unsigned long __len;
char __str[120];
unsigned long __parmr0;
unsigned long __parmr1;
unsigned long __fill2[2];
char __str2[64];
} __msg; �8�
unsigned char __rplfdbwd[4]; �9�

} __amrc_type;

Figure 33. __amrc Structure

228 OS/390 V2R10.0 C/C++ Programming Guide

files to the system using SVC 99. See the Systems Macros manual, as listed
in OS/390 Information Roadmap, for more information on these fields as set
by SVC 99.

�6� __RBA
This is the RBA value returned by VSAM after an ESDS or KSDS record is
written out. For a RRDS, it is the calculated value from the record number.
It may be used in subsequent calls to flocate().

�7� __last_op
This field contains a value that indicates the last I/O operation being
performed by OS/390 C/C++ at the time the error occurred. These values
are shown in Table 30 on page 231.

�8� __msg
This may contain the system error messages from read or write operations
emitted from the BSAM SYNADAF macro instruction. This field will not always
be filled. If you print this field using the %s format, you should print the string
starting at the sixth position because of possible null characters found in the
first 6 characters. Special messages for PDSEs are contained in the
positions 136 through 184. See the Data Administration manual as listed in
OS/390 Information Roadmap for more information.

This field is used by the SIGIOERR handler.

�9� __rplfdbwd
This field contains feedback information related to a VSAM RLS failure. This
is the feedback code from the IFGRPL control block.

Figure 34 demonstrates how to print the __amrc structure after an error has
occurred to get information that may help you to diagnose an I/O error.

CBC3GDI1

/* this example demonstrates how to print the __amrc structure */
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

int main(void) {
FILE *fp;
__amrc_type save_amrc;
char buffer[80];
int i = 0;

/* open an MVS binary file */

fp = fopen("testfull.file","wb, recfm=F, lrecl=80");
if (fp == NULL) exit(99);

memset(buffer, 'A', 80);

Figure 34. Example of Printing the __amrc Structure (Part 1 of 2)

Chapter 18. Debugging I/O Programs 229

|
|
|

The program writes to a file until it is full. When the file is full, the program fails.
Following the I/O failure the program makes a copy of the __amrc structure, and
prints the number of successful writes to the file, the errno, the __last_op code, the
abend system code and the return code.

Using the __amrc2 Structure
The __amrc2 structure is an extension of __amrc. Only 2 fields are defined for
__amrc2. Like the __amrc structure, __amrc2 is changed during system I/O and
some C specific error situations.

Note: See “Using the SIGIOERR Signal” on page 234 for information on restrictions
that exist when comparing file pointers if you are using the __amrc2
structure.

Figure 35 shows the __amrc2 structure as it appears in stdio.h.

�1� This field is a secondary error code that is used to store the reason code
from specific macros. The __last_op codes that can be returned to
__amrc2 are __BSAM_STOW, __BSAM_BLDL, __IO_LOCATE, __IO_RENAME,
__IO_CATALOG and __IO_UNCATALOG. For information on the macros
associated with these codes see Table 30 on page 231.

For further information about the macros see OS/390 DFSMSdfp Diagnosis
Reference.

�2� This field, __fileptr, of the __amrc2 structure is used by the signal
SIGIOERR to pass back a FILE pointer that can then be passed to fldata() to
get the name of the file causing the error. The __amrc2__fileptr will be
NULL if a SIGIOERR is raised before the file has been successfully opened.

/* write to MVS file until it runs out of extents */

while (fwrite(buffer, 1, 80, fp) == 80)
++i;

save_amrc = *__amrc; /* need copy of __amrc structure */

printf("number of successful fwrites of 80 bytes = %d\n", i);

printf("last fwrite errno=%d lastop=%d syscode=%X rc=%d\n",
errno,
save_amrc.__last_op,
save_amrc.__code.__abend.__syscode,
save_amrc.__code.__abend.__rc);

return 0;
}

Figure 34. Example of Printing the __amrc Structure (Part 2 of 2)

struct {
long int __error2; �1� */
FILE *__fileptr; �2� */
long int __reserved[6];

}

Figure 35. __amrc2 Structure

230 OS/390 V2R10.0 C/C++ Programming Guide

Using __last_op Codes
The __last_op field is the most important of the __amrc fields. It defines the last I/O
operation OS/390 C/C++ was performing at the time of the I/O error. You should
note that the structure is neither cleared nor set by non-I/O operations so querying
this field outside of a SIGIOERR handler should only be done immediately after I/O
operations. Table 30 lists __last_op codes you may receive and where to look for
further information.

Table 30. __last_op Codes and Diagnosis Information

Code Further Information

__IO_INIT Will never be seen by SIGIOERR exit value given at
initialization.

__BSAM_OPEN Sets __error with return code from OS OPEN macro.

__BSAM_CLOSE Sets __error with return code from OS CLOSE macro.

__BSAM_READ No return code (either __abend (errno == 92) or __msg
(errno == 66) filled in).

__BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

__BSAM_POINT This will not appear as an error lastop.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg
(errno == 65) filled in).

__BSAM_CLOSE_T Sets __error with return code from OS CLOSE TYPE=T.

__BSAM_BLDL Sets __error with return code from OS BLDL macro.

__BSAM_STOW Sets __error with return code from OS STOW macro.

__TGET_READ Sets __error with return code from TSO TGET macro.

__TPUT_WRITE Sets __error with return code from TSO TPUT macro.

__IO_DEVTYPE Sets __error with return code from I/O DEVTYPE macro.

__IO_RDJFCB Sets __error with return code from I/O RDJFCB macro.

__IO_TRKCALC Sets __error with return code from I/O TRKCALC macro.

__IO_OBTAIN Sets __error with return code from I/O CAMLST OBTAIN.

__IO_LOCATE Sets __error with return code from I/O CAMLST LOCATE.

__IO_CATALOG Sets __error with return code from I/O CAMLST CAT. The
associated macro is CATALOG.

__IO_UNCATALOG Sets __error with return code from I/O CAMLST UNCAT.
The associated macro is CATALOG.

__IO_RENAME Sets __error with return code from I/O CAMLST RENAME.

__SVC99_ALLOC Sets __alloc structure with info and error codes from SVC 99
allocation.

__SVC99_ALLOC_NEW Sets __alloc structure with info and error codes from SVC 99
allocation of NEW file.

__SVC99_UNALLOC Sets __unalloc structure with info and error codes from SVC
99 unallocation.

__C_TRUNCATE Set when OS/390 C/C++ truncates output data. Usually this
is data written to a text file with no newline such that the
record fills up to capacity and subsequent characters cannot
be written. For a record I/O file this refers to an fwrite()
writing more data than the record can hold. Truncation is
always of rightmost data. There is no return code.

Chapter 18. Debugging I/O Programs 231

Table 30. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__C_FCBCHECK Set when OS/390 C/C++ FCB is corrupted. This is due to a
pointer corruption somewhere. File cannot be used after
this.

__C_DBCS_TRUNCATE This occurs when writing DBCS data to a text file and there
is no room left in a physical record for anymore double byte
characters. A new-line is not acceptable at this point.
Truncation will continue to occur until an SI is written or the
file position is moved. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SO_TRUNCATE This occurs when there is not enough room in a record to
start any DBCS string or else when a redundant SO is
written to the file before an SI. Cannot happen if MB_CUR_MAX
is 1.

__C_DBCS_SI_TRUNCATE This occurs only when there was not enough room to start a
DBCS string and data was written anyway, with an SI to end
it. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN This occurs when an SI is written before the last double
byte character is completed, thereby forcing OS/390 C/C++
to fill in the last byte of the DBCS string with a padding byte
X'FE'. Cannot happen if MB_CUR_MAX is 1.

__C_CANNOT_EXTEND This occurs when an attempt is made to extend a file that
allows writing, but cannot be extended. Typically this is a
member of a partitioned dataset being opened for update.

__VSAM_OPEN_FAIL Set when a low level VSAM OPEN fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_OPEN_ESDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_ESDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_MODCB Set when a low level VSAM MODCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets
__rc and __fdbk fields in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_GET Set when the last op was a low level VSAM GET; if the GET
fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the PUT
fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the
POINT fails, sets __rc and __fdbk in the __amrc struct.

232 OS/390 V2R10.0 C/C++ Programming Guide

Table 30. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the
ERASE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ Set when the last op was a low level VSAM ENDREQ; if the
ENDREQ fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the
CLOSE fails, sets __rc and __fdbk in the __amrc struct.

__QSAM_GET __error is not set (if abend (errno == 92), __abend is set,
otherwise if read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set,
otherwise if write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if an
I/O abend occurred.

__QSAM_FREEPOOL This is an intermediate operation. You will only see this if an
I/O abend occurred.

__QSAM_CLOSE Sets __error to result of OS CLOSE macro.

__QSAM_OPEN Sets __error to result of OS OPEN macro.

__HSP_CREATE Indicates last op was a DSPSERV CREATE to create a
hiperspace for a hiperspace memory file. If CREATE fails,
stores abend code in __amrc.__code.__abend.__syscode,
reason code in __amrc.__code.__abend.__rc.

__HSP_DELETE Indicates last op was a DSPSERV DELETE to delete a
hiperspace for a hiperspace memory file during termination.
If DELETE fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_READ Indicates last op was a HSPSERV READ from a
hiperspace. If READ fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_WRITE Indicates last op was a HSPSERV WRITE to a hiperspace.
If WRITE fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_EXTEND Indicates last op was a HSPSERV EXTEND during a write
to a hiperspace. If EXTEND fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__CICS_WRITEQ_TD Sets __error with error code from EXEC CICS WRITEQ
TD.

__LFS_OPEN Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_CLOSE Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

Chapter 18. Debugging I/O Programs 233

Table 30. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__LFS_READ Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_WRITE Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_LSEEK Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_FSTAT Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

Using the SIGIOERR Signal
SIGIOERR is a signal used by the library to pass control to an error handler when an
I/O error occurs. The default action for this signal is SIG_IGN. Setting up a SIGIOERR
handler is like setting up any other error handler. The example in Figure 36 adds a
SIGIOERR handler to the example shown in Figure 34 on page 229. Note the way
fldata() and the __amrc2 field __fileptr are used to get the name of the file that
caused the error.

CBC3GDI2

#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {

#endif

Figure 36. Example of Using SIGIOERR (Part 1 of 2)

234 OS/390 V2R10.0 C/C++ Programming Guide

When control is given to a SIGIOERR handler, the __amrc2 structure field __fileptr
will be filled in with a file pointer. The __amrc2__fileptr will be NULL if a SIGIOERR
is raised before the file has been successfully opened. The only operation permitted
on the file pointer is fldata(). This operation can be used to extract information
about the file that caused the error. Other than freopen() and fclose(), all I/O
operations will fail since the file pointer is marked invalid. Do not issue freopen() or
fclose() in a SIGIOERR handler that returns control. This will result in unpredictable
behavior, likely an abend.

void iohdlr(int);

#ifdef __cplusplus
}

#endif

int main(void) {
FILE *fp;
char buffer[80];
int i = 0;

signal(SIGIOERR, iohdlr);

/* open an MVS binary file */

fp = fopen("testfull.file","wb, recfm=F, lrecl=80");
if (fp == NULL) exit(99);

memset(buffer, 'A', 80);

/* write to MVS file until it runs out of extents */

while (fwrite(buffer, 1, 80, fp) == 80)
++i;

printf("number of successful fwrites of 80 bytes = %d\n", i);

return 0;
}
void iohdlr (int signum) {

__amrc_type save_amrc;
__amrc2_type save_amrc2;
char filename[FILENAME_MAX];
fldata_t info;

save_amrc = *__amrc; /* need copy of __amrc structure */
save_amrc2 = *__amrc2; /* need copy of __amrc2 structure */

/* get name of file causing error from fldata */

if (fldata(save_amrc2.__fileptr, filename, &info) == 0)
printf("error on file %s\n",filename);

perror("io handler"); /* give errno message */
printf("lastop=%d syscode=%X rc=%d\n",

save_amrc.__last_op,
save_amrc.__code.__abend.__syscode,
save_amrc.__code.__abend.__rc);

signal(SIGIOERR, iohdlr);
}

Figure 36. Example of Using SIGIOERR (Part 2 of 2)

Chapter 18. Debugging I/O Programs 235

If you choose not to return from the handler, the file is still locked from all
operations except fldata(), freopen(), or fclose(). The file is considered open and
can prevent other incorrect access, such as an MVS sequential file opened more
than once for a write. Like all other files, the file is closed automatically at program
termination if it has not been closed explicitly already.

When you exit a SIGIOERR handler and do not return, the state of the file at closing
is indeterminate. The state of the file is indeterminate because certain control block
fields are not set correctly at the point of error and they do not get corrected unless
you return from the handler.

For example, if your handler were invoked due to a truncation error and you
performed a longjmp() out of your SIGIOERR handler, the file in error would remain
open, yet inaccessible to all I/O functions other than fldata(), fclose(), and
freopen(). If you were to close the file or it was closed at termination of the
program, it is still likely that the record that was truncated will not appear in the final
file.

You should be aware that for a standard stream passed across a system() call, the
state of the file will be indeterminate even after you return to the parent program.
For this reason, you should not jump out of a SIGIOERR handler. For further
information on system() calls and standard streams, see “Chapter 10. Using C and
C++ Standard Streams and Redirection” on page 83.

I/O with files other than the file causing the error is perfectly valid within a SIGIOERR
handler. For example, it is valid to call printf() in your SIGIOERR handler if the file
causing the error is not stdout. Comparing the incoming file pointer to the standard
streams is not a reliable mechanism of detecting whether any of the standard
streams are in error. This is because the file pointer in some cases is only a pointer
to a file structure that points to the same __file as the stream supplied by you. The
FILE pointers will not be equal if compared, but a comparison of the __file fields of
the corresponding FILE pointers will be. See the stdio.h header file for details of
type FILE.

If stdout or stderr are the originating files of a SIGIOERR, you should open a special
log file in your handler to issue messages about the error.

236 OS/390 V2R10.0 C/C++ Programming Guide

Part 3. Interlanguage Calls with OS/390 C/C++

This part describes OS/390 C/C++ considerations about interlanguage calls in the
OS/390 Language Environment. For complete information about interlanguage calls
(ILC) with OS/390 C/C++ and OS/390 Language Environment, refer to OS/390
Language Environment Writing Interlanguage Applications.

v “Chapter 19. Using Linkage Specifications in C or C++” on page 239

v “Chapter 20. Combining C or C++ and Assembler” on page 245

© Copyright IBM Corp. 1996, 2000 237

238 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 19. Using Linkage Specifications in C or C++

This section describes how you can make calls between C or C++ programs and
assembler, COBOL, PL/I, or FORTRAN programs, or other C or C++ programs. For
more complete information on making interlanguage calls to and from C or C++,
see OS/390 Language Environment Writing Interlanguage Applications.

With XPLINK compilation, the linkage and parameter passing mechanisms for C
and C++ are identical. If you link to a C function from a C++ program, you should
still specify extern "C" to avoid name mangling. For more information about
XPLINK, see OS/390 Language Environment Programming Guide.

Syntax for Linkage in C or C++
You can specify one of the following linkage types:

C C linkage (C++ only)

C++ C++ linkage (C++ only, the default for C++)

COBOL Previously used for linkage to COBOL routines. Maintained for
compatibility with COBOL/370 and VS COBOL II. With newer
COBOL products, use the REFERENCE, OS, or C linkage type
instead.

FORTRAN FORTRAN linkage

OS Operating System linkage

OS_DOWNSTACK
XPLINK-enabled operating system linkage

OS_NOSTACK
Minimal operating system linkage (for use with XPLINK)

OS_UPSTACK
Complete operating system linkage (for use with XPLINK)

OS31_NOSTACK
Same as OS_NOSTACK

PLI PL/I linkage

REFERENCE A Language Environment reference linkage that has the same
syntax and semantics with and without XPLINK. Unlike OS linkage,
REFERENCE linkage is not affected by the OSCALL suboption of
XPLINK. It is equivalent to OS_DOWNSTACK in XPLINK mode and
OS_UPSTACK in non-XPLINK mode.

Syntax for Linkage in C
You can create linkages between C and other languages by using linkage
specifications with the following #pragma linkage directive:
#pragma linkage(identifier,linkage)

where identifier specifies the name of the function and linkage specifies the linkage
associated with the function.

© Copyright IBM Corp. 1996, 2000 239

|

|

|
|
|
|

|
|
|
|

|
|

|

||

||

||
|
|
|

||

||

|
|

|
|

|
|

|
|

||

||
|
|
|
|

|

|
|

|

|
|

Syntax for Linkage in C++
You can create linkages between C++ and other languages by using linkage
specifications with the following syntax:
extern "linkage" { [declaration-list] }
extern "linkage" declaration

declaration-list:
declaration
declaration-list declaration

where linkage specifies the linkage associated with the function. If OS/390 C++
does not recognize the linkage type, it uses C linkage.

Kinds of Linkage used by C or C++ Interlanguage Programs
The following table describes the kinds of linkage used by C++ interlanguage
programs.

What calls or is called by a
C or C++ program

Kind of linkage
used

Description of linkage C++ Example

GDDM, ISPF, or
non-Language Environment
conforming assembler

OS Basic linkage defined by the
operating system. OS Linkage
allows integer, pointer, and floating
point return types. Use of OS
linkage with assembler is detailed in
“Specifying Linkage for C or C++ to
Assembler” on page 245.

extern "OS" { ... }

Language Environment
conforming assembler,
NOXPLINK-compiled C or
C++ declared with OS
linkage (or C linkage,
passing each parameter as a
pointer) is to be called from
XPLINK-compiled C or C++.
Cannot be used on a
function definition in
XPLINK-compiled code.

OS_UPSTACK This is the same as OS linkage in
NOXPLINK-compiled programs. It is
declared this way by the caller
when the caller is
XPLINK-compiled. The compiler will
call glue code to transition from the
XPLINK caller to the non-XPLINK
callee. Also see the OSCALL
suboption of the XPLINK option in
OS/390 C/C++ User’s Guide.

extern "OS_UPSTACK"
{ ... }

Assembler which is not
Language Environment
conforming is to be called
from XPLINK-compiled C or
C++. Cannot be used on a
function definition in
XPLINK-compiled code.

OS_NOSTACK,
OS31_NOSTACK

This is a subset of OS_UPSTACK,
but the compiler does not generate
any glue code for this call. It
provides the called program with a
72-byte savearea, as does
OS_UPSTACK, but the savearea is
not initialized. In particular, the
backchain pointer and the
Language Environment Next
Available Byte (NAB) are not
initialized. Typically an
XPLINK-compiled program would
declare an Operating System
assembler routine with this linkage,
where such a routine was not
Language Environment enabled.
Also see the OSCALL suboption of
the XPLINK option in OS/390
C/C++ User’s Guide.

extern "OS31_NOSTACK"
{ ... }

240 OS/390 V2R10.0 C/C++ Programming Guide

|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

||
|
|
|
||

|
|
|

||
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

What calls or is called by a
C or C++ program

Kind of linkage
used

Description of linkage C++ Example

XPLINK-compiled C or C++
using OS_DOWNSTACK
linkage, or XPLINK-enabled
assembler.

OS_DOWNSTACK As with OS linkage in
NOXPLINK-compiled C or C++, the
parameters are passed by
reference rather than by value.
However, parameter and stack
management use XPLINK
conventions. Also see the OSCALL
suboption of the XPLINK option in
OS/390 C/C++ User’s Guide.

extern "OS_DOWNSTACK"
{ ... }

The following programs,
using by-reference
parameter passing:
v XPLINK-compiled C/C++

programs calling XPLINK
functions (C, C++, or
Language Environment
conforming assembler)

v NOXPLINK-compiled
C/C++ programs calling
NOXPLINK functions (C,
C++, or Language
Environment conforming
assembler)

A Language Environment
conforming stack frame is
always provided. This is not
affected by the OSCALL
suboption of XPLINK.

REFERENCE This is the same as
OS_DOWNSTACK linkage in
XPLINK-compiled programs and
OS_UPSTACK in
NOXPLINK-compiled programs.
Use this for Language
Environment-conforming assembler
linkage.

extern "REFERENCE"
{ ... }

PL/I PLI Modification of OS linkage. It forces
the compiler to read and write
parameter lists using PL/I linkage
conventions. This linkage type
extends OS linkage by allowing
structures as return types. (When
the return type is a structure, the
caller allocates a buffer large
enough to receive the returned
structure and passes it, by
reference, as a hidden final
argument.)

extern "PLI" { ... }

COBOL COBOL Forces the compiler to read and
write parameter lists using COBOL
linkage conventions. All calls from
C++ to COBOL must be void
functions.

This linkage type is maintained for
compatibility with COBOL/370 and
VS COBOL II. With newer COBOL
products, you can call COBOL
functions with the REFERENCE
and OS linkage types, which allow
integer return types. If the COBOL
routine receives parameters by
value (a pragmaless call), you can
use the C linkage type.

extern "COBOL" { ... }

Chapter 19. Using Linkage Specifications in C or C++ 241

|
|
|
|
||

|
|
|
|

||
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

||
|
|
|
|
|
|
|

|

|
|

|||
|
|
|
|
|
|
|
|
|
|
|

|

|||
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

What calls or is called by a
C or C++ program

Kind of linkage
used

Description of linkage C++ Example

FORTRAN FORTRAN Forces the compiler to read and
write parameter lists using
FORTRAN linkage conventions.

extern "FORTRAN" { ... }

C C Use in C++ to force the compiler to
read and write parameter lists using
C linkage conventions. C code and
the Data Window Services (DWS)
product both use C linkage.

With XPLINK, C and C++ use the
same linkage conventions. When
this linkage is specified in C++
code, the specified function is
known by its function name alone
rather than its name and argument
types. It cannot be overloaded.

extern "C" { ... }

Using Linkage Specifications in C++
In the following example, a function is prototyped in a piece of C++ code and uses,
by default, C++ linkage.
void CXX_FUNC (int); // C++ linkage

Note that C++ is case-sensitive, but PL/I, COBOL, assembler, and FORTRAN are
not. In these languages, external names are mapped to uppercase. To ensure that
external names match across interlanguage calls, code the names in uppercase in
the C++ program, supply an appropriate #pragma map specification, or use the
NOLONGNAME compiler option. This will truncate and uppercase names for functions
without C++ linkage.

To reference functions defined in other languages, you should use a linkage
specification with a literal string that is one of the following:
v C
v COBOL
v FORTRAN
v OS
v OS_DOWNSTACK
v OS_NOSTACK
v OS_UPSTACK
v OS31_NOSTACK
v PLI
v REFERENCE

For example:
extern "OS" {

int ASMFUNC1(void);
int ASMFUNC2(int);

}

This specification declares the two functions ASMFUNC1 and ASMFUNC2 to have
operating system linkage. The function names are case-sensitive and must match
the definition exactly. You should also limit identifiers to 8 or fewer characters.

242 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
||

|||
|
|

|

|||
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

Use the reference type parameter (type&) in C++ prototypes if the called language
does not support pass-by-value parameters or if the called routine expects a
parameter to be passed by reference.

v OS/390 C/C++ supports the long long type for FORTRAN linkage functions.

v A C or C++ signed long long int maps to a FORTRAN INTEGER.

v A C or C++ unsigned long long int maps to FORTRAN LOGIC.

v OS/390 C/C++ does not support other non-C or C++ linkage functions.

Note: To have your program be callable by any of these other languages, include
an extern declaration for the function that the other language will call.

Chapter 19. Using Linkage Specifications in C or C++ 243

|
|
|

|

|

|

|

|
|

244 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 20. Combining C or C++ and Assembler

This chapter describes how to communicate between OS/390 C/C++ and assembler
programs.

To write assembler code that can be called from OS/390 C/C++, use the prolog and
epilog macros described in this chapter. For more information on how the OS/390
Language Environment works with assembler, see OS/390 Language Environment
Writing Interlanguage Applications.

Access to OS/390 UNIX is intended to be through the OS/390 UNIX C/C++
extensions only. The OS/390 C/C++ compiler does not support the direct use of
OS/390 UNIX callable services such as the assembler interfaces. You should not
directly use OS/390 UNIX callable services from your OS/390 C/C++ application
programs, because problems can occur with the processing of the following:

v Signals

v Library transfers

v fork()

v exec()

v Threads

There are comparable OS/390 C/C++ functions for most OS/390 UNIX callable
services, and you should use those instead. Do not call assembler programs that
access OS/390 UNIX callable services.

Establishing the OS/390 C/C++ Environment
Before you can call an OS/390 C/C++ function from assembler, you must establish
a suitable environment. To establish the environment, do one of the following:

v Call the assembler program from within the C or C++ program (from main() or
another function). Since the assembler call is from within the C or C++ program,
the environment has already been established. It is often simplest to call the
assembler using OS linkage conventions.

Note: In this chapter, ″OS linkages″ and ″OS linkage″ conventions refer to the
following group of specifications: OS, OS_UPSTACK, OS_DOWNSTACK,
OS_NOSTACK, OS31_NOSTACK and REFERENCE. ″OS″ is used in
syntax diagrams and examples as a representative specification. These
specifications use different stack conventions. For more information on
these specifications, see “Chapter 19. Using Linkage Specifications in C or
C++” on page 239.

v Use preinitialization to set up the OS/390 Language Environment. See “Retaining
the C Environment Using Preinitialization” on page 256 for information.

Once you are in the assembler program you can call other C or C++ programs from
the assembler.

Note: Under XPLINK, calling other C or C++ programs from the assembler is not
supported.

Specifying Linkage for C or C++ to Assembler
The process for specifying the linkage to assembler differs for C and for C++. In C,
a #pragma linkage directive is used, while in C++ a linkage specifier is used.

© Copyright IBM Corp. 1996, 2000 245

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|

v Under C, a #pragma linkage directive enables the compiler to generate and
accept parameter lists, using a linkage convention known as OS linkage.
Although functionally different, both calling an assembler routine and being called
by one are handled by the same #pragma. Its format is:

#pragma linkage(identifier, OS)

where identifier is the name of the assembler function to be called from C or the
C function to be called from assembler. The #pragma linkage directive must
occur before the call to the entry point.

Note: In XPLINK compiled code, the OS_UPSTACK and OS_NOSTACK (or
OS31_NOSTACK) linkages are strictly for declaring the routine that the C
code is calling, and cannot be used to define the linkage of a routine
written in C that is being called.

v Under C++, a linkage specifier enables the compiler to generate and accept
parameter lists, using a linkage convention known as OS linkage. Although
functionally different, both calling an assembler routine and being called by one
are handled by the same linkage specifier. The format of the linkage specifier is:
extern "OS" {

fn1 desc;
fn2 desc;...

}

where fnx desc is the name of the OS entry point.

Note: In XPLINK compiled code, the OS_UPSTACK and OS_NOSTACK (or OS31_NOSTACK)
linkages are strictly for declaring the routine that the C code is calling, and
cannot be used to define the linkage of a routine written in C++ that is being
called.

Just as C (or C++) linkage programs can call OS linkage programs, OS linkage
programs can call C linkage programs. An example of C linkage calling OS linkage,
which in turn calls C linkage (in this case, one of the OS/390 C/C++ library
functions) is shown in Figure 38 on page 252.

In general, any type that can be passed between C and assembler can also be
passed between C++ and assembler. However, if a C++ class that uses features
not available to assembler (such as virtual functions, virtual base classes, private
and protected data, or static data members) is passed to assembler, the results will
be undefined.

Note: In C++, a structure is just a class declared with the keyword struct. Its
members and base classes are public by default. A union is a class declared
with the keyword union its members are public by default, and it holds only
one member at a time.

Parameter List for OS Linkage
A parameter list for OS linkage is a list of pointers. The most significant bit of the
last parameter in the parameter list is turned on by the compiler when the list is
created.

If a parameter is an address-type parameter, the address itself is directly stored into
the parameter list. Otherwise, a copy is created for a value parameter and the
address of this copy is stored into the parameter list.

246 OS/390 V2R10.0 C/C++ Programming Guide

|

|
|
|
|

|

|
|
|
|

|
|
|
|

The type of a parameter is specified by the prototype of a function. In the absence
of a prototype, the creation of a parameter list is determined by the types of the
actual parameters passed to the function. Figure 37 shows an example of the
parameter list for OS linkage.

In the list, the first and third parameters are value parameters, and the second is an
address parameter.

XPLINK Assembler
The XPLINK support provided by the assembler macros EDCXPRLG and
EDCXEPLG allows XPLINK C and C++ code to call routines that can be coded for
performance, or to perform a function that can not be readily done in C/C++. There
is no CALL macro support for calling other XPLINK routines from an XPLINK
assembler routine. Most XPLINK assembler routines will be leaf routines that
perform their function and return. (Leaf routines do not call any other functions.)
The following OS/390 Language Environment books provide more information on
XPLINK that may be useful to assembler programmers:

v OS/390 Language Environment Programming Guide — provides an overview of
XPLINK and what it means to the application programmer.

v OS/390 Language Environment Writing Interlanguage Applications — provides
information on how assembler routines interact with routines coded in other high
level languages.

v OS/390 Language Environment Debugging Guide and Run-Time Messages —
provides details on XPLINK, including information on building parameter lists for
calling other XPLINK routines.

Coding XPLINK assembler routines differs from traditional non-XPLINK assembler
in the following ways:

v You use the EDCXPRLG and EDCXEPLG macros for entry/exit code. These are
documented in the section “Using Standard Macros” on page 249.

v You use the following XPLINK register conventions within the XPLINK assembler
routine:

– XPLINK parameter passing conventions: Registers 1, 2, and 3 are used to
pass up to the first 3 integral values, and floating point registers will be used
to pass floating point parameters.

– XPLINK DSA format: Note that the stack register (reg 4) is ″biased″. This
means that you must add 2K (2048) to the stack register to get the actual
start of the current routine’s DSA. The OS/390 Language Environment
mapping macro CEEDSA contains a mapping of the XPLINK DSA, including

ptr of P1 copy

R1

ptr of P1 copy P2 ptr of P3 copy ...

copy of P1 copy of P3

Figure 37. Example of Parameter Lists For OS Linkages

Chapter 20. Combining C or C++ and Assembler 247

|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

the 2K bias (CEEDSAHP_BIAS). The caller’s registers are saved in the DSA
obtained by the callee. The callee’s parameters (other than those passed in
registers, if any), are built in the argument list in the callers DSA, and
addressed there directly by the callee. There is no indirect access to the
parameters via Register 1 as in OS linkage.

v While EDCXPRLG and EDCXEPLG allow Language Environment conforming
XPLINK assembler routines to be written, another alternative for XPLINK C/C++
callers is to designate the linkage as OS31_NOSTACK. For more information on
OS31_NOSTACK see “Chapter 19. Using Linkage Specifications in C or C++” on
page 239. When the C/C++ caller designates the assembler routine as
OS31_NOSTACK linkage, the assembler code can be written without using
EDCXPRLG or EDCXEPLG (or any other Language Environment prolog or
epilog macros). This can only be done when the assembler code has no dynamic
stack storage requirements. With OS31_NOSTACK, standard OS linkage rules
apply:

– Register 1 will be used to point to the parameter list.

– Register 13 will point to an 18 word savearea, provided to the callee for
saving and restoring registers.

– Register 14 will be the return address for branching back to the caller.

– Register 15 will contain the address of the callee.

Table 31 shows the layout of the XPLINK interface.

Table 31. Comparison of non-XPLINK and XPLINK Register Conventions

Non-XPLINK XPLINK

Stack Pointer Reg 13 Reg 4 (biased)

Return Address Reg 14 Reg 7

Entry point on entry Reg 15 Reg 6 (not guaranteed; a routine may be
called via branch relative)

Environment Reg 0 (writeable static) Reg 5

CAA Address Reg 12 Reg 12

Input Parameter List address in R1 Located at fixed offset 64 (’40’x) into the
caller’s stack frame (remember the 2K bias
on R4). Additionally, any of General Registers
1, 2, and 3, and Floating Point Registers 0, 2,
4, and 6, may be used to pass parameters
instead of the caller’s stack frame.

Return code Reg 15 R3 (extended return value in R1,R2)

Start address of
callee’s stack frame

Caller’s NAB value Caller’s Reg 4 - DSA size

End address of
callee’s stack frame

Caller’s NAB value + DSA size Caller’s Reg 4

Where caller’s
registers are saved

R0-R12 saved in caller’s stack frame
R13 saved in callee’s stack frame
R14-R15 saved in caller’s stack frame

R0 not saved, not preserved
R1-R3 not saved, not preserved
R4 not saved, recalculated
(or saved, restored)
R5 not saved, not preserved
R6 saved in callee’s stack frame,
not restored
R7-R15 saved in callee’s stack frame
(R7 is the return register and is
not guaranteed to be restored)

248 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

||

|||

|||

|||

|||
|

|||

|||

|||
|
|
|
|
|

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

See OS/390 Language Environment Vendor Interfaces for additional information
about register usage and conventions, especially for details about passing
parameters with XPLINK. For information on the registers which are saved in the
register savearea of the XPLINK stack frame see OS/390 Language Environment
Programming Guide.

Using Standard Macros
To communicate properly, assembler routines must preserve the use of certain
registers and particular storage areas, in a way that is consistent with code from the
C or C++ compiler. OS/390 C/C++ provides macros for use with assembler
routines. These macros are in CEE.SCEEMAC. The High-Level Assembler for MVS &
VM & VSE must be used when assembling with these macros. The macros are:

EDCPRLG Generates the prolog for non-XPLINK assembler code

EDCEPIL Generates the epilog for non-XPLINK assembler code

EDCXPRLG Generates the prolog for XPLINK assembler code

EDCXEPLG Generates the epilog for XPLINK assembler code

EDCDSAD Accesses automatic memory in the non-XPLINK stack. For the
XPLINK stack, use the CEEDSA macro, described in OS/390
Language Environment Programming Guide.

EDCPROL, the old version of EDCPRLG, is shipped for compatibility with Version 1 of
C/370 and is unchanged. However, you should use EDCPRLG if you can.

The advantage of writing assembler code using these macros is that the assembler
routine will then participate fully in the OS/390 C/C++ environment, enabling the
assembler routine to call OS/390 C/C++ functions. The macros also manage
automatic storage, and make the assembler code easier to debug because the
OS/390 Language Environment control blocks for the assembler function will be
displayed in a formatted traceback or dump. See Debug Tool User’s Guide and
Reference for further information on OS/390 Language Environment tracebacks and
dumps.

Note: Only non-XPLINK Assembler code can call OS/390 C/C++ functions.

Non-XPLINK Assembler Prolog
Use the EDCPRLG macro to generate non-XPLINK assembler prolog code at the start
of assembler routines.

%% EDCPRLG
name USRDSAL=ulen

BASEREG=register
DSALEN=dlen

%&

name Is inserted in the prolog. It is used in the processing of certain
exception conditions and is useful in debugging and in reading
memory dumps. If name is absent, the name of the current CSECT
is used.

USRDSAL=ulen Is used only when automatic storage (in bytes) is needed. To
address this storage, see the EDCDSAD macro description. The ulen
value is the requested length of the user space in the DSA.

Chapter 20. Combining C or C++ and Assembler 249

|
|
|
|
|

|
|
|
|
|

||

||

||

||

||
|
|

|

|

|

|

|
|

BASEREG=register
Designates the required base register. The macro generates code
needed for setting the value of the register and for establishing
addressability. The default is Register 3. If register equals NONE, no
code is generated for establishing addressability.

DSALEN=dlen Is the total requested length of the DSA. The default is 120. If fewer
than 120 bytes are requested, 120 bytes are allocated. If both dlen
and ulen are specified, then the greater of dlen or ulen+120 is
allocated. If DSALEN=NONE is specified, no code is generated for DSA
storage allocation, and R13 will still point to the caller’s DSA.
Therefore, you should not use the EDCEPIL macro to terminate the
assembler routine. Instead, you have to restore the registers
yourself from the current DSA. To do this, you can use an
assembler instruction such as
LM 14,12,12(R13)
BR 14

You should not use EDCDSAD to access automatic memory if you
have specified DSALEN=NONE, since DSECT is addressable using R13.

Non-XPLINK Assembler Epilog
Use the EDCEPIL macro to generate non-XPLINK assembler epilog code at the end
of assembler routines. Do not use this macro in conjunction with an EDCPRLG macro
that specifies DSALEN=NONE.

%% EDCEPIL
name

%&

name Is the optional name operand, which then becomes the label on the
exit from this code. The name does not have to match the prolog.

XPLINK Assembler Prolog
Use the EDCXPRLG macro to generate XPLINK assembler prolog code at the start
of assembler routines.

%% EDCXPRLG DSASIZE=len
name PARMWRDS=numwrds

ENTNAME=epname
BASEREG=register
PSECT=pname
GT2KSTK=YES

%&

name If ENTNAME=epname is specified then name is used as the name of
the XPLINK entry marker, else name is the name of the entry point
and name#C is used as the name of the XPLINK entry marker.

DSASIZE=len Specifies automatic storage requirements (in bytes). Specify a len
of 0 if the XPLINK assembler routine is a leaf routine with no
automatic storage requirements. XPLINK leaf routines must
preserve registers 4,6, and 7 throughout their execution. This is a
required parameter, the minimum size of an XPLINK DSA (80
bytes) or more must be specified if DSASIZE is not zero

250 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|

|

|
|

||||||||||||||||||||||||||||||||||

|

||
|
|

||
|
|
|
|
|

PARMWRDS=numwrds
Specifies the number of 4-byte words in the input parameter list. If
this is omitted, then the routine will be treated as vararg, and it will
adversely affect performance if the call to this routine results in a
stack overflow.

ENTNAME=epname
Is the optional name of the XPLINK assembler routine entry point.

BASEREG=register
Designates the required base register. The macro generates code
needed for setting the value of the register and for establishing
addressability. The default is register 8. If register equals NONE, no
code is generated for establishing addressability.

PSECT=pname Is the name to be assigned to the XPLINK assembler routine
PSECT area. For more information about the PSECT area see
HLASM Language Reference.

GT2KSTK=YES If GT2KSTK=YES is specified, then an unconditional ″large stack
frame″ prolog will be used that checks for the XPLINK stack floor in
the CAA, instead of depending on the write-protected guard page.
This parameter must be specified if the len on the DSASIZE
parameter is greater than 2048 (ie. 2K).

XPLINK Assembler Epilog
Use the EDCXEPLG macro to generate XPLINK assembler epilog code at the end
of assembler routines. This macro must always be used with a matching
EDCXPRLG macro, even if the EDCXPRLG macro specified DSASIZE=0.

%% EDCXEPLG
name

%&

name Is the optional name operand, which then becomes the label on the
exit from this code. The name does not have to match the prolog.

Accessing Automatic Memory in the Non-XPLINK Stack
Use the EDCDSAD macro to access automatic memory in the non-XPLINK stack..
Automatic memory is reserved using the USRDSAL, or the DSALEN operand of the
EDCPRLG macro. The length of the allocated area is derived from the ulen and/or
dlen values specified on the EDCPRLG macro. EDCDSAD generates a DSECT, which
reserves space for the stack frame needed for the C or C++ environment.

%% EDCDSAD
name

%&

name Is the optional name operand, which then becomes the name of the
generated DSECT.

The DSECT is addressable using Register 13. Register 13 is initialized by the
prolog code. If you have specified DSALEN=NONE with EDCPRLG you should not use
EDCDSAD.

Chapter 20. Combining C or C++ and Assembler 251

|
|
|
|
|

|
|

|
|
|
|
|

||
|
|

||
|
|
|
|

|

|
|
|

|||||||||||||

|

||
|

|

|
|
|
|
|

The Language Environment mapping macro CEEDSA can be used to map a DSA,
either non-XPLINK or XPLINK or both.

%% CEEDSA SECTYPE=XPLINK
name

%&

There are other SECTYPE operands. SECTYPE=XPLINK will only produce an XPLINK
DSA mapping. For more information on CEEDSA see OS/390 Language Environment
Programming Guide

Calling Run-Time Library Routines from Assembler — C Example

The following C example shows how to call library routines from assembler. This
example is non-XPLINK only. XPLINK assembler cannot call C functions. There are
three parts to this example. The first part, shown in Figure 38, is a trivial C routine
that establishes the C run-time environment.

CBC3GCA4

The second part of the example, shown in Figure 39 on page 253, is the assembler
routine. It calls an intermediate C function that invokes a run-time library function.

/* this example demonstrates C/Assembler ILC */
/* part 1 of 3 (other files are CBC3GCA2, CBC3GCA5) */

#pragma linkage(CALLPRTF, OS)

int main(void) {
CALLPRTF();

return(0);
}

Figure 38. Establishing the C Run-Time Environment

252 OS/390 V2R10.0 C/C++ Programming Guide

|
|

|||||||||||||||

|
|
|
|

|
|
|
|

CBC3GCA2

Finally, the intermediate C routine calls a run-time library function as shown in
Figure 40.

CBC3GCA5

* this example demonstrates ILC with Assembler-part 2 of 3
CALLPRTF CSECT

EDCPRLG
LA 1,ADDR_BLK parameter address block in r1
L 15,=V(@PRINTF4) address of routine
BALR 14,15 call it
EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..
DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'
DC C' which includes an int -- %d --'
DC AL1(NEWLINE,NEWLINE)
DC C'and two newline characters'
DC AL1(NULL)

*
INTVAL DC F'222' The integer value displayed
*
NULL EQU X'00' C NULL character
NEWLINE EQU X'15' C \n character

END

Figure 39. Calling an Intermediate C Function from Assembler OS Linkage

/* this example demonstrates C/Assembler ILC */
/* part 3 of 3 (other files are CBC3GCA2, CBC3GCA4) */
/***\
* This routine is an interface between assembler code *
* and the OS/390 C/C++ library function printf(). *
* OS linkage will not tolerate C-style variable length *
* parameter lists, so this routine is specific to a *
* formatting string and a single 4-byte substitution *
* parameter. It's specified as an int here. *
/***/

#pragma linkage(_printf4,OS) /*function will be called from assembler*/

#include <stdio.h>

#pragma map(_printf4,“@PRINTF4”)

int _printf4(char *str,int i) {

return printf(str,i); /* call run-time library function /

}

Figure 40. Intermediate C Routine Calling a Run-Time Library Function

Chapter 20. Combining C or C++ and Assembler 253

Calling Run-Time Library Routines from Assembler — C++ Example
The following C++ example shows how to call library routines from assembler.
There are three parts to this example. The first part shown in Figure 41, is a trivial
C/C++ routine that establishes the C/C++ run-time environment. It uses extern OS to
indicate the OS linkage and calls the assembler routine.

CBC3GCA1

The second part of this example, shown in Figure 42 is the assembler routine. It
calls an intermediate C/C++ routine that invokes a run-time library function.

CBC3GCA2

The third part of the example, shown in Figure 43 on page 255, is an intermediate
C/C++ routine that calls a run-time library function.

// this example demonstrates C++/Assembler ILC
// part 1 of 3 (other files are CBC3GCA2, CBC3GCA3)

extern "OS" int CALLPRTF(void);

int main(void) {
CALLPRTF();

}

Figure 41. Establishing the C/C++ Run-Time Environment

* this example demonstrates ILC with Assembler (part 2 of 3)
CALLPRTF CSECT

EDCPRLG
LA 1,ADDR_BLK parameter address block in r1
L 15,=V(@PRINTF4) address of routine
BALR 14,15 call it
EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..
DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'
DC C' which includes an int -- %d --'
DC AL1(NEWLINE,NEWLINE)
DC C'and two newline characters'
DC AL1(NULL)

*
INTVAL DC F'222' The integer value displayed
*
NULL EQU X'00' C NULL character
NEWLINE EQU X'15' C \n character

END

Figure 42. Calling an Intermediate C/C++ Function from Assembler using OS Linkage

254 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCA3

Register Content at Entry to a Non-XPLINK ASM Routine Using OS
linkage

When control is passed to an assembler routine that uses OS linkage, the contents
of the registers are as follows:

Register Contents

R0 Undefined.

R1 Points to the parameter list. The parameter list consists of a vector
of addresses, each of which points to an actual parameter. The
address of the last parameter has its high-order bit set on, to
indicate the end of the list.

R2 to R11 Undefined.

R12 Points to an internal control block. It can be used by the called
routine but must be restored to its entry value if it calls a routine
that expects an OS/390 Language Environment environment.

R13 Points to the caller’s DSA. Part of the DSA is used by EDCPRLG and
EDCEPIL to save and restore registers. EDCPRLG can change R13 so
that it points to the called routine’s DSA from the caller’s DSA.

R14 The return address.

R15 The address of the entry point being called.

Register Content at Exit from a Non-XPLINK ASM Routine to OS/390
C/C++

Registers have the following content when control returns to the point of call:

Register Contents

R0 Undefined.

R1 Undefined.

// this example demonstrates C/C++/Assembler ILC
// part 3 of 3 (other files are CBC3GCA1, CBC3GCA2)

// This routine is an interface between assembler code
// and the Run-time library function printf(). OS linkage
// will not tolerate C-style variable length parameter lists,
// so this routine is specific to a formatting string
// and a single 4-byte substitution parameter. It's
// specified as an int here.
#include <stdio.h>
#pragma map(_printf4,"@PRINTF4")

extern "OS" int _printf4(char *str,int i) {
//function will be called from assembler

return printf(str,i); // call Run-time library function

}

Figure 43. Intermediate C/C++ Routine Calling a Run-Time Library Function

Chapter 20. Combining C or C++ and Assembler 255

R2 to R13 Must be restored to entry values. This is done by EDCEPIL and
EDCPRLG.

R14 Return address.

R15 Return value for integer types (long int, short int, char) and
pointer types. Otherwise set to 0.

FP0 Returns value for float or double parameters.

FP0 Returns value if long double is passed.

FP2 Returns value if long double is passed.

Note: When in FLOAT(AFP) mode the callee must save and restore FPR’s 8 through
15.

All other floating point registers are undefined.

Retaining the C Environment Using Preinitialization
If an assembler routine called the same C or C++ program repeatedly, the creation
and termination of the C/C++ environment for each call would be inefficient. The
solution is to create the C/C++ environment only once by preinitializing the C or
C++ program. This section discusses the OS/390 C preinitialization interface only
for reasons of compatibility.

Notes:

1. This information pertains only to users of C programs.

2. XPLINK applications are not supported under Preinitialized Compatibility
Interface (PICI) environments.

Under the OS/390 Language Environment, you should use the callable service
CEEPIPI instead to preinitialize the environment for your applications. For more
information about this service, see OS/390 Language Environment Writing
Interlanguage Applications.

If you are calling a C program multiple times from an assembler program, you can
establish the C environment and then repeatedly invoke the C program using the
already established C environment. You incur the overhead of initializing and
terminating the C environment only once instead of every time you invoke the C
program.

Because C detects programs that can be preinitialized dynamically during
initialization, you do not have to recompile the program or link-edit it again.

To maintain the C environment, you start the program with the C entry CEESTART,
and pass a special Extended Parameter List that indicates that the program is to be
preinitialized.

When you use preinitialization, you are initializing the library yourself with the INIT
call and terminating it yourself with the TERM call. In a non-preinitialized program, the
library closes any files you left open and releases storage. It does not do this in a
preinitialized program. Therefore, for every invocation of your preinitialized program,
you must release all allocated resources as follows:

v Close all files that were opened

v Free all allocated storage

v Release all fetched modules

256 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|

|

|

|
|

|
|
|
|

If you do not release all allocated resources, you will waste memory.

Setting Up the Interface for Preinitializable Programs
The interface for preinitializing programs is shown in Figure 44.

The LL field is a halfword containing the value of 16. The halfword that follows must
contain 0 (zero).

R1
X'80000000' +

address

X'80000000' +

address

LL

LL

00 Request
Extended plist

address

Length of EPL

Token 1

Token 2

0

address

request modifier

address

address

Runtime Options

argc

pointer to
argv vector

pointer to
argv [0]

count of fields
defined

address of get-
storage routine

pointer to
argv [1]

user-defined
word

address of free-
storage routine

. . .

address of work
area for DSAS etc.

address of
exception router

. . .

pointer to
argv [argc-1]

address of
load routine

address of
attention router

0

address of
delete routine

address of
message router

argv [0]
(program name)

argv [1]

argv [argc-1]

Figure 44. Interface for Preinitializable Programs

Chapter 20. Combining C or C++ and Assembler 257

The Request field is 8 characters that can contain:

'INIT '
Initializes the C environment and, returns two tokens that represent the
environment, but does not run the program. Token 1 and token 2 must both
have the value of zero on an INIT call; otherwise, preinitialization fails.

You can initialize only one C environment at a time. However, you can make
the sequence of calls to INIT, CALL, and TERM more than once.

'CALL '
Runs the C program using the environment established by the INIT request,
and exits from the environment when the program completes. The CALL request
uses the two tokens that were returned by the INIT request so that C can
recognize the proper environment.

You can also initialize and call a C program by passing the CALL parameter with
two zero tokens. The C program processes this request as an INIT followed by
a CALL. You can still call the program repeatedly, but you should pass the two
zero tokens only on the first call. Once the C environment is initialized, the
values of the tokens are changed, and must not be modified on any subsequent
calls.

Calling a C program other than the one used to initialize the C environment is
not supported, especially if write-able static is needed by the program being
called. This is because write-able static was allocated and initialized based
upon the program used to initialize the C environment.

'TERM '
Terminates the C environment but does not run the program.

The program used to terminate the C environment should be the same as the
program used to initialize the C environment. Usage of a different program to
terminate the C environment is unsupported.

'EXECUTE '
Performs INIT, CALL, and TERM in succession.

No other value is valid.

The Extended PLIST address field is a pointer to the Extended Parameter List
(EPL). The EPL is a vector of fullwords that consists of:

Length of Extended Parameter List
The length includes the 4 bytes for the length field. Valid decimal values are
20, 28, and 32.

First and Second C Environment Tokens:
These tokens are automatically returned during initialization; or, you can
use zeros for them when requesting a preinitialized CALL, and the effect is
that both an INIT and a CALL are performed.

Pointer to Your Program Parameters:
The layout of the parameters is shown in Figure 44 on page 257, Interface
for Preinitialization Programs. If no parameter is specified, use a fullword of
zeros.

Pointer to Your Run-Time Options:
To point to the character string of run-time options, refer to Figure 44. The

258 OS/390 V2R10.0 C/C++ Programming Guide

character string consists of a halfword LL field that contains the length of
the list of run-time options, followed by the actual list of run-time options.

Pointer to an Alternative Main:
This field is not supported in C. However, if you want to use the seventh or
eighth fields, use a full word of zeros as a place holder.

Pointer to the Service Vector:
If you want certain services (such as load and delete) to be carried out by
other code supplied by you (instead of, for example, by the LOAD and DELETE
macros), use this field to point to the service vector. See Figure 44 on
page 257.

Request Modifier Code:
When your request is INIT, CALL, or EXECUTE, you can specify any of the
following request modifier codes:

0 Does not change the request.

1 Loads all common library modules as part of the preinitialized
environment.

2 Loads all common and C library modules as part of the
preinitialized environment.

3 Reinitializes the environment. If the environment is already
established, frees all HEAP storage and any ISA overflow segments.

Do not use this code if subsequent calls depend on storage that is
still being allocated by previous calls.

4 Allows you to create more than one environment. The new
environment is chained with existing request modifier 4
environments or a batch environment, where possible, so that C
memory file sharing among the environments is possible. Details on
chaining and C memory file sharing support are covered in “Multiple
Preinitialization Compatibility Interface C Environments” on
page 267.

The user-supplied service routine vector is not supported when you
use request modifier value 4 in the extended parameter list. Do not
code this if you are using the service routine vector. If you do, an
abnormal end will occur.

5 Allows you to create more than one environment. The new
environment is separated from other environments which may
already exist. This environment does not support sharing of C
memory files with other preinitialization compatibility interface
environments.

When your request is TERM, you can specify either of the following request
modifier codes:

0 Does not change the request.

1 Forces termination. Ends the C environment without any of the
usual checks.

Code this field only when you cannot request normal termination.
You must ensure that the environment you are forcing to end is not
in use.

Chapter 20. Combining C or C++ and Assembler 259

The length you specify in the first field of the extended parameter list makes it
known whether you have specified a request modifier code or not.

Run-Time options are applied only at initialization and remain until termination. You
must code PLIST(MVS) in the called C program in order for the preinitialization to
work.

The options ARGPARSE|NOARGPARSE have no effect on preinitialized programs. The
assembler program has to provide parameters in the form expected by the C
program. Thus, if the C program is coded for the NOARGPARSE option, the argc
should be set to 2, and parameters passed as a single string.

Preinitializing a C Program
A preinitialized C program is displayed in Figure 45 on page 261 which shows how
to:

v Establish the C environment using an INIT request

v Pass run-time parameters to the C initialization routine

v Set up a parameter to the C program

v Repeatedly call a C program using the CALL request

v Communicate from the C program to the driving program using a return code

v End the C program using the TERM request

The example C program is very simple. The parameters it expects are the file name
in argv[1] and the return code in argv[2]. The C program printf()s the value of
the return code, writes a record to the file name, and decrements the value in return
code.

The assembler program that drives the C program establishes the C environment
and repeatedly invokes the C program, initially passing a value of 5 in the return
code. When the return code set by the C program is zero, the assembler program
terminates the C environment and exits.

The program in Figure 45 on page 261 does not include the logic that would verify
the correctness of any of the invocations. Such logic is imperative for proper
operations.

260 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCA6

CBC3GCA6 TITLE 'TESTING PREINITIALIZED C PROGRAMS'
***---
*** this example shows how to preinitialize a C program
*** part 1 of 3 (other files are CBC3GCA7 and CBC3GCA8)
*** Function: Demonstrate the use of Preinitialized C programs
*** Requests used: INIT, CALL, TERM
*** Parameters to C program: FILE_NAME, RUN_INDEX
*** Return from C Program: RUN_INDEX
***---
CBC3GCA6 CSECT
CBC3GCA6 RMODE ANY
CBC3GCA6 AMODE ANY

EXTRN CEESTART C Program Entry
STM R14,R12,12(R13) Save registers
BALR R3,0 Set base register
USING *,R3 Establish addressability
ST R13,SVAR+4 Set back chain
LA R13,SVAR Set this module's save area

***---
*** Initialize
***---
P_INIT DS 0H

MVC P_RQ,INIT Set INIT as the request
LA R1,PALIPT Load Parameter pointer
L R15,CEP Load C Entry Point
BALR R14,R15 Invoke C Program

***---
*** The C environment has been established.
*** Parameters include RUN_INDEX which will be counted down
*** by the C program. When the RUN_INDEX is zero, termination
*** will be requested.
*** The following code will set up C program parameters and
*** CALL request, invoke the C program and test for termination.
***---

LA R1,PGPAPT Pointer to C program parameters
ST R1,EP_PGPA ... to extended parameter list

DO_CALL DS 0H
MVC P_RQ,CALL set up CALL request
LA R1,PALIPT set parameter pointer
L R15,CEP set entry point
BALR R14,R15 invoke C program
L R0,RUN_INDEX Test Return Code
LTR R0,R0
BNZ DO_CALL Repeat CALL

Figure 45. Preinitializing a C Program (CBC3GCA6) (Part 1 of 3)

Chapter 20. Combining C or C++ and Assembler 261

***---
*** C requested termination.
*** Set up TERM request and terminate the environment
***---
DO_TERM DS 0H

MVC P_RQ,TERM set up TERM request
SR R1,R1 mark no parameters
ST R1,EP_PGPA
LA R1,PALIPT set parameter pointer
L R15,CEP set entry point
BALR R14,R15 invoke termination

***---
*** Return to system
***---
XIT DS 0H

L R13,4(13)
LM R14,R12,12(13)
BR R14

***---
*** Constants and work areas
***---
VARCON DS 0D
PALIPT DC A(X'80000000'+PALI) Address of Parameter list
CEP DC A(CEESTART) Entry point address
***---
PALI DS 0F Parameter list
P_LG DC H'16' Length of the list

DC H'0' Must be zero
P_RQ DC CL8' ' Request - INIT,CALL,TERM,EXECUTE
P_EP_PT DC A(EPALI) Address of extended plist
***---
EPALI DS 0F Extended Parameter list

DC A(EP_LG) Length of this list
EP_TCA DC A(0) First token
EP_PRV DC A(0) Second token
EP_PGPA DC A(PGPAPT) Address of C program plist
EP_XOPT DC A(XOPTPT) Address of run-time options
EP_LG EQU *-EPALI Length of this list
***---
*** C program plist in argc, argv format
***---
PGPAPT DC F'3' Number of parameters (argc)

DC A(PGVTPT) parameter vector pter (argv)
PGVTPT DS 0A Parameter Vector

DC A(PGNM) Program name pointer (argv1)
DC A(FILE_NAME) File name pointer (argv2)
DC A(RUN_INDEX) Run index pointer (argv3)
DC XL4'00000000' NULL pointer

Figure 45. Preinitializing a C Program (CBC3GCA6) (Part 2 of 3)

262 OS/390 V2R10.0 C/C++ Programming Guide

The program shown in Figure 46 on page 264 shows how to use the preinitializable
program.

***---
*** Run-Time options
***---
XOPTPT DC A(X'80000000'+XOPTLG) Run-Time options pter
XOPTLG DC AL2(XOPTSQ) Run-Time option list length
XOPTS DC C'STACK(4K) RPTSTG(ON)' Run-Time options list
XOPTSQ EQU *-XOPTS Run-Time options length
***---
PGNM DC C'CBC3GCA7',X'00' C program name
FILE_NAME DC C'PREINIT.DATA',X'00' File name for C program
RUN_INDEX DC F'5',X'00' changed by C Program
***---
*** Request strings for preinitialization
***---
INIT DC CL8'INIT'
CALL DC CL8'CALL'
TERM DC CL8'TERM'
EXEC DC CL8'EXECUTE'
***---
*** Assembler program's register save area
***---
SVAR DC 18F'0'

LTORG
***---
*** Register definitions
***---
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END

Figure 45. Preinitializing a C Program (CBC3GCA6) (Part 3 of 3)

Chapter 20. Combining C or C++ and Assembler 263

CBC3GCA7

/* this example shows how to use a preinitializable program */
/* part 2 of 3 (other files are CBC3GCA6 and CBC3GCA8) */

#pragma runopts(PLIST(MVS))

#include <stdio.h>
#include <stdlib.h>

#define MAX_MSG 50
#define MAX_FNAME 8

typedef int (*f_ptr)(int, char*);/* pointer to function returning int*/

int main(int argc, char **argv)
{

FILE *fp; /* File to be written to */
int *ptr_run; /* Pointer to the "run index" */
char *ffmsg; /* a pointer to the "fetched function msg"*/
char fname[MAX_FNAME+1]; /* name of the function to be fetched */
int fetch_rc; /* Return value of function invocation */
f_ptr fetch_ptr; /* Function pointer to fetched function */

/* Get the pointer to the "run index" */
ptr_run = (int *)argv[2];

if ((fp = fopen(argv[1],"a")) == NULL)
{

printf("Cannot open file %s\n",argv[1]);
ptr_run = 0; / Set to zero so it won't be called again */
return(0); /* Return to Assembler program */

}

/* Write the record to the file */
fprintf(fp,"Run index was %d.\n",*ptr_run);

/* Allocate the message returned from the fetched function */
if ((ffmsg=(char *)malloc(MAX_MSG + 1)) == NULL)

printf("ERROR -- malloc returned NULL\n");

/* fetch the function */
fetch_ptr = (f_ptr) fetch("MYFUNC");
if (fetch_ptr == NULL)

printf("ERROR - Fetch returned a null pointer\n");

/* execute the function */
fetch_rc = fetch_ptr(*ptr_run, ffmsg);

Figure 46. Using the Preinitializable Program (CBC3GCA7) (Part 1 of 2)

264 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCA8

Return Codes
Preinitialized programs do not put their return codes in R15. If the address of the
return code is required, specify a parameter. The example on page on page 260
shows how you can use the RUN_INDEX parameter to evaluate the address of a
return code.

User Exits in Preinitializable Programs
C invokes user exits when initialization and termination are actually performed. That
is, the initialization user exit is invoked during the INIT request or the CALL with the
zero token request. Similarly, the termination user exit is called only during the TERM
request.

Run-Time Options
If run-time options are specified in the assembler program, the C program must be
compiled with EXECOPS in effect. EXECOPS is the default.

Calling a Preinitializable Program
Figure 48 on page 266 shows sample JCL to run a preinitializable program in an
OS/390 environment.

/* Write the function msg to file */
fprintf(fp,"%s\n",ffmsg);

/* Tell the user the value of the "run index" */
printf("Run index was %d.\n",*ptr_run);

/* Decrement the "run index" */
(*ptr_run)--;

/* Remember to close all opened files */
fclose(fp);

/* Remember to free all allocated storage */
free(fname);

/* Remember to release all fetched modules */
release((void(*)())fetch_ptr);

/* Return to Assembler program */
return(0);

}

Figure 46. Using the Preinitializable Program (CBC3GCA7) (Part 2 of 2)

/* this example shows how to use a preinitializable program */
/* part 3 of 3 (other files are CBC3GCA6 & CBC3GCA7) */

#include <string.h>

#pragma linkage(fetched, fetchable)

int fetched(int run_index, char *ffmsg) {
sprintf(ffmsg,"Welcome to myfunc: Run index was %d.",run_index);
return(0);

}

Figure 47. Using the Preinitializable Program (CBC3GCA8)

Chapter 20. Combining C or C++ and Assembler 265

//youridA JOB
//*
// SET LIB='CEE'
// SET CMP='CBC'
//*
//PROCLIB JCLLIB ORDER=(&CMP..SCBCPRC)
//*===
//*--
//* ASSEMBLE THE DRIVING ASSEMBLER PROGRAM
//*--
//HLASM EXEC PGM=ASMA90,
// PARM='NODECK,OBJECT,LIST,ALIGN'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSUT2 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSUT3 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSPUNCH DD DUMMY
//SYSLIN DD DSN=&&OBJECT(ASSEM),SPACE=(80,(400,400,5)),
// DISP=(,PASS),UNIT=VIO,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSIN DD DSN=yourid.CBC3GCA6.ASM,DISP=SHR
//*===
//*---
//* COMPILE THE MAIN C PROGRAM
//*--
//COMP EXEC EDCC,INFILE='yourid.CBC3GCA7.C',
// OUTFILE='&&OBJECT(CMAIN),DISP=(OLD,PASS)',
// CPARM='NOOPT,NOSEQ,NOMAR',
// LIBPRFX=&LIB.,LNGPRFX=&CMP.
//*===
//*---
//* COMPILE AND LINK THE FETCHED C PROGRAM
//*--
//CMPLK EXEC EDCCL,INFILE='yourid.CBC3GCA8.C',
// CPARM='NOOPT,NOSEQ,NOMAR',
// LIBPRFX=&LIB.,LNGPRFX=&CMP.
//LKED.SYSLMOD DD DSN=&&LOAD(MYFUNC),DISP=(,PASS),
// UNIT=VIO,SPACE=(TRK,(1,1,5))

Figure 48. JCL for Running a Preinitializable C Program (Part 1 of 2)

266 OS/390 V2R10.0 C/C++ Programming Guide

Multiple Preinitialization Compatibility Interface C Environments
To establish multiple Preinitialized Compatibility Interface (PICI) environments, you
must specify either request modifier 4 or request modifier 5 in the extended
parameter list (EPL) at environment initialization.

Request Modifier 4 Environment Characteristics
Use request modifier 4 to establish an environment which is tolerant of an existing
environment. When a request modifier 4 environment is dormant, it is immune to
creation or termination of other environments.

Environments created using request modifier 4 normally intend to share C memory
files, but it is not required for the application to take advantage of this support. A
new environment of this type is chained to the currently active environment that
supports chaining, or it will set up a dummy environment which supports chaining.
This allows for C memory files to be shared.

The sharing of C memory files across request modifier 4 environments is only
supported within the boundary of the application. There are really only two types of
applications where request modifier 4 environments are involved. The first type is a
set of pure request modifier 4 environments; there are no batch environments. The
second type allows a single batch environment. In the second type, the batch
environment must be the first initialized and the last terminated.

If starting with non OS/390 Language Environment enabled assembler, the first
request modifier 4 environment creates a dummy environment (OS/390 Language
Environment region-level control blocks) in addition to its own. The dummy

//*===
//*--
//* LINK THE ASSEMBLER DRIVER AND MAIN C PROGRAM
//*--
//LKED EXEC PGM=IEWL,PARM='MAP,XREF,LIST',
// COND=((4,LT,HLASM),(4,LT,COMP.COMPILE),(4,LT,CMPLK.LKED))
//OBJECT DD DSN=&&OBJECT,DISP=(OLD,PASS)
//SYSLIN DD *

INCLUDE OBJECT(ASSEM)
INCLUDE OBJECT(CMAIN)
ENTRY CBC3GCA6

/*
//SYSLIB DD DISP=SHR,DSN=&LIB..SCEELKED
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=&&LOAD(PREINIT),DISP=(OLD,PASS)
//*===
//*--
//* RUN
//*--
//GO EXEC PGM=*.LKED.SYSLMOD,
// COND=(4,LT,LKED)
//STEPLIB DD DISP=OLD,DSN=&&LOAD
// DD DISP=SHR,DSN=&LIB..SCEERUN
//STDIN DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 48. JCL for Running a Preinitializable C Program (Part 2 of 2)

Chapter 20. Combining C or C++ and Assembler 267

environment remains pointed to by the TCB when the initialization is complete. The
next initialization using request modifier 4 recognizes an existing environment that
supports chaining and the new environment will be chained. This permits the two
environments to share C memory files. Request modifier 4 environments in this
model can be initialized and terminated in any order.

If starting with an OS/390 Language Environment batch environment (for example,
COBOL, PL/I or C), which supports chaining by default, and during execution within
that environment a call is made to an assembler routine which initializes a request
modifier 4 environment, the batch environment is recognized and the new
environment will be chained. This allows an initial batch environment to share C
memory files with the request modifier 4 environment. Request modifier 4
environments in this model can be initialized and terminated in any order, but all
request modifier environments must be terminated before the batch environment is
terminated.

Notes:

1. When an OS/390 Language Environment batch environment is chained with
request modifier 4 environments, the OS/390 Language Environment batch
environment must be the first environment that is initialized and the last
environment that is terminated. All request modifier 4 environments initialized
within the scope of a batch environment must be terminated prior to exiting the
batch environment. Failure to do so will leave the request modifier 4
environments in a state such that attempted call or termination requests will
result in unpredictable behavior.

2. Initialization of a request modifier 4 environment while running in a non-sharable
environment, such as a request modifier 5 environment, causes the new request
modifier 4 environment to be non-sharable.

Sharing C Memory Files with Request Modifier 4 Environments: You can use
request modifier 4 to create multiple Preinitialized Compatibility Interface (PICI) C
environments. When you create a new request modifier 4 environment, it is chained
under certain circumstances to the current environment.

The following list identifies the specific features that are or are not supported in the
multiple PICI C environment scenario:

v C memory files will be shared across all C environments (as long as at least one
C environment exists) that are on the chain. This includes all PICI C
environments that are initialized and possibly an initial batch C environment.

v Because the PICI C environments are chained, initialization and termination of
these PICI C environments can be performed in any order. The chaining also
requires that the C run-time library treat each PICI C environment as equal. In C
run-time library terms, each PICI C environment is considered a root enclave
(depth=0).

v Because there can be multiple C root enclaves, sharing of C standard streams
across the C root enclaves exhibits a special behavior. When a C standard
stream is referenced for the first time, its definition is made available to each of
the C root enclaves.

v C standard streams are inherited across the system() call boundary. When a
PICI C environment is initialized from a nested enclave, it does not inherit the
standard streams of the nested enclave. Instead, it shares the C standard stream
definitions at the root level.

v C regular (nonmemory, nonstandard stream) files are also shared across the
PICI C environments.

268 OS/390 V2R10.0 C/C++ Programming Guide

v Nested C enclaves are created using the system() call. The depth is relative to
the root enclave that owns the system() call chain. You can have two C
enclaves, other than the C root enclaves, with the same depth. You can do this
by calling one of the PICI C environments from a nested enclave and then using
system() in the PICI C environment.

v C regular (nonmemory, nonstandard stream) files opened in a system() call
enclave are closed automatically when the enclave ends.

v C regular (nonmemory, nonstandard stream) files that are opened in a PICI C
environment root enclave are not closed automatically until the PICI C
environment ends. Before returning to the caller, you should close streams that
are opened by the PICI C environment. If you do not, undefined behavior can
occur.

v C memory files are not removed until the last PICI C environment is ended.

v The clrmemf() function will only remove C memory files created within the scope
of the C root enclave from which the function is called.

v When a PICI C environment is called, flushing of open streams is not performed
automatically as it is when you use the system() call.

v This function is not supported under CICS.

v This function is not supported under System Programming C (SP C).

v Use of POSIX(ON) is not supported with this feature.

Request Modifier 5 Environment Characteristics
Use request modifier 5 to establish an environment which is tolerant of an existing
environment. When a request modifier 5 environment is dormant, it is immune to
creation or termination of other environments.

Request modifier 5 environments cannot share C memory files with other
environments. Each environment of this type is created as a separate entity, not
connected to any other environment. Request modifier 5 environments can be
initialized and terminated in any order.

Restrictions on Using batch Environments with Preinitialization
Compatibility Interface C Environments
If a batch environment is to participate in C memory file sharing, such as with a
request modifier 4 environment, then the batch environment must be the first
environment created and the last one terminated. All PICI environments initialized
within the scope of the batch environment must be terminated before the batch
environment is terminated. This is required because the PICI environment shares
control blocks that belong to the batch environment. If the batch environment is
terminated, storage for those control blocks is released. Attempts to use or
terminate a PICI environment after the batch environment has terminated will result
in unpredictable behavior.

Behaviors When Mixing Request Modifier 4 and Request Modifier
5
While running in a request modifier 5 environment, initializing another environment
with request modifier 4 creates a new environment that is separated from the rest.
The new environment will not be able to share C memory files with any other
request modifier 4 environment that may already exist.

While running in a request modifier 4 environment, initialization of a request
modifier 5 environment creates a new environment that is separated from the rest.
If the new request modifier 5 environment is within the scope of a batch
environment, this new environment does not need to be terminated before the batch
environment is terminated.

Chapter 20. Combining C or C++ and Assembler 269

Using the Service Vector and Associated Routines
The service vector is a list of addresses of user-supplied service routines. The
interface requirements for each of the service routines that you can supply,
including sample routines for some of the services, are provided in the following
sections.

Using the Service Vector
If you want certain services like load and delete to be carried out by other programs
supplied by you (instead of, for example, by the LOAD and DELETE macros), you must
place the address of your service vector in the seventh fullword field of the
extended parameter list. Define the service vector according to the pattern shown in
the following example:
SRV_COUNT DS F Count of fields defined
SRV_USER_WORD DS F User-defined word
SRV_WORKAREA DS A Addr of work area for DSAs etc
SRV_LOAD DS A Addr of load routine
SRV_DELETE DS A Addr of delete routine
SRV_GETSTOR DS A Addr of get-storage routine
SRV_FREESTOR DS A Addr of free-storage routine
SRV_EXCEP_RTR DS A Addr of exception router
SRV_ATTN_RTR DS A Addr of attention router
SRV_MSG_RTR DS A Addr of message router

Although you need not use labels identical to those above, you must use the same
order. The address of your load routine is ″fourth″, and the address of your
free-storage routine is ″seventh″.

Some other constraints apply:

v You cannot omit any fields on the template that precede the last one you specify
from your definition of the service vector. You can supply zeros for the ones you
want ignored.

v The field count does not count itself. The maximum value is therefore 9.

v You must specify an address in the work area field if you specify addresses in
any of the subsequent fields.

v This work area must begin on a doubleword boundary and start with a fullword
that specifies its length. This length must be at least 256 bytes.

v For the load and delete routines, you cannot specify one of the pair without the
other; if one of these two fields contains a value of zero, the other is
automatically ignored. The same is true for the get-storage and free-storage pair.

v If you specify the get-storage and free-storage services, you must also specify
the load and delete services.

You must supply any service routines pointed to in your service vector. When
called, these service routines require the following:

v Register 13 points to a standard 18–fullword save area.

v Register 1 points to a list of addresses of parameters available to the routine.

v The third parameter in the list must be the address of the user word you
specified in the second field of the service vector.

The parameters available to each routine, and the return and reason codes that
each routine uses, are shown in the following section. The parameter addresses are
passed in the same order in which the parameters are listed.

Load Service Routine
The load routine loads named modules. The LOAD macro usually provides this
service.

270 OS/390 V2R10.0 C/C++ Programming Guide

The parameters passed to the load routine are shown in Table 32.

Table 32. Load Service Routine Parameters

Parameter ASM Attributes Type

Address of module name DS A Input

Length of name DS F Input

User word DS A Input

(Reserved field) DS F Input

Address of load point DS A Output

Size of module DS F Output

Return code DS F Output

Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will contain
zeros.

The load routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — module loaded above line when in AMODE 24

8/4 unsuccessful — load failed

16/4 unrecoverable error occurred

Delete Service Routine
The delete routine deletes named modules. The DELETE macro usually provides this
service.

The parameters passed to the delete routine are shown in Table 33.

Table 33. Delete Service Routine Parameters

Parameter ASM Attributes Type

Address of module name DS A Input

Length of name DS F Input

User word DS A Input

(Reserved field) DS F Input

Return code DS F Output

Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will contain
zeros. Every delete action must have a corresponding load action, and the task that
does the load must also do the delete. Counts of deletes and loads performed must
be maintained by the service routines.

The delete routine can set the following return/reason codes:

0/0 successful

8/4 unsuccessful — delete failed

16/4 unrecoverable error occurred

Chapter 20. Combining C or C++ and Assembler 271

Get-Storage Service Routine
The get-storage routine obtains storage. The GETMAIN macro usually provides this
service.

The parameters passed to the get-storage routine are shown in Table 34.

Table 34. Get-Storage Service Routine Parameters

Parameter ASM Attributes Type

Amount desired DS F Input

Subpool number DS F Input

User word DS A Input

Flags DS F Input

Address of obtained storage DS A Output

Amount obtained DS F Output

Return code DS F Output

Reason code DS F Output

The get-storage routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the storage could not be obtained

16/4 unrecoverable error occurred.

Free-Storage Service Routine
The free-storage routine frees storage. The FREEMAIN macro usually provides this
service.

The parameters passed to the free-storage routine are shown in Table 35.

Table 35. Free-Storage Service Routine Parameters

Parameter ASM Attributes Type

Amount to be freed DS F Input

Subpool number DS F Input

User word DS A Input

Address of storage DS A Input

Return code DS F Output

Reason code DS F Output

The free-storage routine can set the following return/reason codes:

0/0 successful

16/4 unrecoverable error occurred

Exception Router Service Routine
The exception router traps and routes exceptions. The ESTAE and ESPIE macros
usually provide this service.

272 OS/390 V2R10.0 C/C++ Programming Guide

The parameters passed to the exception router are shown in Table 36.

Table 36. Exception Router Service Routine Parameters

Parameter ASM Attributes Type

Address of exception handler DS A Input

Environment token DS A Input

User word DS A Input

Abend flags DS F Input

Check flags DS F Input

Return code DS F Output

Reason code DS F Output

During initialization, if the ESTAE and/or ESPIE options are in effect, the common
library puts the address of the common library exception handler in the first field of
the above parameter list, and sets the environment token field to a value that is
passed on to the exception handler. It also sets abend and check flags as
appropriate, and then calls your exception router to establish an exception handler.

The meaning of the bits in the abend flags are given by the following structure:
struct {

struct {
unsigned short abends : 1, /*control for system abends*/

reserved : 15;
} system;
struct {

unsigned short abends : 1, /*control for user abends*/
reserved : 15;

} user;
} abendflags;

The meaning of the bits in the check flags are given by the following structure:
struct {

struct {
unsigned short reserved : 1,

operation : 1,
privileged_operation : 1,
execute : 1,
protection : 1,
addressing : 1,
specification : 1,
data : 1,
fixed_overflow : 1,
fixed_divide : 1,
decimal_overflow : 1,
decimal_divide : 1,
exponent_overflow : 1,
exponent_divide : 1,
significance : 1,
float_divide : 1;

} type;
unsigned short reserved;

} checkflags;

The exception router service routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the exit could not be (de)-established

Chapter 20. Combining C or C++ and Assembler 273

16/4 unrecoverable error occurred

Attention Router Service Routine
The attention router traps and routes attention interrupts. The STAX macro usually
provides this service.

The parameters passed to the attention router are shown in Table 37.

Table 37. Attention Router Service Routine Parameters

Parameter ASM Attributes Type

Address of attention router DS A Input

Environmental token DS A Input

User word DS A Input

Return code DS F Output

Reason code DS F Output

The attention router routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

When an attention interrupt occurs, your attention router must invoke the attention
handler. Use the address in the attention handler field passing the parameters
shown in Table 38.

Table 38. Attention Handler Parameters

Parameter ASM Attributes Type

Environment token DS A Input

Return code DS F Output

Reason code DS F Output

The return/reason codes upon return from the attention handler are:

0/0 The attention interrupt has been or will be handled

If an attention interrupt occurs in the attention handler or when an attention handler
is not started, your attention router should ignore the attention interrupt.

Message Router Service Routine
The message router routes messages written by the run-time library. These
messages are normally written to the Language Environment Message File.

The parameters passed to the message router are shown in Table 39.

Table 39. Message Router Service Routine Parameters

Parameter ASM Attributes Type

Address of message DS A Input

Message length in bytes DS F Input

User word DS A Input

Line length DS F Input

274 OS/390 V2R10.0 C/C++ Programming Guide

Table 39. Message Router Service Routine Parameters (continued)

Parameter ASM Attributes Type

Return code DS F Output

Reason code DS F Output

If the address of the message is zero, your message router is expected to return
the size of the line to which messages are written (in the length field). The length
field allows messages to be formatted correctly, for example, broken at blanks.

The message routine must use the following return/reason codes:

0/0 successful

16/4 unrecoverable error occurred

Chapter 20. Combining C or C++ and Assembler 275

276 OS/390 V2R10.0 C/C++ Programming Guide

Part 4. Coding: Advanced Topics

This part contains the following coding topics:

v “Chapter 21. Building and Using Dynamic Link Libraries (DLLs)” on page 279

v “Chapter 22. Building Complex DLLs” on page 295

v “Chapter 23. Using Threads in an OS/390 UNIX Application” on page 321

v “Chapter 24. Reentrancy in OS/390 C/C++” on page 335

v “Chapter 25. Using the Decimal Data Type in C” on page 343

v “Chapter 26. Using the Decimal Data Type in C++” on page 363

v “Chapter 27. Handling Exceptions, Error Conditions, and Signals” on page 371

v “Chapter 28. Optimizing Code” on page 391

v “Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis” on
page 413

v “Chapter 30. Network Communications under UNIX System Services” on
page 429

v “Chapter 31. Interprocess Communication Using OS/390 UNIX” on page 457

v “Chapter 32. Structuring a Program That Uses C++ Templates” on page 461

v “Chapter 33. Using Environment Variables” on page 471

© Copyright IBM Corp. 1996, 2000 277

278 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 21. Building and Using Dynamic Link Libraries (DLLs)

A dynamic link library (DLL) is a collection of one or more functions or variables in
an executable module that is executable or accessible from a separate application
module. In an application without DLLs, all external function and variable references
are resolved statically at bind time. In a DLL application, external function and
variable references are resolved dynamically at run-time.

This chapter defines DLL concepts and shows how to build simple DLLs.
“Chapter 22. Building Complex DLLs” on page 295 shows how to build complex
DLLs and discusses some of the compatibility issues of DLLs.

There are two types of DLLs: simple and complex. A simple DLL contains only DLL
code in which special code sequences are generated by the compiler for
referencing functions and external variables, and using function pointers. With these
code sequences, a DLL application can reference imported functions and imported
variables from a DLL as easily as it can non-imported ones.

A complex DLL contains mixed code, that is, some DLL code and some non-DLL
code. A typical complex DLL would contain some C++ code, which is always DLL
code, and some C object modules compiled with the NODLL compiler option bound
together.

The object code generated by the OS/390 C++ compiler is always DLL code. Also,
the object code generated by the OS/390 C compiler with either the DLL compiler
option or the XPLINK compiler option is DLL code. Other types of object code are
non-DLL code. For more information about compiler options for DLLs, see the
OS/390 C/C++ User’s Guide.

XPLINK compiled code and non-XPLINK compiled code cannot be statically mixed
(with the exception of OS_UPSTACK and OS_NOSTACK (or OS31_NOSTACK)
linkages). The XPLINK compiled code can only be bound together with other
XPLINK-compiled code. You can mix non-XPLINK compiled DLLs with XPLINK
compiled DLLs (the same is true for routines which you load with fetch()). The
OS/390 C++ run-time library manages the transitions between the two different
linkage styles across the DLL and fetch() boundaries.

Note: There is inherent performance degradation when the OS/390 C++ run-time
library transitions across these boundaries. In order for your application to
perform well, these transitions should be made infrequently. When using
XPLINK, recompile all parts of the application with the XPLINK compiler
option wherever possible.

Notes:

1. As of OS/390 Version 2, the C/C++ IBM Open Class Library is licensed with the
base operating system and enables access to the C/C++ Class Library by
applications that require the library at execution time. This eliminates the need
to license the C/C++ Compiler features or to use the DLL Rename Utility.
Provided you use the base operating system, the DLL Rename Utility discussed
in this chapter is not applicable.

2. If your application uses the IBM-supplied C++ Class Library DLLs for execution
on a system prior to OS/390 Version 2, you must rename them using the DLL
Rename utility. See the OS/390 C/C++ User’s Guide for more information on
using this utility.

© Copyright IBM Corp. 1996, 2000 279

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

Support for DLLs
DLL support is available for applications running under the following systems:

v OS/390 batch

v CICS

v IMS

v TSO

v OS/390 UNIX

It is not available for applications running under SPC, CSP or MTF.

Note: All potential DLL executable modules are registered in the CICS PPT control
table in the CICS environment and are invoked at run time.

DLL Concepts and Terms
Application

All the code executed from the time an executable program module is
invoked until that program, and any programs it directly or indirectly calls, is
terminated.

DLL An executable module that exports functions, variable definitions, or both, to
other DLLs or DLL applications.

DLL application
An application that references imported functions, imported variables, or
both, from other DLLs.

DLL code
Object code resulting when C source code is compiled with the DLL or
XPLINK compiler options. C++ code is always DLL code.

Executable program (or executable module)
A file which can be loaded and executed on the computer. OS/390 supports
two types:

Load module
An executable residing in a PDS.

Program object
An executable residing in a PDSE or in the HFS.

Exported functions or variables
Functions or variables that are defined in one executable module and can
be referenced from another executable module. When an exported function
or variable is referenced within the executable module that defines it, the
exported function or variable is also non-imported.

Function descriptor
An internal control block containing information needed by compiled code to
call a function.

Imported functions and variables
Functions and variables that are not defined in the executable module
where the reference is made, but are defined in a referenced DLL.

Non-imported functions and variables
Functions and variables that are defined in the same executable module
where a reference to them is made.

280 OS/390 V2R10.0 C/C++ Programming Guide

|

|
|
|
|

||
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

Object code (or object module)
A file output from a compiler after processing a source code module, which
can subsequently be used to build an executable program module.

Source code (or source module)
A file containing a program written in a programming language.

Variable descriptor
An internal control block containing information about the variable needed
by compiled code.

Writable Static Area (WSA)
An area of memory that is modifiable during program execution. Typically,
this area contains global variables and function and variable descriptors for
DLLs.

XPLINK application
An application that is made up of C and/or C++ object modules that were
compiled with the XPLINK compiler option. XPLINK applications are always
DLL applications. Since the C/C++ run-time library for XPLINK is packaged
as a DLL, any XPLINK executable module that calls a C/C++ run-time
library is also importing from a DLL.

XPLINK code
Object code resulting when C or C++ source code is compiled with the
XPLINK compiler option. XPLINK code is always DLL code.

Loading a DLL
The DLL is loaded implicitly when an application references an imported variable or
calls an imported function. DLLs can be explicitly loaded by calling dllload(). Due
to optimizations performed, the DLL implicit load point may be moved and is only
done before the actual reference occurs.

Loading a DLL Implicitly
When an application uses functions or variables defined in a DLL, the compiled
code loads the DLL. This implicit load is transparent to the application. The load
establishes the required references to functions and variables in the DLL by
updating the control information contained in function and variable descriptors.

If the DLL contains static classes, constructors are run when the DLL is loaded,
typically before main(). Their destructors run once after they return from main().

To implicitly load a DLL, do one of the following:

1. Statically initialize a variable pointer to the address of an exported DLL variable.

2. Reference a function pointer that points to an exported function.

3. Call an exported function.

4. Reference (use, modify, or take the address of) an exported variable.

5. Call through a function pointer that points to an exported function.

In the first situation, the DLL is loaded before main() is invoked, and if the DLL
contains C++ code, constructors are run before main() is invoked. In the other
situations, the DLL loading may be delayed until the time of the implicit call,
although optimization may move this load earlier.

If the DLL application references (imports) an exported DLL variable, that DLL may
be implicitly loaded before that DLL application is invoked (not necessarily before

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 281

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

main() is invoked). With XPLINK, the DLL will always be implicitly loaded before
invoking the DLL application that references (imports) a DLL variable or takes the
address of a DLL function.

Note: When a DLL is loaded, its writable static is initialized. If the DLL load module
contains C++ code, static constructors are run once at initial load time, and
static destructors are run once at program termination. Static destructors are
run in the reverse order of the static constructors.

Loading a DLL Explicitly
The use of DLLs can also be explicitly controlled by the application code at the
source level. The application uses explicit source-level calls to one or more run-time
services to connect the reference to the definition. The connections for the
reference and the definition are made at run-time.

The DLL application writer can explicitly call the following run-time services:

v dllload(), which loads the DLL and returns a handle to be used in future
references to this DLL

v dllqueryfn(), which obtains a pointer to a DLL function

v dllqueryvar(), which obtains a pointer to a DLL variable

v dllfree(), which frees a DLL loaded with dllload()

For more information about the run-time services, see the OS/390 C/C++ Run-Time
Library Reference.

To explicitly call a DLL in your application:

v Determine the names of the exported functions and variables that you want to
use. You can get this information from the DLL provider’s documentation or by
looking at the definition side-deck file that came with the DLL. A definition
side-deck is a directive file that contains an IMPORT control statement for each
function and variable exported by that DLL.

v Include the DLL header file dll.h in your application.

v Compile your source as usual.

v Bind your object with the binder using the same AMODE value as the DLL.

Note: You do not need to bind with the definition side-deck if you are calling the
DLL explicitly with the run-time services, since there are no references
from the source code to function or variable names in the DLL, for the
binder to resolve. Therefore the DLL will not be loaded until you explicitly
load it with the dllload() run-time service.

Figure 49 on page 283 is an example of an application that uses explicit DLL calls.

Explicit Use of a DLL in an Application
The following example shows explicit use of a DLL in an application.

282 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|

|
|
|
|

|

|

|
|
|
|
|

|

#include <dll.h>
#include <stdio.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {

#endif

typedef int (DLL_FN)(void);

#ifdef __cplusplus
}

#endif

#define FUNCTION "FUNCTION"
#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {
fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"

" where\n"
" <DLL-name> is the DLL to load,\n"
" <type> can be one of FUNCTION or VARIABLE\n"
" and <identifier> is the function or variable\n"
" to reference\n", progName);

return;
}

main(int argc, char* argv[]) {
int value;
int* varPtr;
char* dll;
char* type;
char* id;
dllhandle* dllHandle;

if (argc != 4) {
Syntax(argv[0]);
return(4);

}

Figure 49. Explicit Use of a DLL in an Application (Part 1 of 2)

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 283

For more information on the DLL functions, see the OS/390 C/C++ Run-Time
Library Reference.

Managing the Use of DLLs When Running DLL Applications
This section describes how OS/390 C/C++ manages loading, sharing and freeing
DLLs when you run a DLL application.

Loading DLLs
When you load a DLL for the first time, either implicitly or via an explicit dllload(),
writable static is initialized. If the DLL is written in C++, constructors are run.

dll = argv[1];
type = argv[2];
id = argv[3];

dllHandle = dllload(dll);
if (dllHandle == NULL) {

perror("DLL-Load");
fprintf(stderr, "Load of DLL %s failed\n", dll);
return(8);

}

if (strcmp(type, FUNCTION)) {
if (strcmp(type, VARIABLE)) {

fprintf(stderr,
"Type specified was not " FUNCTION " or " VARIABLE "\n");

Syntax(argv[0]);
return(8);

}
/*
* variable request, so get address of variable
*/
varPtr = (int*)(dllqueryvar(dllHandle, id));
if (varPtr == NULL) {

perror("DLL-Query-Var");
fprintf(stderr, "Variable %s not exported from %s\n", id, dll);
return(8);

}
value = *varPtr;
printf("Variable %s has a value of %d\n", id, value);

}
else {

/*
* function request, so get function descriptor and call it
*/
DLL_FN* fn = (DLL_FN*) (dllqueryfn(dllHandle, id));
if (fn == NULL) {

perror("DLL-Query-Fn");
fprintf(stderr, "Function %s() not exported from %s\n", id, dll);
return(8);

}
value = fn();
printf("Result of call to %s() is %d\n", id, value);

}
dllfree(dllHandle);

return(0);
}

Figure 49. Explicit Use of a DLL in an Application (Part 2 of 2)

284 OS/390 V2R10.0 C/C++ Programming Guide

You can load DLLs from an OS/390 UNIX HFS as well as from conventional data
sets. The following list specifies the order of a search for unambiguous and
ambiguous file names.

v Unambiguous file names

– If the file has an unambiguous HFS name (it starts with a ./ or contains a /),
the file is searched for only in the HFS.

– If the file has an unambiguous MVS name, and starts with two slashes (//),
the file is only searched for in MVS.

v Ambiguous file names

For ambiguous cases, the settings for POSIX are checked.

– When specifying the POSIX(ON) run-time option, the run-time library attempts
to load the DLL as follows:

1. An attempt is made to load the DLL from the HFS. This is done using the
system service BPX1LOD. For more information on this service, see
OS/390 UNIX System Services Programming: Assembler Callable
Services Reference.

If the environment variable LIBPATH is set, each directory listed will be
searched for the DLL. See “Chapter 33. Using Environment Variables” on
page 471 for information on LIBPATH. Otherwise the current directory will
be searched for the DLL. Note that a search for the DLL in the HFS is
case-sensitive.

- If the DLL is found and contains an external link name of eight
characters or less, the uppercase external link name is used to attempt
a LOAD from the caller’s MVS load library search order. If the DLL is
not found or the external link name is more than eight characters, then
the load fails.

- If the DLL is found and its sticky bit is on, any suffix is stripped off.
Next, the name is converted to uppercase, and the base DLL name is
used to attempt a LOAD from the caller’s MVS load library search
order. If the DLL is not found or the base DLL name is more than eight
characters, the version of the DLL in the HFS is loaded.

- If the DLL is found and does not fall into one of the previous two cases,
a load from the HFS is attempted.

2. If the DLL could not be loaded from the HFS, an attempt is made to load
the DLL from the caller’s MVS load library search order. This is done by
calling the OS/390 service LOAD with the DLL name, which must be eight
characters or less and is converted to uppercase. LOAD searches data sets
in the following order:

a. Run-time library services (if active)

b. Job Pack Queue

c. Current STEPLIB/JOBLIB

d. LPA

e. Link List

v When POSIX(OFF) is specified the sequence is reversed.

– An attempt to load the DLL is made from the caller’s MVS load library search
order.

– If the DLL could not be loaded from the caller’s MVS load library then an
attempt is made to load the DLL from the HFS.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 285

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|

|

|
|

|
|

Sharing DLLs
DLLs are shared at the enclave level (as defined by the OS/390 Language
Environment). A referenced DLL is loaded only once per enclave and only one copy
of the writable static is created or maintained per DLL per enclave. Thus, one copy
of a DLL serves all modules in an enclave regardless of whether the DLL is loaded
implicitly or explicitly. You can access the same DLL within an enclave both
implicitly and by explicit run-time services.

All accesses to a variable in a DLL in an enclave refer to the only copy of that
variable. All accesses to a function in a DLL in an enclave refer to the only copy of
that function.

Although only one copy of a DLL is maintained per enclave, multiple logical loads
are counted and used to determine when the DLL can be deleted. For a given DLL
in a given enclave, there is one logical load for each explicit dllload() request.

DLLs are not shared in a nested enclave environment. Only the enclave that loaded
the DLL can access functions and variables.

Freeing DLLs
You can free explicitly loaded DLLs with a dllfree() request. This request is
optional because the DLLs are automatically deleted by the run time library when
the enclave is terminated.

Implicitly loaded DLLs cannot be deleted from the DLL application code. They are
deleted by the run-time library at enclave termination. Therefore, if a DLL has been
both explicitly and implicitly loaded, the DLL can only be deleted by the run-time
when the enclave is terminated.

Creating a DLL or a DLL Application
Building a DLL or a DLL application is similar to creating a C or C++ application. It
involves the following steps:

1. Writing your source code

2. Compiling your source code

3. Binding your object modules

Building a Simple DLL
This section shows how to build a simple DLL.

Writing Your C Code
To build a simple C DLL, write code using the #pragma export directive to export
specific external functions and variables as shown in Figure 50 on page 287.

286 OS/390 V2R10.0 C/C++ Programming Guide

|

|
|
|
|
|
|

|
|
|

For the previous example, the functions bopen(), bclose(), bread(), and bwrite()
are exported; the variable berror is exported; and the variable buffer is not
exported.

Note: To export all defined functions and variables with external linkage in the
compilation unit to the users of the DLL, compile with the EXPORTALL compile
option. All defined functions and variables with external linkage will be
accessible from this DLL and by all users of this DLL. However, exporting all
functions and variables has a performance penalty, especially with IPA.
When you use EXPORTALL you do not need to include #pragma export in your
code.

Writing Your C++ Code
To create a simple C++ DLL:

v Ensure that classes and class members are exported correctly, especially if they
use templates.

v Use _Export or the #pragma export directive to export specific functions and
variables.

For example, to create a DLL executable module TRIANGLE, export the
getarea() function, the getperim() function, the static member objectCount and
the constructor for class triangle using #pragma export:

#pragma export(bopen)
#pragma export(bclose)
#pragma export(bread)
#pragma export(bwrite)
int bopen(const char* file, const char* mode) {

...
}
int bclose(int) {

...
}
int bread(int bytes) {

...
}
int bwrite(int bytes) {

...
}
#pragma export(berror)
int berror;
char buffer[1024];

...

Figure 50. Using #pragma export to Create a DLL Executable Module Named BASICIO

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 287

v Do not inline the function if you apply the _Export keyword to the function
declaration.

v Always export constructors and destructors when using the _Export keyword.

v Apply the _Export keyword to a class. This keyword automatically exports static
members and defined functions of that class, constructors, and destructors.

_class Export triangle
{

public:
static int objectCount;
double getarea();
double getperim();
triangle::triangle(void);

};

v To export all external functions and variables in the compilation unit to the users
of this DLL, you can also use the compiler option EXPORTALL. This compiler option
is described in the OS/390 C/C++ User’s Guide and #pragma directives are
described in detail in the OS/390 C/C++ Language Reference. If you use the
EXPORTALL option, you do not need to include #pragma export or _Export in your
code.

Compiling Your Code
For C source code compiled without using the DLL or XPLINK compiler options, that
code cannot reference (import) function or variables that are exported by a DLL.
NODLL is the default when compiling C source code, and the XPLINK compiler option
is not used. C source code compiled with the DLL or XPLINK compiler options, and
all C++ source code, can reference exported functions and variables. Source code
that can reference exported variables and functions is called DLL application code.
It need not itself be a DLL, in that it may not itself export any functions or variables.

When compiling DLL application source code, the compiler generates object code in
such a way that references to external functions and variables can be resolved

class triangle : public area
{

public:
static int objectCount;
getarea();
getperim();
triangle::triangle(void);

};
#pragma export(triangle::objectCount)
#pragma export(triangle::getarea())
#pragma export(triangle::getperim())
#pragma export(triangle::triangle(void))

Figure 51. Using #pragma Export to Create a DLL Executable Module TRIANGLE

class triangle : public area
{

public:
static int _Export objectCount;
double _Export getarea();
double _Export getperim();
_Export triangle::triangle(void);

};

Figure 52. Using _export to Create DLL Executable Module TRIANGLE

288 OS/390 V2R10.0 C/C++ Programming Guide

|

|
|
|
|
|
|
|

|
|

statically or dynamically (that is, resolved to a DLL). If you are uncertain whether
non-XPLINK C source code references a DLL, you should specify the DLL or XPLINK
compiler options. Compiling source code as DLL application code eliminates the
potential compatibility problems that may occur when binding DLL application code
with non-DLL application code. See “Chapter 22. Building Complex DLLs” on
page 295 for more information on compatibility issues.

The decision to use XPLINK needs to be made independently from the decision to
build a DLL application. While XPLINK compiled code is always DLL application
code, the XPLINK and non-XPLINK function call linkages are different. There is DLL
compatibility for XPLINK and non-XPLINK at the DLL boundary, but XPLINK and
non-XPLINK object modules cannot be mixed in the same DLL. Also, there is a
performance penalty when transitioning between XPLINK and non-XPLINK DLLs
(and vice versa). It is best to have a DLL application made up of all XPLINK or all
non-XPLINK executable modules to the extent that is possible. For more
information on XPLINK, see “Using XPLINK” on page 409.

Binding Your Code
When creating a DLL, the binder automatically creates a definition side-deck that
describes the functions and the variables that can be imported by DLL applications.
You must provide the generated definition side-deck to all users of the DLL. Any
DLL application that implicitly loads the DLL must include the definition side-deck
when they bind.

Note: You can choose to store your DLL in a PDS load library, but only if it is
non-XPLINK. Otherwise, it must be stored in a PDSE load library or in the
HFS. To target a PDS load library, prelink and link your code rather than
using the binder. For information on prelinking and linking, see the appendix
on the Prelinker in OS/390 C/C++ User’s Guide.

When binding the C object module as shown in Figure 50 on page 287, the binder
generates the following definition side-deck:
IMPORT CODE,BASICIO,'bopen'
IMPORT DATA,BASICIO,'bclose'
IMPORT DATA,BASICIO,'bread'
IMPORT DATA,BASICIO,'bwrite'
IMPORT DATA,BASICIO,'berror'

Note: You should also provide a header file containing the prototypes for exported
functions and external variable declarations for exported variables.

When binding the C++ object modules shown in Figure 51 on page 288, the binder
generates the following definition side-deck.
IMPORT CODE,TRIANGLE,'getarea__8triangleFv'
IMPORT CODE,TRIANGLE,'getperim__8triangleFv'
IMPORT CODE,TRIANGLE,'__ct__8triangleFv'

You can edit the definition side-deck to remove any functions and variables that you
do not want to export. You must maintain the file as a binary file with fixed format
and a record length of 80 bytes. Also, use proper binder continuation rules if the
IMPORT statement spans multiple lines, and you change the length of the
statement. In the above example, if you do not want to expose getperim(), remove
the control statement IMPORT CODE ,TRIANGLE, getperim__8triangleFv from the
definition side-deck.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 289

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

Notes:

1. Removing functions and variables from the side definition deck does not
minimize the performance impact caused by specifying the EXPORTALL
compiler option.

2. Editing the side-deck is not recommended. If the DLL name needs to be
changed, you should bind using the appropriate name. Instead of using the
EXPORTALL compiler option, you should remove unnecessary IMPORT
statements by using explicit #pragma export statements or _Export directives.

The definition side-deck contains mangled names of exported C++ functions, such
as getarea__8triangleFv. To find the original function or variable name in your
source module, review the compiler listing, the binder map, or use the CXXFILT
utility, if you do not have access to the listings. This will permit you to see both the
mangled and demangled names. For more information on the CXXFILT utility, see
the OS/390 C/C++ User’s Guide.

Building a Simple DLL Application
A simple DLL application contains object modules that are made up of only
DLL-code. The application may consist of multiple source modules. Some of the
source modules may contain references to imported functions, imported variables,
or both.

To use an implicitly loaded DLL (sometimes called a load-on-call DLL) in your
simple DLL application:

1. Write your code as you would if the functions were statically bound.

2. Compile as follows:

v Compile your non-XPLINK application C source files with the following
compiler options:

– DLL

– RENT

– LONGNAME

These options instruct the compiler to generate special code when calling
functions and referencing external variables. If you are using OS/390 UNIX,
RENT and LONGNAME are already the defaults, so compile as:
c89 -W c,DLL ...

v Compile your C++ source files normally. A C++ application is always DLL
code.

v For XPLINK, compile your C and C++ source files with the XPLINK compiler
option. XPLINK compiled C and C++ source is always DLL code.

3. Bind your object modules as follows.

v If you are using OS/390 Batch, use the IBM-supplied procedure when you
bind your object modules. You must chose the appropriate procedures for
XPLINK or non-XPLINK.

v If you are not using the IBM-supplied procedure, specify the RENT,
DYNAM(DLL), and CASE(MIXED) binder options when you bind your object
modules.

Note: XPLINK and non-XPLINK use different OS/390 Language Environment
libraries, and XPLINK requires the C run-time library side-deck for

290 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|

|
|
|
|
|
|

|
|

|

|

|
|

|

|

|

|
|
|

|

|
|

|
|

|

|
|
|

|
|
|

|
|

resolution of C run-time library function calls. For more information,
see ″Planning to Link-Edit and Run″ in OS/390 Language Environment
Programming Guide.

v If you are using OS/390 UNIX specify the following option for the bind step
for c89 or c++.
c89 -W l,DLL

If you are using XPLINK, also add the XPLINK option, so that c89 will use the
correct OS/390 Language Environment libraries and side-decks:
c89 -W l,DLL,XPLINK ...

Include the definition side-deck from the DLL provider in the set of object
modules to bind. The binder uses the definition side-deck to resolve references
to functions and variables defined in the DLL. If you are referencing multiple
DLLs, you must include multiple definition side-decks.

Note: Because definition side-decks in automatic library call (autocall)
processing will not be resolved, you must use the INCLUDE statement.

The following is a code fragment illustrating how an application can use the DLL
described previously. Compile normally and bind with the definition side-deck
provided with the TRIANGLE DLL.

See Figure 53 on page 292 for a summary of the processing steps required for the
application (and related DLLs).

Creating and Using DLLs
Figure 53 on page 292 summarizes the use of DLLs for both the DLL provider and
for the writer of applications that use them. In this example, application ABC is
referencing functions and variables from two DLLs, XYZ and PQR. The connection
between DLL preparation and application preparation is shown. Each DLL shown
contains a single compilation unit. The same general scheme applies for DLLs
composed of multiple compilation units, except that they have multiple compiles and
a single bind for each DLL. For simplicity, this example assumes the following:

v ABC does not export variables or functions.

v XYZ and PQR do not use other DLLs.

v The application is completely non-XPLINK and written in C.

extern int getarea(); /* function prototype */
main () {

...
getarea(); /* imported function reference */
...

}

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 291

|
|
|

|
|

|

|
|

|

|
|
|
|

|
|

|

|

|

|

|

DLL Restrictions
Consider the following restrictions when creating DLLs and DLL applications:

v The entry point for a DLL must be either an OS/390 C/C++ or a Language
Environment conforming entry point. An entry point is considered Language
Environment conforming if it includes CEESTART or if it was compiled using a
Language Environment conforming compiler.

DLL DLLAPPLICATION

DLL Source:

hooVar definition
kooVar definition
foo() definition
goo() definition

DLL Source:

rooVar definition
sooVar definition
boo() definition
soo() definition

XYZ.c

XYZ.obj

XYZ.objdef

ABC.c

ABC.obj

PQR.c

PQR.obj

PQR.objdef

Compile with
EXPORTALL, DLL

Compile
with
DLL

Compile with
EXPORTALL, DLL

DLL TEXT DLL TEXTAPPL TEXT

Import code 'XYZ' foo
Import code 'XYZ' goo
Import data 'XYZ hooVar
Import data 'XYZ' kooVar

Import code 'PQR' boo
Import code 'PQR' soo
Import data 'PQR' rooVar
Import data 'PQR' sooVar

Link

Bind

XYZ.pobj ABC.pobj PQR.pobj

DLL program DLL programApplication program

foo() ref
goo() ref
boo() ref
hooVar ref
kooVar ref
rooVar ref

Application Source:

Bind Bind

Figure 53. Summary of DLL and DLL Application Preparation and Usage

292 OS/390 V2R10.0 C/C++ Programming Guide

Note: If the entry point for a DLL does not meet either of the above conditions,
Language Environment issues an error and terminates the application.

v In a DLL application that contains main(), main() cannot be exported.

v The AMODE of a DLL application must be the same as the AMODE of the DLL
that it calls.

v DLL facilities are not available:

– Under MTF, CSP or SPC

– To application programs with main() written in PL/I that dynamically call
OS/390 C functions

v You cannot implicitly or explicitly perform a physical load of a DLL while running
C++ static destructors. However, a logical load of a DLL (meaning that the DLL
has previously been loaded into the enclave) is allowed from a static destructor.
In this case, references from the load module containing the static destructor to
the previously-loaded DLL are resolved.

v You cannot use the functions set_new_handler() or set_unexpected() in a DLL if
the DLL application is expected to invoke the new handler or unexpected function
routines.

v When using the explicit DLL functions in a multithreaded environment, avoid any
situation where one thread frees a DLL while another thread calls any of the DLL
functions. For example, this situation occurs when a main() function uses
dllload() to load a DLL, and then creates a thread that uses the ftw() function.
The ftw() target function routine is in the DLL. If the main() function uses
dllfree() to free the DLL, but the created thread uses ftw() at any point, you
will get an abend.

To avoid a situation where one thread frees a DLL while another thread calls a
DLL function, do either of the following:

– Do not free any DLLs by using dllfree() (the OS/390 Language Environment
will free them when the enclave is terminated).

– Have the main() function call dllfree() only after all threads have been
terminated.

v For DLLs to be processed by IPA, they must contain at least one function or
method. Data-only DLLs will result in a compilation error.

v Use of circular DLLs may result in unpredictable behavior related to the
initialization of non-local static objects. For example, if a static constructor (being
run as part of loading DLL ″A″) causes another DLL ″B″ to be loaded, then DLL
″B″ (or any other DLLs that ″B″ causes to be loaded before static constructors
for DLL ″A″ have completed) cannot expect non-local static objects in ″A″ to be
initialized (that is what static constructors do). You should ensure that non-local
static objects are initialized before they are used, by coding techniques such as
counters or by placing the static objects inside functions.

Improving Performance
This section contains some hints on using DLLs efficiently. Effective use of DLLs
may improve the performance of your application. Following are some suggestions
that may improve performance:

v If you are using a particular DLL frequently across multiple address spaces, the
DLL can be installed in the LPA or ELPA. When the DLL resides in a PDSE, the
dynamic LPA services should be used (this will always be the case for XPLINK
applications). Installing in the LPA/ELPA may give you the performance benefits
of a single rather than multiple load of the DLL

v When writing XPLINK applications, avoid frequent calls from XPLINK to
non-XPLINK DLLs, and vice-versa. These transitions are expensive, so you

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 293

|
|
|
|
|

|
|

should build as much of the application as possible as either XPLINK or
non-XPLINK. When there is a relatively large amount of function calls compared
to the rest of the code, the performance of an XPLINK application can be
significantly better than non-XPLINK. It is acceptable to make calls between
XPLINK and non-XPINK, when a relatively large amount of processing will be
done once the call is made.

v Be sure to specify the RENT option when you bind your code. Otherwise, each
load of a DLL results in a separately loaded DLL with its own writable static.
Besides the performance implications of this, you are likely to get incorrect
results if the DLL exports variables (data).

v Group external variables into one external structure.

v When using OS/390 UNIX avoid unnecessary load attempts.

OS/390 Language Environment supports loading a DLL residing in the HFS or a
dataset. However, the location from which it tries to load the DLL first varies
depending whether your application runs with the run-time option POSIX(ON) or
POSIX(OFF).

If your application runs with POSIX(ON), OS/390 Language Environment tries to
load the DLL from the HFS first. If your DLL is a data set member, you can avoid
searching the HFS directories. To direct a DLL search to a dataset, prefix the
DLL name with two slashes (//) as is in the following example.
//MYDLL

If your application runs with POSIX(OFF), OS/390 Language Environment tries to
load your DLL from a dataset. If your DLL is an HFS file, you can avoid
searching a dataset. To direct a DLL search to the HFS, prefix the DLL name
with a period and slash (./) as is done in the following example.
./mydll

Note: DLL names are case sensitive in the HFS. If you specify the wrong case
for your DLL that resides in the HFS, it will not be found in the HFS.

v For IPA, you should only export subprograms (functions and C++ methods) or
variables that you need for the interface to the final DLL. If you export
subprograms or variables unnecessarily (for example, by using the EXPORTALL
option), you severely limit IPA optimization. In this case, global variable
coalescing and pruning of unreachable or 100% inlined code does not occur. To
be processed by IPA, DLLs must contain at least one subprogram. Attempts to
process a data-only DLL will result in a compilation error.

v The suboption NOCALLBACKANY of the compiler option DLL is more efficient than the
CALLBACKANY suboption. The CALLBACKANY option calls an OS/390 Language
Environment routine at run-time. This run-time service enables direct function
calls. Direct function calls are function calls through function pointers that point to
actual function entry points rather than function descriptors. The use of
CALLBACKANY will result in extra overhead at every occurrence of a call through a
function pointer. This is unnecessary if the calls are not direct function calls.

294 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|
|

|
|
|
|

Chapter 22. Building Complex DLLs

Before you attempt to build complex DLLs it is important to understand the
differences between the terms DLL, DLL code, and DLL application.

A DLL (Dynamic Link Library) is a file containing executable code and data bound
to a program at run time. The code and data in a DLL can be shared by several
applications simultaneously. It is important to note that compiling code with the DLL
option does not mean that the produced executable will be a DLL. To create a DLL,
you must use the #pragma export or EXPORTALL compiler option.

DLL code is code that can use a DLL. The following are DLL code:
v C++ code
v C code compiled using the DLL or XPLINK option

Code written in languages other than C++ and compiled without the DLL or XPLINK
option is non-DLL code.

A DLL application is an application that can use exported functions or variables
that are bound with DLL code. All of the source files that make up a DLL application
do not need to be compiled with the DLL or XPLINK option, only the source files that
reference exported functions and exported global variables.

If you link DLL code with non-DLL code, the resulting DLL or DLL application is
called complex. You might compile your code as non-DLL for the following reasons:

1. Source modules do not use C or C++.

2. To prevent problems which occur when a non-DLL function pointer call uses
DLL code. This problem takes place when a function makes a call through a
function pointer that points to a function entry rather than a function descriptor.

For complex DLLs and DLL applications that you compile without XPLINK, you can
use the CBA suboption of the DLL|NODLL compiler option. With this suboption, a call
is made to an OS/390 Language Environment routine at run-time for each function
call through a function pointer. This call eliminates the error that would occur when
a non-DLL function pointer passes to DLL code.

Note: In this book, unless otherwise specified, all references to the DLL|NODLL
compiler option assume suboption NOCBA. For more information on the
compiler option DLL, see OS/390 C/C++ User’s Guide.

If you specify the XPLINK compiler option, the CBA and NOCBA suboptions of
DLL|NODLL are ignored.

There are two ways to combine XPLINK and non-XPLINK code in the same
application:

v Compile each entire DLL with XPLINK or without XPLINK. The only interaction
between XPLINK and non-XPLINK code occurs at a DLL or fetch() boundary.

v Use the OS_UPSTACK, OS_NOSTACK, and OS31_NOSTACK linkage directive. For more
information, see the description of #pragma linkage in OS/390 C/C++ Language
Reference.

The steps for creating a complex DLL or DLL application are:

1. Determining how to compile your source modules.

2. Modifying the source modules that do not meet all the DLL rules.

© Copyright IBM Corp. 1996, 2000 295

|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|

3. Compiling the source modules to produce DLL code and non-DLL code as
determined in the previous steps.

4. Binding your DLL or DLL application.

The focus of this chapter is step 1 and step 2. You perform step 3 the same way
you would for any other C or C++ application. “Binding Your Code” on page 289
explains step 4.

Rules for Compiling Source Code
The instructions for XPLINK and non-XPLINK applications are different. For
information about how to decide whether to use XPLINK, see “Using XPLINK” on
page 409.

XPLINK Applications
XPLINK provides compatibility with non-XPLINK functions when calls are made
across executable modules, using either the DLL or fetch() call mechanism. You
should make a reference from XPLINK code into non-XPLINK code only if the
reference is by an imported function or variable, or the function pointer is a
parameter into the XPLINK code. This prevents incompatible references to a
non-XPLINK function entry point.

If the non-XPLINK code exposes a function entry point directly to the XPLINK code
(as a global variable, as part of a structure that is passed as a parameter, or by
passing an explicit return value), the XPLINK code will not be able to correctly use
it.

These are the only factors that you need to consider when building non-XPLINK
DLLs that will be used by XPLINK applications.

Modifying Noncompliant Source
For each function pointer, make sure that one of the following is true:

v The function pointer is passed as a parameter to the XPLINK code.

v The indirectly-referenced function pointer was imported by this DLL.

v The indirectly-referenced function pointer was imported by another XPLINK or
non-XPLINK DLL.

Non-XPLINK Applications
To create a complex DLL or DLL application, you must comply with the following
rules that dictate how you compile source modules. The first decision you must
make is how you should compile your code. You determine whether to compile with
either the DLL or NODLL compiler option based on whether or not your code
references any other DLLs. Even if your code is a DLL, it is safe to compile your
code with the NODLL compiler option if your code does not reference other DLLs.

The second decision you must make is whether to compile with the default compiler
suboption for DLL|NODLL, which is NOCBA, or use the alternative suboption CBA. This
decision is based upon your knowledge of the code you reference. If you are sure
that you do not reference any function calls through function pointers that point to a
function entry rather than a function descriptor, use the NOCBA suboption. Otherwise,
you should use the CBA suboption.

As of V2R4 of OS/390 C/C++, use the following options to ensure that you do not
have undefined results as a result of the function pointer pointing to a function entry
rather than a function descriptor:

296 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

|
|

|

1. Compile your source module with the CBA suboption of DLL|NODLL. This option
inserts extra code whenever you have a function call through a function pointer.
The inserted code invokes a run-time service of OS/390 Language Environment
which enables direct function calls through C/C++ function pointers. Direct
function calls are function calls through function pointers that point to actual
function entry points rather than function descriptors. The drawback of this
method is that your code will run slower. This occurs because whenever you
have function calls through function pointers OS/390 Language Environment is
called at run-time to enable direct function calls. See Figure 64 on page 306 for
an example of the CBA suboption and an explanation of what the called OS/390
Language Environment routine does at run-time when using the CBA suboption.

2. Compile your C source module with the NOCBA suboption of DLL|NODLL. This
option has the benefit of faster running but with more restrictions placed on your
coding style. If you do not follow the restrictions, your code may behave
unpredictably. See “DLL Restrictions” on page 292 for more information.

Compile your C source modules as DLL when:

1. Your source module calls imported functions or imported variables by name.

2. Your source module contains a comparison of function pointers that may be DLL
function pointers.

The comparisons shown in “Function Pointer Comparison in Non-DLL Code” on
page 308 are undefined. To obtain valid comparisons, compile the source
modules as DLL code.

3. Your source module may pass a function pointer to DLL code through a
parameter or a return value.

If the sort() routine in Figure 63 on page 305 is compiled as DLL code instead
of non-DLL code, non-DLL applications can no longer call it. To be able to call
the DLL code version of sort(), the original non-DLL application must be
recompiled as DLL code.

4. Your source module may define a global function pointer and another source
module changes it.

Consider Figure 54 and Figure 55 on page 298. You have the following two
options when compiling them.

a. If source module 1 is compiled as DLL code, source module 2 must also be
compiled as DLL code.

b. Alternately, you can compile source module 1 as DLL and source module 2
as NODLL(CBA).

void (*fp)(void);
extern void goo (void);
void main() {

goo();
(*fp)(); /* call hello function */

}

Figure 54. Source Module 1

Chapter 22. Building Complex DLLs 297

The following table summarizes some of the ways that you could compile the
two source modules and lists the results. Both modules are linked into a single
executable.

How Modules Were Compiled Result

Source module 1 NODLL(NOCBA)
source module 2 DLL(NOCBA)

fp contains a function descriptor. Execution of fp will
succeed because it is valid to the address of a
function descriptor.

Source module 1 DLL(NOCBA)
Source module 2 NODLL(NOCBA)

fp contains the address of hello. The execution of
fp would abend because source module 1 expects
fp to contain a function descriptor for hello.

Source module 1 DLL(CBA)
Source module 2 DLL(NOCBA)

fp contains a function descriptor. The generated
code will function correctly. It will run slower than if
the source modules were compiled as DLL(NOCBA)
because it will use Language Environment to make
the function call.

Source module 1 NODLL(CBA)
Source module 2 DLL(NOCBA)

A call to Language Environment made by the
function call through the function pointer prevents a
problem that would have occurred had a direct
function call been made.

If you do not use the DLL compiler option, and your source module calls
imported functions or imported variables by name, there will be unresolved
references to these variables and functions at bind time. A DLL or DLL
application that does not comply with these rules may produce undefined
run-time behavior. For a detailed explanation of incompatibilities between DLL
and non-DLL code, see “Compatibility Issues Between DLL and Non-DLL Code”
on page 299.

Modifying Noncompliant Source
Sometimes source modules of a complex DLL or DLL application do not
simultaneously meet all the DLL rules. These rules are documented in the section
“Rules for Compiling Source Code” on page 296. When these situations occur, you
can use the following methods to solve the problem:

v Use the CBA suboption.

v Rewrite the source in C. Only C source can be compiled as either DLL or
non-DLL code. C++ source code is always DLL code.

v Split a C source module in two so that one of the new files is compiled as DLL
code and the other is compiled as non-DLL code.

Note: In rare cases, you may have to split a function into two functions before
you can successfully split the file.

#include <stdio.h>
extern void (*fp)(void);
void hello(void) {

printf("hello\n");
}
void goo(void) {

fp = hello;
}

Figure 55. Source Module 2

298 OS/390 V2R10.0 C/C++ Programming Guide

An example of noncompliant source is a C++ source module that contains a
function call through a pointer that may be either a DLL pointer to a function
descriptor or a direct function pointer. Convert it to C code and compile as non-DLL
code or, preferably, as DLL(CBA) and recompile.

Compatibility Issues Between DLL and Non-DLL Code
This section describes the differences between DLL code and non-DLL code, and
discusses the related compatibility issues for linking them to create complex DLLs.

Note: This section does not apply to XPLINK applications. XPLINK code is always
DLL code.

The following table and Figure 56 illustrate DLL code referencing functions and
variables.

DLL Application

DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data

Func Des

Func Des

Var Des

Data

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

}

}
f();

x = 1;

g();

y = 2;

int g(void) {

2

addr(f)

addr(g)

addr(x)

1y x

1

2

3

4

DLL Code

DLL

extern int f(void);
int g(void);
extern int x;
int y;

int f(void);
int x;

int f(void); {

Figure 56. Referencing Functions and External Variables in DLL code

Chapter 22. Building Complex DLLs 299

|

|
|

|

Table 40. Referencing Functions and External Variables

DLL

Imported Functions A function descriptor is created by the binder.
The descriptor is in the WSA class and contains
the address of the function and the address of
the writable static area associated with that
function. The function address and the address
of the WSA associated with the function is
resolved when the DLL is loaded. �1�

Nonimported Functions Also called through the function descriptor but
the function address is resolved at link time.
�3�

Imported Variables A variable descriptor is created in the WSA by
the binder. It contains addressing information
for accessing an imported variable. The
address is resolved when the DLL is loaded.
�2�

Nonimported Variables Direct access �4�

Pointer Assignment
In DLL code and non-DLL code, the actual address of a variable is assigned to a
variable pointer. A valid variable pointer always points to the variable itself and
causes no compatibility problems.

Function Pointers
In non-DLL code, the actual address of a nonimported function is assigned to a
function pointer. In DLL code, the address of a function descriptor is assigned to a
function pointer.

If you assign the address of an imported function to a pointer in non-DLL code, the
link step will fail with an unresolved reference. In a complex DLL or DLL application,
a pointer to a function descriptor may be passed to non-DLL code. A direct function
pointer (pointer to a function entry point) may be passed to DLL code. 5

In a complex DLL or DLL application, a function pointer may point either to a
function descriptor or to a function entry, depending on the origin of the code. The
different ways of de-referencing a function pointer causes the compatibility problem
in linking DLL code with non-DLL code.

In Figure 57 on page 301, �1� assigns the address of the descriptor for the imported
function f to fp. �2� assigns the address of the imported variable x to xp. �3�
assigns the address of the descriptor for the nonimported function g to gp. �4�
assigns the address of the non-imported variable y to yp.

5. A parameter, a return value, or an external variable can pass a function pointer or an external variable.

300 OS/390 V2R10.0 C/C++ Programming Guide

In Figure 58 on page 302, �1� causes a bind error because the assignment to fp is
undefined. �2� causes a binder error because the assignment to xp is undefined.
�3� assigns gp to the address of the nonimported function, g. �4� assigns the
address of the nonimported variable y to yp.

DLL Application

DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data

Func Des

Func Des

Var Des

Data

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

}

}

fp = f;

xp = &x;

gp = g;

yp = &y;

int g(void) {

xxxxx

addr(f)

addr(g)

addr(x)

1y x

1

2

3

4

DLL Code

DLL

extern int f(void);
int (*fp) ();
int g(void);
int (*gp)();
extern int x;
int y, *xp, *yp;

int f(void);
int x;

int f(void) {

Figure 57. Pointer Assignment in DLL code

Chapter 22. Building Complex DLLs 301

DLL Function Pointer Call in Non-DLL Code
Because OS/390 C/C++ supports a DLL function pointer call in non-DLL code, you
are able to create a DLL to support both DLL and non-DLL applications. The
OS/390 C/C++ compiler inserts glue code at the beginning of a function descriptor
to allow branching to a function descriptor. Glue code is special code that enables
function pointer calls from non-DLL code to DLL code, including XPLINK code.

A function pointer in non-DLL code points to the function entry and a function
pointer call branches to the function address. However, a DLL function pointer
points to a function descriptor. A call made through this pointer in non-DLL code
results in branching to the descriptor.

OS/390 C/C++ executes a DLL function pointer call in non-DLL code by branching
to the descriptor and executing the glue code that invokes the actual function.

Application

non-DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data Data

.

.

. . .

. . .

. . .

. . .

}

}

fp = f;

xp = &x;

gp = g;

yp = &y;

int g(void) {

xxxxx 1y x

Bind
1

2

3

4

DLL Code

DLL

extern int f(void);
int (*fp) ();
int g(void);
int (*gp)();
extern int x;
int y, *xp, *yp;

int f(void);
int x;

int f(void) {

Bind

Figure 58. Pointer Assignment in Non-DLL code

302 OS/390 V2R10.0 C/C++ Programming Guide

|
|

The following examples and Figure 63 on page 305 show a DLL function pointer call
in non-DLL code, where a simplified sort() routine is used. Note that the sort()
routine compiled as non-DLL code can be called from both a DLL application and a
non-DLL application.

C Example
File 1 and File 2 are bound together to create application A. File 1 is compiled with
the NODLL option. File 2 is compiled with the DLL option (so that it can call the DLL
function sort()). File 3 is compiled as DLL to create application B. Application A and
B can both call the imported function sort() from the DLL in file 4.

File 1 of Complex DLL Application compiled with NODLL option.

File 2 of Complex DLL Application compiled with DLL option.

typedef int CmpFP(int, int);
void sort(int* arr, int size, CmpFP*); /* sort routine in DLL */
void callsort(int* arr, int size, CmpFP* fp); /* routine compiled as DLL */

/* which can call DLL routine sort() */

int comp(int e1, int e2) {
if (e1 == e2) {

return(0);
}
else if (e1 < e2) {

return(-1);
}
else {

return(1);
}

}

main() {
CmpFP* fp = comp;
int a[2] = {2,1};
callsort(a, 2, fp);
return(0);

}

Figure 59. File 1. Application A.

typedef int CmpFP(int, int);
void sort(int* arr, int size, CmpFP*); /* sort routine in DLL */
void callsort(int* arr, int size, CmpFP* fp) {

sort(arr, size, fp);
}

Figure 60. File 2. Application A

Chapter 22. Building Complex DLLs 303

Simple DLL Application compiled with DLL option.

File 4 is compiled as NODLL and bound into a DLL. The function sort() will be
exported to users of the DLL.

DLL Compiled with NODLL Option

Note: Non-DLL function pointers can only safely be passed to a DLL if the function
referenced is naturally reentrant, that is, it is C code compiled with the
NORENT compiler option, or is C code with no global or static variables. See
the discussion on the CBA option to see how to make a DLL that can be
called by applications that pass constructed reentrant function pointers.

int comp(int e1, int e2) {
if (e1 == e2)

return(0);
else if (e1 < e2)

return(-1);
else

return(1); }
int (*fp)(int e1, int e2);
main()
{

int a[2] = { 2, 1 };
fp = comp; /* assign function address */
sort(a, 2, fp); /* call sort */

}

Figure 61. File 3. Application B

typedef int CmpFP(int, int);
int sort(int* arr, int size, CmpFP* fp) {

int i,j,temp,rc;

for (i=0; i<size; ++i) {
for (j=1; j<size-1; ++j) {

rc = fp(arr[j-1], arr[j]); /* call 'fp' which may be DLL or no-DLL code */
if (rc > 0) {

temp = arr[j];
arr[j] = arr[j-1];
arr[j-1] = temp;

}
}

}
return(0);

}
#pragma export(sort)

Figure 62. File 4. DLL

304 OS/390 V2R10.0 C/C++ Programming Guide

Non-DLL Function Pointer Call in DLL(CBA) Code
The following figure illustrates one situation where you could use the CBA suboption.
In the example, the DLL provider provides stub routines which the application
programmer can bind with their applications. These stub routines allow an
application programmer to use a DLL without recompiling the application with the
DLL option. This is an important consideration for library providers that want to move
from a static version of a library to a dynamic one. Stub routines are not mandatory,
however if they are provided, the application programmer only needs to rebind, but
not recompile the application. If stub routines are not provided by the DLL provider,
the application programmer must recompile the application.

DLL Application in C DLL in C

non-DLL Application in C

DLL Code Data Non-DLL Code

DLL Code

. . .

int comp (int e1, int e2)
{
. . .
}

branch to comp

func des

glue code
. . .

void sort (
int *a, int num,
int (*comp)(int el, int e2)

{
. . .
if ((*comp)(. . .) <0)
. . .

}

branch to des

. . .

int comp (int e1, int e2)
{

. . .
}
main ()
{

. . .
/* point to des */
fp = comp;
sort (a, 2, fp);

}

branch to
func entry

. . .

/* point to des */
fp = comp;
sort (a, 2, fp);
}

main ()
{

Figure 63. DLL Function Pointer Call in non-DLL code

Chapter 22. Building Complex DLLs 305

In the previous example, the DLL provider:

v Compiles the DLL parts as either DLL(CBA) or NODLL(CBA).

v Exports function dllsort() for use by other applications.

v Binds the DLL to produce a DLL executable module and a DLL definition
side-deck.

v Creates a stub function for every function exported from the DLL. The stub
function calls a corresponding function in the DLL.This routine is compiled with
the DLL option. The stub functions are provided to the application programmer in
a static library to be bound with the application.

The Application Programmer:

v Codes the program using any of the following compiler options;

– DLL

– NODLL

– RENT

– NORENT

v Calls the stub routines, not the exported functions.

Note: The stub routines must be called because the application programmer
may have compiled his code with the NODLL compiler option. Otherwise,
references to the DLL functions will be unresolved at bind time. Providing
the stub routines allows an application programmer to use a DLL without
recompiling the application with the DLL option. This is an important

Compare

int compare (int el, int e2) {
. . .
. . .

}

Main

typedev void (CMP_FP) (int, int);
void main(void)
int x [10];
CMP_FP* fp=&compare;
stubsort (fp, x, l0) ;

Stub

typedef void (CMP_FP) (int, int);
void dllsort (CMP_FP*, int*, int);
stubsort (CMP_FP* fp, int* arr, int len)
dllsort (fp, arr, len);) ;

IMPORT CODE DLL DLLSORT

DLL

#pragma export (dllsort)
typedef void (CMP_FP) (int, int);
void dllsort (CMP_FP* fp, int* arr, int len)
. . .

rc = fp(arr[i], arr[i+i]);

Language Environment

APPLICATION

Definition Side Deck

1

2

3

4

5

Figure 64. DLL Function Pointer Call in Non-Dll Code

306 OS/390 V2R10.0 C/C++ Programming Guide

consideration for library providers that want to move from a static version
of a library to a dynamic one. Providing stub routines requires the
application programmer to rebind but not recompile the application.

v Statically binds the definition side-deck, provided by the DLL provider, and the
stub routines with their program.

v Binds the DLL to produce a DLL executable module and a DLL definition
side-deck

v Creates a stub function for every function exported from the DLL. The stub
function calls the DLL directly

The reference keys in Figure 64 on page 306 illustrate the sequence of events.
Note that in �3�, the user does not explicitly make a call to Language Environment.
The generated code for the fp function call makes the call to OS/390 Language
Environment. OS/390 Language Environment does the following at point�4� in the
figure:

v Saves the DLL environment

v Establishes the application environment

v Branches to the user’s function

v Reestablishes the DLL environment after execution of the function

v Returns control to the DLL.

Non-DLL Function Pointer Call in DLL Code
In DLL code, it is assumed that a function pointer points to a function descriptor. A
function pointer call is made by first obtaining the function address through
de-referencing the pointer; and then, branching to the function entry. When a
non-DLL function pointer is passed to DLL code, it points directly to the function
entry. An attempt to de-reference through such a pointer produces an undefined
function address. The subsequent branching to the undefined address may result in
an exception. The following is an example of passing a non-DLL function pointer to
DLL code via an external variable. Its behavior is undefined as shown in the
following example:

C and C++ Example

#include <stdio.h>
extern void (*fp)(void);
void hello(void) {

printf("hello\n");
}
void goo(void) {

fp = hello; /* assign address of hello, to fp */
/* (refer to

Figure 58 on page 302). */
}

Figure 65. C Non-DLL Code

Chapter 22. Building Complex DLLs 307

In the following example, a non-DLL function pointer call to an assembler function is
resolved.

Function Pointer Comparison in Non-DLL Code
In non-DLL code, the results of the following function pointer comparisons are
undefined:

v Comparing a DLL function pointer to a non-DLL function pointer

v Comparing a DLL function pointer to another DLL function pointer

v Comparing a DLL function pointer to a constant function address

Comparing a DLL function pointer to a non-DLL function pointer
In Figure 71 on page 309, both the DLL function pointer and the non-DLL
function pointer point to the same function, but the pointers when compared are
unequal.

extern void goo(void);
void (*fp)(void);
void main (void) {

goo();
(*fp)(); /* Expect a descriptor, but get a function address, */

/* so it de-references to an undefined address and */
/* call fails */

}

Figure 66. C DLL Code

extern "C" void goo(void);
void (*fp)(void);
void main (void) {

goo();
(*fp)(); /* Expect a descriptor, but get a function address, */

/* so it de-references to an undefined address and */
/* call fails */

}

Figure 67. C++ DLL Code

/*
* This function must be compiled as DLL(CBA)
*/

extern "OS" {
typedef void OS_FP(char *, int *);

}
extern "OS" OS_FP* ASMFN(char*);

int CXXFN(char* p1, int* p2) {
OS_FP* fptr;

fptr = ASMFN("ASM FN"); /* returns pointer to address of function */
if (fptr) {

fptr(p1, p2); /* call asm function through fn pointer */
}
return(0);

}

Figure 68. C++ DLL Code Calling an Assembler Function

308 OS/390 V2R10.0 C/C++ Programming Guide

C Example

In the preceding examples, DLL code and non-DLL code can reside either in the
same executable file or in different executable files.

Comparing a DLL function pointer to another DLL function
pointer

The example in Figure 75 on page 311 compares addresses of function
descriptors. In the following examples, both of the DLL function pointers point to
the same function, but they compare unequal.

#include <stdio.h>
extern int foo(int (*fp1)(const char *, ...));
main ()
{

int (*fp)(const char *, ...);
fp = printf; /* assign address of a descriptor that */

/* points to printf. */
if (foo(fp))

printf("Test result is undefined\n");
}

Figure 69. C DLL code

int foo(int (*fp1)(const char *, ...))
{

int (*fp2)(const char *, ...);
fp2 = printf; /* assign the address of printf. */
if (fp1 == fp2) /* comparing address of descriptor to */

/* address of printf results in unequal.*/
return(0);

else
return(1);

}

Figure 70. C Non-DLL code

non-DLL code

...

if (fp1 == fp2)
...

Func Descriptor

...

func addr
...

C Library

int printf(...
}

...
}

Figure 71. Comparison of Function Pointers in non-DLL code

Chapter 22. Building Complex DLLs 309

C Example

Comparison of Two DLL Function Pointers in Non-DLL code
File 1 and file 2 reside in different executable modules. File 3 can reside in the
same executable module as file 1 or file 2 or it can reside in a different executable
module. In all cases, the addresses of the function descriptors will not compare
equally.

#include <stdio.h>
extern int goo(int (*fp1)(const char *, ...));
main ()
{

int (*fp)(const char *, ...);
fp = printf; /* assign address of a descriptor that */

/* points to printf. */
if (goo(fp))

printf("Test result is undefined\n");
}

Figure 72. File 1 C DLL Code

#include <stdio.h>
extern int foo(int (*fp1)(const char *, ...),

int (*fp2)(const char *, ...));
int goo(int (*fp1)(const char *, ...))
{

int (*fp2)(const char *, ...);
fp2 = printf; /* assign address of a different */

/* descriptor that points to printf. */
return (foo(fp1, fp2));

}

Figure 73. File 2 C DLL Code

int foo(int (*fp1)(const char *, ...),
int (*fp2)(const char *, ...))

{
if (fp1 == fp2) /* comparing the addresses of two */

/* descriptors results in unequal. */
return(0);

else
return(1);

}

Figure 74. File 3 C Non-DLL Code

310 OS/390 V2R10.0 C/C++ Programming Guide

Comparing a DLL function pointer to a constant function
address other than NULL

Here, you are comparing the constant function address to an address of a
function descriptor.

Note: Comparing a DLL function pointer to NULL is well defined, because when
a pointer variable is initialized to NULL in DLL code, it has a value zero.

Function Pointer Comparison in DLL Code
In XPLINK code, function pointers are compared using the address of the
descriptor. No special considerations, such as dereferencing, are required to
initialize the function pointer prior to comparison. Function descriptors are
guaranteed to be unique throughout the XPLINK application for a particular function,
so this comparison of function descriptor addresses will yield the correct results
even if the function pointer is passed between executable modules within the
XPLINK application. The remainder of this section does not apply to XPLINK
applications.

In non-XPLINK DLL code, a function pointer must be NULL before it is compared.
For a non-NULL pointer, the pointer is further de-referenced to obtain the function
address that is used for the comparison. For an uninitialized function pointer that
has a non-zero value, the de-reference can cause an exception to occur. This
happens if the storage that the uninitialized pointer points to is read-protected.

Usually, comparing uninitialized function pointers results in undefined behavior. You
must initialize a function pointer to NULL or the function address (from source view).
Two examples follow.

non-DLL code

...

if (fp1== fp2)
...

...

func addr
...

int printf(...
}

...
}

...

func addr
...

Func Des1

C Library

Func Des2

Figure 75. Comparison of Two DLL Function Pointers in Non-Dll Code

Chapter 22. Building Complex DLLs 311

|
|
|
|
|
|
|
|

|

Figure 77 shows that, when fp1 points to a read-protected memory block, an
exception occurs.

Following is an example of valid comparisons in DLL code:

#include <stdio.h>
int (*fp2)(const char *, ...) /* Initialize to point to the */

= printf; /* descriptor for printf */
int goo(void);
int (*fp2)(void) = goo;
int goo(void) {

int (*fp1)(void);
if (fp1 == fp2)

return (0);
else

return (1);
}

void check_fp(void (*fp)()) {
/* exception likely when -1 is de-referenced below */
if (fp == (void (*)())-1)

printf("Found terminator\n");
else

fp();
}
void dummy() {

printf("In function\n");
}

main() {
void (*fa[2])();
int i;

fa[0] = dummy;
fa[1] = (void (*)())-1;

for(i=0;i<2;i++)
check_fp(fa[i]);

}

Figure 76. Undefined Comparison in DLL Code (C or C++)

...

if (fp1 == fp2)
...

read-protected memory

...

...

A memory block
being accessed
as if a descriptor

A read attempt to access

read-protected memory
will cause an exception

DLL code

Figure 77. Comparison of Function Pointers in DLL code (C or C++)

312 OS/390 V2R10.0 C/C++ Programming Guide

Using DLLs That Call Each Other
An application can use DLLs that call each other. There are two methods for
building these applications, as illustrated in the examples that follow:

v In the first method, the loop is broken by manually creating IMPORT statements
for the referenced DLLs, when binding one of the DLLs (APPL2D3).

v In the second method, an initial bind is done on APPL2D3 using the binder NCAL
parameter, which will be done again after the referenced DLLs are built.

In both cases, the result is that the side-deck is produced for APPL2D3, so that the
DLLs that reference APPL2D3 can be built.

The APPL2 application (Figure 79 on page 314) imports functions and variables
from three DLLs: (Figure 80 on page 314, Figure 81 on page 315, and Figure 82 on
page 315).

#include <stdio.h>
int (*fp1)(const char *, ...); /* An extern variable is implicitly*/

/* initialized to zero */
/* if it has not been explicitly */
/* initialized in source. */

int (*fp2)(const char *, ...) /* Initialize to point to the */
= printf; /* descriptor for printf */

int foo(void) {
if (fp1 != fp2)

return (0);
else

return (1);
}

Figure 78. Valid Comparisons in DLL Code (C or C++)

Chapter 22. Building Complex DLLs 313

|
|

|
|

|
|

|
|

The following application APPL2D1 imports functions from Figure 81 on page 315
and Figure 82 on page 315.

The following application APPL2D2 imports a function from Figure 82 on page 315.

#include <stdlib.h>

extern int var1_d1; /*imported from APPL2D1 */
extern int func1_d1(int); /*imported from APPL2D1 */

extern int var1_d2; /*imported from APPL2D2 */
extern int func1_d2(int); /*imported from APPL2D2 */

extern int var1_d3; /*imported from APPL2D3 */
extern int func1_d3(int); /*imported from APPL2D3 */

int main() {
int rc = 0;

printf("+-APPL2::main() starting \n");
/* ref DLL1 */

if (var1_d1 == 100) {
printf("| var1_d1=<%d>\n",var1_d1++);
func1_d1(var1_d1);

}
/* ref DLL2 */

if (var1_d2 == 200) {
printf("| var1_d2=<%d>\n",var1_d2++);
func1_d2(var1_d2);

}
/* ref DLL3 */

if (var1_d3 == 300) {
printf("| var1_d3=<%d>\n",var1_d3++);
func1_d3(var1_d3);

}

printf("+-APPL2::main() Ending \n");
}

Figure 79. Application APPL2

#include <stdio.h>

int func1_d1(); /* A function to be externalized */
int var1_d1 = 100; /* export this variable */

extern int func1_d2(int); /*imported from APPL2D2 */
extern int func1_d3(int); /*imported from APPL2D3 */

int func1_d1 (int input)
{

int rc2 = 0;
int rc3 = 0;
printf("| +-APPL2D1() func1_d1() starting. Input is %d\n", input);
rc2 = func1_d2(200);
rc3 = func1_d3(300);
printf("| | func1_d1() dll1 - rc2=<%d> rc3=<%d>\n", rc2,

rc3);
printf("| +-APPL2D1() func1_d1() ending. \n");

}

Figure 80. Application APPL2D1

314 OS/390 V2R10.0 C/C++ Programming Guide

The following application APPL2D3 imports variables from Figure 80 on page 314
and Figure 81.

The first method uses the JCL in Figure 83 on page 316. The following is
processing occurs:

1. APPL2D3 is compiled and bound to create a DLL. The binder uses the control
cards supplied through SYSLIN to import variables from APPL2D1 and
APPL2D2. The binder also generates a side-deck APPL2D3 that is used in the
following steps.

2. APPL2D2 is compiled and bound to create a DLL. The binder uses the control
cards supplied through SYSLIN to include the side-deck from APPL2D3. The
following steps use the binder which generates the side-deck APPL2D2.

3. APPL2D1 is compiled and bound to create a DLL. The binder uses the control
cards supplied through SYSLIN to include the side-decks from APPL2D2 and
APPL2D3. The following steps show the binder generating the side-deck
APPL2D1.

4. APPL2 is compiled, bound, and run. The binder uses the control statements
supplied through SYSLIN to include the side-decks from APPL2D1, APPL2D2,
and APPL2D3.

5. APPL2 runs.

#include <stdio.h>

int func1_d2(); /* A function to be externalized */
int var1_d2 = 200;

extern int func1_d3(int); /* import this function */

int func1_d2 (int input)
{

int rc3 =0;
printf("| | +-APPL2D2() func1_d2() starting. Input is %d\n",

input);
rc3 = func1_d3(300);
printf("| | | func1_d2() dll2 - rc3=<%d>\n", rc3);
printf("| | +-APPL2D2() func1_d2() ending\n");

}

Figure 81. Application APPL2D2

#include <stdio.h>

int func1_d3(); /* A function to be externalized */
int var1_d3 = 300;

extern int var1_d1; /* imported variable from appl2D1 */
extern int var1_d2; /* imported variable from appl2D2 */

int func1_d3 (int input)
{

printf("| | | +-APPL2D3()-func1_d3() starting. Input is %d\n",
input);

printf("| | | | value of var1_d1=%d var1_d2=%d\n",
var1_d1, var1_d2);

printf("| | | +-APPL2D3()-func1_d3() ending\n");
}

Figure 82. Application APPL2D3

Chapter 22. Building Complex DLLs 315

The second method uses the JCL in Figure 84 on page 318. The following
processing occurs:

1. Once compiled, the object module APPL2D2 is saved for the following steps.

//jobcard information...
//*
//* CBDLL3: -Compile and bind APPL2D3
//* -Explicit import of variables from APPL2D1 and APPL2D2
//* -Generate the side-deck APPL2D3
//*
//*CBDLL3 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D3)',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',
// OUTFILE=*myid.LOAD,DISP=SHR'
//BIND.SYSIN DD*

INCLUDE OBJECT(APPL2D3)
IMPORT DATA APPL2D1 var1_d1
IMPORT DATA APPL2D2 var1_d1
NAME APPL2D3(R)*

//*
//*CDDLL2: -Compile and bind APPL2D2
//* -Include the side-deck APPL2D3
//* -Generate the side-deck APPL2D2
//*
//CBDLL2 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D2)',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',
// OUTFILE='myid.LOAD,DISP=SHR'
//BIND.SYSIN DD *

INCLUDE OBJECT(APPL2D3)
NAME APPL2D3(R)

/*
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR
//*
//* CBDLL1: -Compile and bind APPL2D1
//* -Include the side-deck APPL2D2 and APPL2D3
//* -Generate the side-deck APPL2D1
//*
//CBDLL1 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D1)',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',
// OUTFILE='myid.LOAD,DISP=SHR'
//BIND.SYSIN DD *

INCLUDE DSD(APPL2D2)
INCLUDE DSD(APPL2D3)
NAME APPL2D1(R)

/*
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR
//*
//* CBAPP2: -Compile, bind and run APPL2
//* -Include the side-deck APPL2D1, APPL2D2 and APPL2D3
//*
//CBAPP2 EXEC EDCCBG,INFILE='myid.SOURCE(APPL2)',
// CPARM='SO,LIST,DLL,RENT,LONG',
// OUTFILE='myid.LOAD,DISP=SHR'
//BIND.SYSIN DD *

INCLUDE DSD(APPL2D1)
INCLUDE DSD(APPL2D2)
INCLUDE DSD(APPL2D3)
NAME APPL2(R)

/*
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

Figure 83. Method 1 JCL

316 OS/390 V2R10.0 C/C++ Programming Guide

2. APPL2D1 is compiled, the object module is saved for the following steps.

3. APPL2D3 is compiled and bound to generate the side-deck and the object
module is not used in the following steps. The load module for this step is not
saved, as it is not being used. The load module for APPL2D3 is generated at a
later step.

4. APPL2D2 is bound to create a DLL. The binder takes as input the object
module APPL2D2 and the side-deck APPL2D3. It also generates the side-deck
APPL2D3 that is used in the following steps.

5. APPL2D1 is bound to create a DLL. The binder takes as input the object
module APPL2D1 and the side-decks APPL2D3 and APPL2D2. It also
generates the side-deck APPL2D1 that is used in the following steps.

6. APPL2D3 is bound to create a DLL. The binder takes as input the object
module APPL2D3 and the side-decks APPL2D1 and APPL2D2. It also
generates the side-deck APPL2D3 that is used in the following step.

Note: The side-deck is the same as the one created in Step 3.

7. APPL2 is compiled, bound, and run. The binder takes as input the object
module APPL2 and the side-decks APPL2D1, APPL2D2, and APPL2D3.

Chapter 22. Building Complex DLLs 317

//jobcard information...
//* CDLL2: -Compile APPL2D2
//*
//CDLL2 EXEC EDCC,INFILE='myid.SOURCE(APPL2D2)',
// OUTFILE'myid.OBJ(APPL2D2),DISP=SHR ',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG'
//*
//* CDLL1: -Compile APPL2D1
//*
//CDLL1 EXEC EDCC,INFILE='myid.SOURCE(APPL2D1)',
// OUTFILE'myid.OBJ(APPL2D1),DISP=SHR ',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG'
//*
//* CBDLL3: -Compile and bind APPL2D3 with NCAL
//* -Generate the side-deck APPL2D3
//* -The load module will not be kept, as it will not be
//* used
//*
//CBDLL3 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D3)',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',
// BPARM='NCAL,DLLNAME(APPL2D3)'
//COMPILE.SYSLIN DD DSN=myid.OBJ(APPL2D3),DISP=(SHR,PASS)
//BIND.SYSIN DD DSN=myid.OBJ(APPL2D2),DISP=SHR
// DD DSN=myid.OBJ(APPL2D1),DISP=SHR
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
//*
//* BDLL2: -Bind APPL2D2
//* -Generate the side-deck APPL2D2
//*
//*
//BDLL2 EXEC CBCB,INFILE='myid.OBJ(APPL2D2)',
// BPARM='CALL,DLLNAME(APPL2D2)',
// OUTFILE='myid.LOAD(APPL2D2),DISP=SHR'
//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
// DD *

NAME APPL2D2(R)
/*
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
//*
//* BDLL1: -Bind APPL2D1
//* -Generate the side-deck APPL2D1
//*
//BDLL1 EXEC CBCB,INFILE='myid.OBJ(APPL2D1)',
// BPARM='CALL,DLLNAME(APPL2D1)',
// OUTFILE='myid.LOAD(APPL2D1)'
//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
// DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
// DD *

NAME APPL2D1(R)

Figure 84. Method 2 JCL (Part 1 of 2)

318 OS/390 V2R10.0 C/C++ Programming Guide

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
//*
//* BDLL3: -Bind APPL2D3
//* -Generate the side-deck APPL2D3
//*
//BDLL3 EXEC CBCB,INFILE='myid.OBJ(APPL2D3)',
// BPARM='CALL,DLLNAME(APPL2D3)',
// OUTFILE='myid.LOAD(APPL2D3)'
//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
// DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
// DD *

NAME APPL2D3(R)
/*
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
//*
//* CBAPP2: -Compile, bind and run APPL2
//* -Input the side-decks APPL2D1, APPL2D2 and APPL2D3
//*
//CBAPP2 EXEC EDCCBG,INFILE='myid.SOURCE(APPL2)',
// CPARM='SO,LIST,DLL,RENT,LONG'
// OUTFILE='myid.LOAD(APPL2),DISP=SHR '
//BIND.SYSIN DD DSN=myid.OBJ(APPL2),DISP=SHR
//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
// DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
// DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
// DD *

NAME APPL2(R)
/*

Figure 84. Method 2 JCL (Part 2 of 2)

Chapter 22. Building Complex DLLs 319

320 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 23. Using Threads in an OS/390 UNIX Application

A thread is a single flow of control within a process. The following section describes
some of the advantages of using multiple threads within a single process, and
functions that can be used to maintain this environment.

Models and Requirements
Threads are efficient in applications that allow them to take advantage of any
underlying parallelism available in the host environment. This underlying parallelism
in the host can be exploited either by forking a process and creating a new address
space, or by using multiple threads within a single process. There are advantages
and disadvantages to both techniques, but it primarily comes down to a
compromise between the efficiency of using multiple threads versus the security of
working in separate address spaces. The POSIX(ON) runtime option must be
specified to use threads.

Functions
The following table lists the functions provided to implement a multi-threaded
application:

Table 41. Functions used in creating multi-threaded applications

Function Purpose

pthread_create() Create a thread

pthread_join() Wait for thread termination

pthread_exit() Terminate a thread normally

pthread_detach() Detach a thread

pthread_self() Get your thread ID

pthread_equal() Compare thread IDs

pthread_once() Run a function once per process

pthread_yield() Yield the processor

Creating a Thread
To use a thread you must first create a thread attribute object with the
pthread_attr_init() function. A thread attribute object defines the modifiable
characteristics that a thread may have. Refer to the description of
pthead_attr_init() in OS/390 C/C++ Run-Time Library Reference for a list of the
attributes and their default values. When the thread attribute object has been
created, you may use the following functions to change the default attributes.

Table 42. Functions to change default attributes

Function Purpose

pthread_attr_init() Initialize a thread attribute object

pthread_attr_destroy() Delete a thread attribute object

pthread_attr_getstacksize() Gets the stacksize for thread attribute object

pthread_attr_setstacksize() Sets the stacksize for thread attribute object

pthread_attr_getdetachstate() Returns current value of detachstate for
thread attribute object

© Copyright IBM Corp. 1996, 2000 321

|
|
|
|
|
|
|
|

Table 42. Functions to change default attributes (continued)

Function Purpose

pthread_attr_setdetachstate() Alters the current detachstate of thread
attribute object

pthread_attr_getweight_np() Obtains the current weight of thread setting

pthread_attr_setweight_np() Alters the current weight of thread setting

pthread_attr_getsynctype_np() Returns the current synctype setting of
thread attribute object

pthread_attr_setsynctype_np() Alters the synctype setting of thread attribute
object

The attribute object is only used when the thread is created. You can reuse it to
create other threads with the same attributes, or you can modify it to create threads
with other attributes. You can delete the attribute object with the
pthread_attr_destroy() function.

After you create the thread attribute object, you can then create the thread with the
pthread_create() function.

When a daughter thread is created, the function specified on the pthread_create()
as the start routine begins to execute concurrently with the thread that issued the
pthread_create(). It may use the pthread_self() function to determine its thread
ID. The daughter thread will continue to execute until a pthread_exit() is issued, or
the start routine ends. The function that issued the pthread_create() resumes as
soon as the daughter thread is created. The daughter thread ID is returned on a
successful pthread_create(). This thread ID, for example, can be used to send a
signal to the daughter thread using pthread_kill() or it can be used in
pthread_join() to cause the initiating thread to wait for the daughter thread to end.

The following functions can be used to control the behavior of the individual threads
in a multi-threaded application.

Table 43. Functions used to control individual threads in a multi-threaded environment

Function Purpose

pthread_equal() Compares two thread IDs

pthread_yield() Allows threads to give up control

Refer to OS/390 C/C++ Run-Time Library Reference for more information on these
functions.

Synchronization Primitives
This section covers the control of multiple threads that may share resources. In
order to maintain the integrity of these resources, a method must exist for the
threads to communicate their use of, or need to use, a resource. The threads can
be within a common process or in different processes.

Models
Mutexes, condition variables, and read-write locks are used to communicate
between threads. These constructs may be used to synchronize the threads
themselves, or they can also be used to serialize access to common data objects
shared by the threads.

322 OS/390 V2R10.0 C/C++ Programming Guide

v The mutex, which is the simple type of lock, is exclusive. If a thread has a mutex
locked, the next thread that tries to acquire the same mutex is put in a wait state.
This is beneficial when you want to serialize access to a resource. This might
cause contention however if several threads are waiting for a thread to unlock a
mutex. Therefore, this form of locking is used more for short durations. It the
mutex is a shared mutex, it must be obtained in shared memory accessable
among the cooperating processes.

A thread in mutex wait will not be interrupted by a signal.

v A condition variable provides a mechanism by which a thread can suspend
execution when it finds some condition untrue, and wait until another thread
makes the condition true. For example, threads could use a condition variable to
insure that only one thread at a time had write access to a dataset.

Threads in condition wait can be interrupted by signals.

v A read-write lock can allow many threads to have simultaneous read-only access
to data while allowing only one thread at a time to have write access. The
read-write lock must be allocated in memory that is writable. If the read-write lock
is a shared read-write lock, it must be obtained in shared memory accessable
among the cooperating processes.

Functions
The following functions allow for synchronization between threads:

Table 44. Functions that allow for synchronization between threads

Function Purpose

pthread_mutex_init() Initialize a Mutex

pthread_mutex_destroy() Destroy a Mutex

pthread_mutexattr_init() Initialize Default Attribute Object for a Mutex

pthread_mutexattr_destroy() Destroy Attribute Object for a Mutex

pthread_mutexattr_getkind_np() Get Kind Attribute for a Mutex

pthread_mutexattr_setkind_np() Set Kind Attribute for a Mutex

pthread_mutexattr_gettype() Get Type Attribute for a Mutex

pthread_mutexattr_settype() Set Type Attribute for a Mutex

pthread_mutexattr_getpshared() Get Process-shared Attribute for a Mutex

pthread_mutexattr_setpshared() Set Process-shared Attribute for a Mutex

pthread_mutex_lock() Acquire a Mutex Lock

pthread_mutex_unlock() Release a Mutex Lock

pthread_mutex_trylock() Allows lock to be tested

pthread_cond_init() Initialize a Condition Variable

pthread_cond_destroy() Destroy a Condition Variable

pthread_condattr_init() Initialize Default Attribute Object
for a Condition Variable

pthread_condattr_destroy() Destroy Attributes Object for a Condition Variable

pthread_condattr_getkind_np() Get Attribute for Condition Variable object

pthread_condattr_setkind_np() Set Attribute for Condition Variable object

pthread_cond_wait() Wait for a Condition Variable

pthread_cond_timedwait() Timed wait for a Condition Variable

pthread_cond_signal() Signal a Condition Variable

Chapter 23. Using Threads in an OS/390 UNIX Application 323

Table 44. Functions that allow for synchronization between threads (continued)

Function Purpose

pthread_cond_broadcast() Broadcast a Condition Variable

pthread_rwlock_init() Initialize a Read-Write Lock

pthread_rwlock_destroy() Destroy a Read-Write Lock

pthread_rwlock_rdlock() Wait for a Read Lock

pthread_rwlock_tryrdlock() Allows Read Lock to be Tested

pthread_rwlock_trywrlock() Allows Read-Write Lock to be Tested

pthread_rwlock_unlock() Release a Read-Write Lock

pthread_rwlock_wrlock() Wait for a Read-Write Lock

pthread_rwlockattr_init() Initialize Default Attribute Object
for a Read-Write Lock

pthread_rwlockattr_destroy() Destroy Attribute Object for a Read-Write Lock

pthread_rwlockattr_getpshared() Get Process-shared Attribute
for a Read-Write Lock

pthread_rwlockattr_setpshared() Set Process-shared Attribute
for a Read-Write Lock

Creating a Mutex
To use the mutex lock you must first create a mutex attribute object with the
pthread_mutexattr_init() function. A mutex attribute object defines the modifiable
characteristics that a mutex may have. Refer to the description of
pthread_mutexattr_init() in OS/390 C/C++ Run-Time Library Reference for a list
of these attributes and their defaults.

After the mutex attribute object has been created, you can use the following
functions to change the default attributes.
v pthread_mutexattr_getkind_np()
v pthread_mutexattr_setkind_np()
v pthread_mutexattr_gettype()
v pthread_mutexattr_settype()
v pthread_mutexattr_getpshared()
v pthread_mutexattr_setpshared()

The mutex attribute object is used only when creating the mutex. It can be used to
create other mutexes with the same attributes or modified to create mutexes with
different attributes. You can delete a mutex attribute object with the
pthread_mutexattr_destroy() function.

After the mutex attribute object has been created, the mutex can be created with
the pthread_mutex_init() function.

While using mutexes as the locking device, the following functions can be used:

pthread_mutex_lock()

pthread_mutex_unlock()

pthread_mutex_trylock()

To remove the mutex, use the pthread_mutex_destroy() function.

324 OS/390 V2R10.0 C/C++ Programming Guide

Creating a Condition Variable
Before creating a condition variable, you need to create a mutex (as shown above),
then you must use the pthread_condattr_init() function to create a condition
variable attribute object. This attribute object, like the mutex attribute object, defines
the modifiable characteristics that a condition variable may have. Refer to the
description of pthread_condattr_init() in OS/390 C/C++ Run-Time Library
Reference for a list of these attributes and their defaults.

After the condition variable attribute object has been created, you may use the
following functions to change the default attributes:

pthread_condattr_getkind_np()

pthread_condattr_setkind_np()

The condition variable attribute object is used only when creating the condition
variable. It can be used to create other condition variables with the same attributes
or modified to create condition variables with different attributes. You can delete a
condition variable attribute object with the pthread_condattr_destroy() function.

After a condition variable attribute object has been created, the condition variable
itself can be created with the pthread_cond_init() function.

Condition variables can then be used as a synchronization primitive using the
following functions:

pthread_cond_wait()

pthread_cond_timedwait()

pthread_cond_signal()

pthread_cond_broadcast()

The condition variable can be removed with the pthread_cond_destroy() function.

Creating a Read-Write Lock
To use a read-write lock you must first create a read-write attribute object with the
pthread_rwlockattr_init() function. A read-write attribute object defines the
modifiable characteristics that a read-write lock may have. Refer to the description
of pthread_rwlockattr_init() in OS/390 C/C++ Run-Time Library Reference for a
list of these attributes and their defaults.

After the read-write lock attribute object has been created, you can use the
following functions to change the default attributes.

v pthread_rwlockattr_getpshared()

v pthread_rwlockattr_setpshared()

The read-write lock attribute object is used only when creating the read-write lock. It
can be used to create other read-write locks with the same attributes or modified to
create read-write locks with different attributes. You can delete a read-write attribute
object with the pthread_rwlockattr_destroy() function.

After the read-write attribute has been created, the read-write lock can be created
with the pthread_rwlock_init() function.

While using read-write locks as the locking device, the following functions can be
used:

v pthread_rwlock_rdlock()

v pthread_rwlock_tryrdlock()

Chapter 23. Using Threads in an OS/390 UNIX Application 325

v pthread_rwlock_wrlock()

v pthread_rwlock_trywrlock()

v pthread_rwlock_unlock()

To remove the read-write lock, use the pthread_rwlock_destroy() function.

Thread-specific Data
While all threads can access the same memory, it is sometimes desirable to have
data that is (logically) local to a specific thread. The key/value mechanism provides
for global (process-wide) keys with value bindings that are unique to a thread.

You can also use the pthread_tag_np() function to set and query 65 bytes of thread
tag data associated with the caller’s thread.

Model
The key/value mechanism associates a data key with each data item. When the
association is made, the key identifies the data item with a particular thread. This
data key is a transparent data object of type pthread_key_t. The contents of this
key are not exposed to the user.

The user gets a key by issuing the pthread_key_create() function. One of the
arguments on the pthread_key_create() function is a pointer to a local variable of
type pthread_key_t. This variable is then used with the pthread_set_specific()
function to establish a unique key value.

pthread_key_create() creates a unique identifier (a key) that is visible to all of the
threads in a process. This data key is returned to the caller of
pthread_key_create(). Threads can associate a thread unique data item with this
key using the pthread_setspecific() call. A thread can get its unique data value
for a key using the pthread_getspecific() call. In addition, a key can have an
optional ″destructor″ routine associated with it. This routine is executed during
thread termination and is passed the value of the key for the thread being
terminated. A typical use of a key and destructor is to have storage obtained by a
thread using malloc() and returned within the destructor at thread termination by
using free().

Functions
The following functions are used with thread-specific data:

Table 45. Functions used with thread-specific data

Function Purpose

pthread_key_create() Create a thread-specific data key

pthread_getspecific() Retrieve the value associated
with a thread-specific key

pthread_setspecific() Associate a value with a
thread-specific key

pthread_tag_np() Set and query the contents of the calling thread’s
tag data

Creating Thread-specific Data
The following example uses thread-specific data to insure that storage acquired by
a specific thread is freed when the thread ends.

326 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GTH1:

Signals
Each thread has an associated signal mask. The signal mask contains a flag for
each signal defined by the system. The flag determines which signals are to be
blocked from being delivered to a particular thread.

Unlike the signal mask, there is one signal action per signal for all of the threads in
the process. Some signal functions work on the process level, having an impact on
multiple threads, while others work on the thread level, and only affect one
particular thread. For example, the function kill() operates at the process level,
whereas the functions pthread_kill() and sigwait() operate at the thread level.

The following are some other signal functions that operate on the process level and
can influence multiple threads:

alarm()

bsd_signal()

#define _OPEN_THREADS
#include <stdio.h>
#include <pthread.h>
pthread_key_t mykey; /* A place to get the key */
void mydestruct(void *value); /* My destructor routine */
main()
{
char * thddataptr;
/* Create a key, getting back the key from pthread_key_create(),

and associate a function to be executed at thread termination
for this key

*/

(void)pthread_key_create(&mykey,&mydestruct);

/*
Obtain some storage which this thread will manage (remember,
the main is also a thread), which we want freed by our
destructor upon thread termination. Associate the storage
pointer with the key using pthread_setspecific.

*/
thddataptr = (char *) malloc(100);
(void)pthread_setspecific(mykey,thddataptr);

/* the body of the function

/* now, the thread exits, causing the thread termination
key data destructor to be executed.

*/
pthread_exit((void *)0);

}
/*

The key data destructor function
*/
void mydestruct(void * value) {

/* value is the value in the key/value binding that is unique
to the thread being terminated. Thus, in the example,
it represents the pointer to the storage needing freed.

*/
free(value);

}

Figure 85. Referring to Thread-specific Data

Chapter 23. Using Threads in an OS/390 UNIX Application 327

kill()

killpg()

raise()

sigaction()

siginterrupt()

signal()

sigset()

Generating a Signal
A signal can be generated explicitly with the raise(), kill(), killpg(), or
pthread_kill() functions or implicitly with functions such as alarm() or by the
system when certain events occur. In all cases, the signal will be directed to a
specific thread running in a process.

The two primary functions for controlling signals are sigaction() and
sigprocmask(). sigaction() also includes bsd_signal(), signal(), and sigset().

sigaction()
sigaction() specifies the action when a signal is processed by the system. This
function is process-scoped instead of thread-specific. When a signal is generated
for a process, the state of each thread within that process determines which thread
is affected.

The three types of signal actions are:

catcher
Specifies the address of a function that will get control when the signal is
delivered

SIG_DFL
Specifies that the system should perform default processing when this
signal type is generated

SIG_IGN
Specifies that the system should ignore all signals of this type.

Attention: If a signal whose default action is to terminate is delivered to a thread
running in a process where there are multiple threads running, and no
signal catcher is designated for the signal, the entire process is
terminated. You can avoid this by blocking each of the terminating
signals, or by establishing a signal catcher for each of them.

In a multi-threaded application, when a signal is generated by a function or action
that is not thread specific, and the process has some threads set up for signals and
some threads that are not set up for signals, then the kernel’s signal processing
determines which thread has the most interest in the signal.

The following is a list of signal interest rules in their order of priority:

1. When threads are found in a sigwait() for this signal type, the signal is
delivered to the first thread found in a sigwait().

2. When all threads are blocking this signal type, the signal is left pending in the
kernel at the process level. The sigpending function moves blocked pending
signals at the process level to the thread level.

3. When all of the following are true:
v One or more threads are set up for signals

328 OS/390 V2R10.0 C/C++ Programming Guide

v All threads set up for signals have the signal blocked
v A thread not set up for signals has not blocked the signal

The signal is left pending in the kernel on the first thread set up for signals. The
signal remains pending on that thread until the thread unblocks the signal.

4. When the signal action is to catch, the signal is delivered to one of the threads
that has the signal unblocked.

sigprocmask()
sigprocmask() specifies a way to control which set of signals interrupt a specific
thread. Because sigprocmask() is thread-scoped, it blocks the signal for only the
thread that issues the function.

Thread Cancellation
When multiple threads are running in a process, thread cancellation permits one
thread to cancel another thread in that process. This is done with the
pthread_cancel() function, which causes the system to generate a cancel interrupt
and direct it to the thread specified on the pthread_cancel(). Each thread can
control how the system generates this cancel interrupt by altering the interrupt state
and type.

A thread may have the following interrupt states, in descending order of control:

disabled
For short code sequences, the entire code sequence can be disabled to
prevent cancel interrupts. The pthread_setintr() function enables or
disables cancel interrupts in this manner.

controlled
For larger code sequences where you want some control over the interrupts
but cannot be entirely disabled, set the interrupt type to controlled and the
interrupt state to enabled. The pthread_setintrtype() function allows for
this type of managed interrupt delivery by introducing the concept of
cancellation points.

Cancellation points consist of calls to a limited set of library functions. Refer
to the description of pthread_setintrtype() in OS/390 C/C++ Run-Time
Library Reference for a list of these cancellation points. The user program
can implicitly or explicitly solicit interrupts by invoking one of the library
functions in the set of cancellation points, thus allowing the user to control
the points within their application where a cancel may occur.

asynchronous
For code sequences where you do not need any control over the interrupt,
set pthread_setintr() to enable and pthread_setintrtype() to
asynchronous. This will allow cancel interrupts to occur at any point within
your program.

For example, if you have a critical code section (a sequence of code that needs to
complete), you would turn cancel off or prevent the sequence from being
interrupted. If the code is relatively long, consider running using the control
interrupt and as long as the critical code section doesn’t contain any of the
functions that are considered cancellation points, it will not be unexpectedly
canceled.

For C++, destructors for automatic objects on the stack are run when a thread is
cancelled. The stack is unwound and the destructors are run in reverse order.

Chapter 23. Using Threads in an OS/390 UNIX Application 329

Functions
Table 46. Functions used to control cancellability

Function Purpose

pthread_cancel() Cancel a thread

pthread_setintr() Set thread cancellability
state

pthread_setintrtype() Set thread cancellability type

pthread_testintr() Establish a cancellabilty point

Cancelling a Thread
Three possible scenarios may cancel a thread, one for each of the interrupt states
of the thread being canceled.

v One thread issues pthread_cancel() to another thread whose cancellability state
is enabled and controlled. In this case the thread being canceled continues to run
until it reaches an appropriate cancellation point. When the thread is eventually
cancelled, just prior to termination of the thread, any cleanup handlers which
have been pushed and not yet popped will be executed. Then if the thread has
any thread-specific data, the destructor functions associated with this data will be
executed.

v One thread issues pthread_cancel() to another thread whose interruption state
is enabled and asynchronous. In this case the thread being canceled is
terminated immediately, after any cleanup handlers and thread-specific data
destructor functions are executed, as in the first scenario.

v One thread issues pthread_cancel() to another thread whose interruption state
is disabled. In this case the cancel request is ignored and the thread being
canceled continues to run normally.

In the first two interrupt states above, the caller of pthread_cancel() may get
control back before the thread is actually canceled.

Cleanup for Threads
Cleanup handlers are routines written by the user that include any special
processing the user finds necessary for termination of a thread. As the user’s
routine executes, it pushes cleanup handlers on to a stack. As the thread continues
to run and the routine progresses, these cleanup handlers can be taken off of the
stack by the user’s routine.

A list or stack of cleanup handlers is maintained for each thread. When the thread
ends, all pushed but not yet popped cleanup routines are popped from the cleanup
stack and executed in last-in-first-out (LIFO) order. This occurs when the thread:

v Calls pthread_exit()

v Does a return from or reaches the end of the start routine (that gets controls as a
result of a pthread_create())

v Is canceled because of a pthread_cancel().

Functions
Table 47. Functions used for cleanup purposes

Function Purpose

pthread_cleanup_push() Establish a cleanup handler

330 OS/390 V2R10.0 C/C++ Programming Guide

Table 47. Functions used for cleanup purposes (continued)

Function Purpose

pthread_cleanup_pop() Remove a cleanup
handler

Behaviors and Restrictions in an OS/390 UNIX Application
The following are implementation-specified behaviors and restrictions that apply to
the C/C++ library functions when running a multi-threaded OS/390 UNIX
application.

Using Threads with MVS Files
MVS files that are opened by data-set names or ddnames are thread-specific in the
following ways:

Note: These restrictions specifically do not apply to Hierarchical File System (HFS)
files.

All opens and closes by the C library that result in calls to an underlying access
method for a given MVS file must occur on the same thread. Apart from this
requirement, file pointers can be freely used for any type of file access (reading,
writing, repositioning, and so forth) from any thread. Therefore, the following specific
functions are prohibited from any thread except the owning thread (the one that
does the initial fopen()) of the file:
v fclose()
v freopen()
v rewind()

Multivolume data sets and files that are part of a concatenated ddname are further
restricted in multithreaded applications. All I/O operations are restricted to the
thread on which the file is opened.

The above thread affinity restrictions on the use of MVS files apply to hiperspace
memory files but not to regular memory files.

When standard streams are directed to MVS files, they are governed by the above
restrictions. Standard streams are directed to MVS files in one of two ways:

v By default when a main() program is run from the TSO ready prompt or by a
JCL EXEC PGM= statement, that is, whenever it is not initiated by the exec()
function. This is regardless of whether you are running with POSIX(ON) or
POSIX(OFF). In these cases, the owning thread is the initial processing thread
(IPT), the thread on which main() is executed.

v By explicit action when the user redirects the streams by using command line
redirection, fopen(), or freopen(). The thread that is redirected (the IPT, if you
are using command line redirection) becomes the owning thread of the particular
standard stream. The usual MVS file thread affinity restrictions outlined above
apply until the end of program or until the stream is redirected to the HFS.

Any operation that violates these restrictions causes SIGIOERR to be raised and
errno to be set with the following associated message:
EDC5024I: An attempt was made to close a file that had been
opened on another thread.

Chapter 23. Using Threads in an OS/390 UNIX Application 331

All MVS files opened from a given thread and still open when the thread is
terminated are closed automatically by the library during thread termination.

The getc(), getchar(), putc(), and putchar() functions have two versions, one
that is defined in the header file, stdio.h, which is a macro and the other which is
an actual library routine. The macros have better performance than their respective
function versions, but these macros are not thread safe, so in a multithreaded
application where _OPEN_THREADS feature test macro is defined, the macro version of
these functions are not exposed. Instead, the library functions are used. This is
done to ensure thread safety while multiple threads are executing.

Having more than one writer use separate file pointers to a single data set or
ddname is prohibited as always, regardless of whether the file pointers are used
from multiple threads or a single thread.

Thread-Scoped Functions
Thread-scoped functions are functions that execute independently on each thread
without sharing intermediate state information across threads. For example,
strtok() preserves pointers to tokens independently on each thread, regardless of
the fact that multiple threads may be examining the same string in a strtok()
operation. Some examples of thread-scoped functions are:
v strtok()
v rand(), srand()
v mblen(), mbtowc()
v strerror()
v asctime(), ctime(), gmtime(), localtime()
v clock()

The following are examples of process-scoped functions, which means that a call to
these functions on one thread influences the results of calls to the same function on
another thread. For example, tmpnam() is required to return a unique name for
every invocation during the life of the process, regardless of which thread issues
the call.
v tmpnam()
v getenv()
v setenv()
v clearenv()
v putenv()

Unsafe Thread Functions
The following functions are not thread-safe. In a multithreaded application,
therefore, they should only be used before the first invocation of pthread_create().
v setlocale() - (returns NULL if issued after pthread_create())
v tzset()
v fork()

Fetched Functions and Writable Statics
Fetched functions are recorded globally at the process level. Therefore a function
fetched from one thread can be executed from any thread.

Module boundary crossings are thread-scoped. Writable statics have a scope
between process and thread. They are process-scoped except that module
crossings are thread-scoped. This means that:

332 OS/390 V2R10.0 C/C++ Programming Guide

v All threads initially inherit the writable statics of the creating thread at the time of
the creation.

v When any thread executes a function pointer supplied by the fetch() function
and crosses a module boundary, only that thread has access to the writable
statics of the fetched module.

MTF and OS/390 UNIX Threading
MTF is not supported from applications running under POSIX(ON). A return value of
EWRONGOS is issued when running in a POSIX(ON) environment. An application that
requires multithreading must either use MTF with POSIX(OFF) or pthread_create()
with POSIX(ON).

Thread Queuing Function
The thread queuing function allows you to control whether or not threads should be
queued up while waiting for TCBs to become available. You can accomplish this by
switching the synctype attribute of a thread between synchronous and
asynchronous mode. With synchronous mode for example, if a process can only
have 50 TCBs active at any one time, then only 50 threads can be created. The
51st thread create results in an error. With asynchronous mode, however, you can
set the synctype attribute for a thread such that the 51st thread is created. This
thread will not start until one of the other threads finishes and releases a TCB.

Functions that relate to the ability to control thread queuing are:
v pthread_set_limit_np()
v pthread_attr_getsynctype_np()
v pthread_attr_setsynctype_np()

Thread Scheduling
You can use the pthread_attr_setweight_np() and
pthread_attr_setsynctype_np() functions to establish priorities for threads. The
pthread_attr_setweight_np() threadweight variable can be set to the following:

__MEDIUM_WEIGHT
Each thread runs on a task. When the current thread exits, the task waits
for another thread to do a pthread_create(). The new thread runs on that
task.

__HEAVY_WEIGHT
The task is attached on pthread_create() and terminates when the thread
exits. When the thread exits, the associated task can no longer request
threads to process, and full MVS EOT resource manager cleanup occurs.

You can use the pthread_addt_setsynctype_np() function to set the
__PTATASYNCHRONOUS value. This enables you to create more threads than there are
TCBs available. For example, you could run 50 TCBs and create hundreds of
threads. The kernel queues the threads until a task is available. This frees your
application from managing the work. While a thread is queued and not executing on
an MVS task, you can still interact with the thread via pthread functions, such as
pthread_join() and pthread_kill().

iconv() Family of Functions
The conversion descriptor returned from a successful iconv_open() may be used
safely within a single thread for conversion purposes. It may, however, be opened
on one thread (iconv_open()), closed on another thread (iconv_close()), and used

Chapter 23. Using Threads in an OS/390 UNIX Application 333

on a third thread (iconv()). However, it is the user’s responsibility to ensure
operations are synchronized if they are used across multiple threads.

334 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 24. Reentrancy in OS/390 C/C++

This chapter describes the concept of reentrancy. It tells you how to use reentrancy
in C programs to help make your programs more efficient, and how C++ achieves
constructed reentrancy.

Reentrant programs are structured to allow multiple users to share a single copy of
an executable module or to use an executable module repeatedly without reloading.
C and C++ achieve reentrancy by splitting your program into two parts, which are
maintained in separate areas of memory until the program terminates:

v The first part, which consists of executable code and constant data, does not
change during program execution.

v The second part contains persistent data that can be altered. This part includes
the dynamic storage area (DSA) and a piece of storage known as the writable
static area.

For XPLINK, the writable static area is further logically subdivided into areas
called environments. Environments are optional, and each function can have its
own environment. When an XPLINK function is called, the caller must load
general purpose register 5 with the address of the environment of the called
function before control is given to the entry point of the called function.

If the program is installed in the Link Pack Area (LPA) or Extended Link Pack Area
(ELPA) of your operating system, only a single copy of the first (constant or
reentrant part) exists within a single address space. This occurs regardless of the
number of users that are running the program simultaneously. This reentrant part
may be shared across address spaces or across sessions. In this case, the
executable module is loaded only once. Separate concurrent invocations of the
program share or reenter the same copy of the write-protected executable module.
If the program is not installed in the LPA or ELPA area, each invocation receives a
private copy of the code part, but this copy may not be write-protected.

The modifiable writable static part of the program contains:

v All program variables with the static storage class

v All program variables receiving the extern storage class

v All writable strings

v All function linkage descriptors for all referenced DLL functions

v Function linkage descriptors for all referenced DLL functions that are used by
multiple compilation units in the program, but are not imported (XPLINK, RENT)

v All variable pointers for imported variables (non-XPLINK)

v All function pointers for imported functions (XPLINK, RENT)

v All variable linkage descriptors to reference imported variables (non-XPLINK)

Each user running the program receives a private copy of the second (data or
non-reentrant) part. This part, the data area, is modifiable by each user.

The code part of the program contains:

v Executable instructions

v Read-only constants

v Global objects compiled with the #pragma variable (-NORENT)

© Copyright IBM Corp. 1996, 2000 335

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|

|

|

|

Natural or Constructed Reentrancy
Natural Reentrancy

C programs that contain no references to the writable static objects listed in
the previous section have natural reentrancy. You do not need to compile
naturally reentrant C programs with the RENT compiler option or bind them
with the binder.

Constructed Reentrancy
C++ programs, and C programs that contain references to writable static
objects, can have contructed reentrancy. You must bind these programs
with the binder. For C programs, you must use the RENT compiler option.

If you use the XPLINK option, RENT is the default. If you override this default by
specifying NORENT, any parts of the program that are normally stored in the writable
static area go instead into a static area. If this static area is write-protected, you will
get a run-time failure because the function pointers for imported functions cannot be
modified to point to the function when the DLL containing the function is loaded and
the function address determined. For programs that are both XPLINK and NORENT,
all functions must be statically bound or explicitly loaded (dllload(), or fetch()).

Limitations of Constructed Reentrancy for C Programs
Even if a C program is large and will have more than one user at the same time,
there are also these limitations to consider:

v The binder is required for code that you compile with XPLINK.

v If the prelinker, rather than the binder, will process code that is compiled with
NOXPLINK, RENT:

– The resultant load module referring to the writable area cannot be
reprocessed.

– The resultant program may reside in a PDS.

v If the binder is used, and not the prelinker, the resultant program must reside in a
PDSE or HFS. If a PDSE member should be installed into LPA or ELPA, it can
only be installed into dynamic LPA.

v A system programmer can install only the shared portion of your program in the
LPA or ELPA of your operating system.

Controlling External Static in C Programs
Certain program variables with the extern storage class may be constant and never
written. If this is the case, every user does not need to have a separate copy of
these variables. In addition, there may be a need to share constant program
variables between C and another language.

You can force an external variable to be the part of the program that includes
executable code and constant data by using the #pragma variable(varname,
NORENT) directive. The following program fragment illustrates how this is
accomplished:

336 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|

|

|
|
|

In this example, the source file is compiled with the RENT option. The external
variable rates are included in the executable code because #pragma
variable(rates, NORENT) is specified. The variable totals are included with the
writable static. Each user has a copy of the array totals, and the array rates are
shared among all users of the program.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,
program variables with the static storage class. Program variables with the static
storage class are always included in the writable static. An informational message
will appear if you do try to write to a non-reentrant variable when you specify the
CHECKOUT compiler option.

When specifying #pragma variable(varname, NORENT), ensure that this variable is
never written; if it is written, program exceptions or unpredictable program behavior
may result. In addition, you must include #pragma variable(varname, NORENT) in
every source file where the variable is referenced or defined. It is good practice to
put these pragmas in a common header file.

Note: You can also use the keyword const to ensure that a variable is not written.
See the OS/390 C/C++ Language Reference for more information on this
keyword.

ROConst has the same effect as specifying the #pragma variable (var_name,
NORENT) for all constant variables (i.e. const qualified variables). The option gives
the compiler the choice of allocating const variables outside of the Writable Static
Area (WSA). For more information on using ROConst, see OS/390 C/C++ User’s
Guide.

Controlling Writable Strings
In a large number of C programs, character strings may be constant and never
written to. If this is the case, every user does not need a separate copy of these
strings.

You can force all strings in a given source file to be the part of the program that
includes executable code and constant data by using #pragma strings(readonly)
or the ROString compiler option. “CBC3GRE1” on page 338 illustrates one way to
make the strings constant.

#pragma options(RENT)

#pragma variable(rates, NORENT)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {
/* ... */

}

Figure 86. Controlling External Static

Chapter 24. Reentrancy in OS/390 C/C++ 337

|
|
|
|

CBC3GRE1

In this example, the string "hello world\n" is included with the executable code
because #pragma strings(readonly) is specified. This can yield a performance and
storage benefit.

Ensure that you do not write to read-only strings. The following code tries to
overwrite the literal string ″abcd″ because ’chrs’ is just a pointer:
char chrs[]= "abcd";
memcpy(chrs,"ABCD",4);

Program exceptions or unpredictable program behavior may result if you attempt to
write to a string constant.

The ROString compiler option has the same effect as #pragma string(readonly) in
the program source. For more information on using ROString, see OS/390 C/C++
User’s Guide.

Controlling the Memory Area in C++
In C++, some objects may be constant and never modified. If your program is
reentrant, having such objects exist in the code part is a storage and performance
benefit.

As a programmer, you control where objects with global names and string literals
exist. You can use the #pragma variable(objname, NORENT) directive to specify that
the memory for an object with a global name is to be in the code area. You can use
the ROConst compiler option to specify that all const variables go into the code area.
/*--*/
/* RATES is constant and in code area */
#pragma variable(RATES, NORENT)
const float RATES[5] = { 1.0, 1.5, 2.25, 3.375, 5.0625 };
float totals[5];
/*--*/

In this example, the variable RATES exists in the executable code area because
#pragma variable(RATES,NORENT) has been specified. The variable totals exists in
writable static area. All users have their own copies of the array totals, but the
array RATES is shared among all users of the program.

When you specify #pragma variable(objname,NORENT) for an object, and the
program is to be reentrant, you must ensure that this object is never modified, even
by constructors or destructors. Program exceptions or unpredictable behavior may
result. Also, you must include #pragma variable(objname,NORENT) in every source

/* this example demonstrates how to make strings constant */

#pragma strings(readonly)
#include <stdio.h>

int main(void)
{

printf("hello world\n");

return(0);
}

Figure 87. Making Strings Constant

338 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|

file where the object is referenced or defined. Otherwise, the compiler will generate
inconsistent addressing for the object, sometimes in the code area and sometimes
in the writable static area.

Controlling Where String Literals Exist in C++ Code
In OS/390 C/C++, the string literals exist in the code part by default, and are not
modifiable if the code is reentrant. In a large number of programs, string literals
may be constant. In this case, every user does not need a separate copy of these
strings.

By using the #pragma strings(writable) directive, you can ensure that the string
literals for that compilation unit will exist in the writable static area and be
modifiable. “CBC3GRE2” illustrates how to make the string literals modifiable:

CBC3GRE2

In this example, the string "wall\n" will exist in the writable static area because
#pragma strings(writable) is specified. This modifies the fourth character.

Using Writable Static in Assembler Code
Programming in C or C++ can eliminate most of the need to code in assembler.
However, in cases where you must code in assembler, you may have a need to
modify data in the writable static area of a C or C++ program, from within an
assembler program.

Notes:

1. To call assembler from C++, you must use extern "OS" as documented in
“Chapter 19. Using Linkage Specifications in C or C++” on page 239.

2. The following macros, and access to writable static data from assembler are not
supported for XPLINK programs.

One way to modify data in the writable static area is to pass the address of the
writable static data item as a parameter to the assembler program. This may be
difficult in some cases. The following assembler macros makes this easier:

v EDCDXD

v EDCLA

v EDCDPLNK

/* this example demonstrates how to make string literals modifiable */

#pragma strings(writable)
#include <iostream.h>
int main(void)
{

char * s;
s = "wall\n"; // point to string literal
*(s+3) = 'k'; // modify string literal
cout << s; // output "walk\n"

}

Figure 88. How to Make String Literals Modifiable

Chapter 24. Reentrancy in OS/390 C/C++ 339

|
|

These are in CEE.SCEEMAC(EDCDXD,EDCLA,EDCDPLNK). The restriction on the names of
writable static objects accessible in assembler code is that they are S-names. This
means that they may be at most 8 characters long and may contain only characters
allowed in external names by the assembler code.

The macro EDCDXD declares a writable static data item. EDCLA loads the address of
the writable static data item into a register. Using the EDCLA macro in assembler
code necessitates coding EDCDXD as well.

The EDCDPLNK macro defines reference writable static data with the OS/390 binder.
This macro must appear before the first executable control section is initiated in the
assembler source module. If there is more than one assembler source program in
the input file, EDCDPLNK must precede every assembler source program in any input
file that defines or references writable static data.

“CBC3GRE3” illustrates their use:

CBC3GRE3

In this example, the external variable TBLDSA is declared using the EDCDXD macro.
The size value of 0F (zero fullwords) indicates that DSA will be treated as an extern
declaration in C or C++. Because TBLDSA is an extern declaration and not a
definition, DSA must be defined in another C, C++, or assembler program. The
EDCLA macro loads the general purpose register 1 with the address of DSA, which
exists in the writable static area.

The external variable TBDLSA is declared using the EDCDXD macro. It is defined
because its size is 20F (20 fullwords or 80 bytes) and corresponds to an external
data definit ion in C or C++. When the program starts, TBDLSA is initialized to zero.
Because TBDLSA is an external data definition, there should not be another definition
of it in a C++, C, or assembler program.

* this example shows how to reference objects in the writable *
* static area, from assembler code *
* part 1 of 2(other file is CBC3GRE4) *
* *
* parameters: none *
* return: none *
* action: store contents of register 13 (callers dynamic *
* storage area) in variable DSA which exists in *
* the writable static area *
* *
* Macros: EDCPRLG, EDCEPIL, EDCDXD, EDCLA in CEE.SCEEMAC *

XOBJHDR EDCDPLNK ;generate an XOBJ header
GETDSA CSECT
GETDSA AMODE ANY
GETDSA RMODE ANY

EDCPRLG ;prolog (save registers etc.)
EDCLA 1,DSA ;load register 1 with address of DSA
ST 13,0(,1) ;store contents of reg 13 in DSA
EDCEPIL ;epilog (restore registers etc.)

DSA EDCDXD 0F ;declaration of DSA in writable static
TBLDSA EDCDXD 20F ;definition of TBLDSA in writable static
END

Figure 89. Referencing Objects in the Writable Static Area-Part 1

340 OS/390 V2R10.0 C/C++ Programming Guide

When these macros are used, these pseudo-registers cannot be used within the
same assembler program.

There are no assembler macros for static initialization of a variable with a nonzero
value. You can do this by defining and initializing the variable in C or C++ and
making an extern declaration for it in the assembler program. In the example
assembler program, DSA is declared this way.

“CBC3GRE4” illustrates how to call the above assembler program.

CBC3GRE4

/* this example shows how to reference objects in the writable */
/* static area, from assembler code */
/* part 2 of 2 (other file is CBC3GRE3) */

#include <stdio.h>

#ifdef __cplusplus
extern "OS" {

#endif
void GETDSA(void); /* assembler routine modifies DSA */
#ifdef __cplusplus

}
#endif

const int sz = 20; /* maximum call depth */
extern void * TBLDSA[sz]; /* defined in assembler program */
void * DSA; /* define it here, source name */

/* same as assembler name */

/* call yourself deeper and deeper */
/* save DSA pointers as you go */
void deeper(int i)
{

if (i >= sz) /* if deep enough just return */
return;

GETDSA(); /* assign value to DSA */
TBLDSA[i] = DSA; /* save value in table */
deeper(i+1); /* go deeper in call chain */

}

int main(void) {
int i;
deeper(0);
for(i=0; i<sz; i++)

printf("depth %3d, DSA was at %p\n", i, TBLDSA[i]);
return 0;

}

Figure 90. Referencing Objects in the Writable Static Area-Part 2

Chapter 24. Reentrancy in OS/390 C/C++ 341

342 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 25. Using the Decimal Data Type in C

This chapter refers to fixed-point decimal data types as “decimal types”. The
decimal type is an extension of the ANSI C language definition. You can use
decimal types to represent large numbers accurately, especially in business and
commercial applications for financial calculations. Decimal types are available only if
the LANGLVL is EXTENDED, as it is by default. If you need to, you can explicitly specify
#pragma langlvl(EXTENDED) in your code, or use the LANGLVL(EXTENDED) compiler
option.

The decimal types allow expressions of up to DEC_DIG significant digits including
integral and fractional parts. The header file <decimal.h> specifies the value of
DEC_DIG.

You can pass decimal arguments in function calls and define macros. You can also
declare decimal variables, typedefs, arrays, structures, and unions having decimal
members. The following operators apply on decimal variables:

v Arithmetic

v Relational

v Assignment

v Comma

v Conditional

v Equality

v Logical

v Primary

v Unary

When using the decimal types, you must include the decimal.h header file in your
source code.

Declaring Decimal Types
Use the type specifier decimal(n,p) to declare decimal variables and to initialize
them with fixed-point decimal constants. The decimal() macro is defined in
<decimal.h>.

The decimal(n,p) type specifier designates a decimal number with n digits and p
decimal places. In this specifier, n is the total number of digits for the integral and
decimal parts combined and p is the number of digits for the decimal part only. For
example, decimal(5,2) represents a number, such as 123.45, where n=5 and p=2.
Specifying the value for p is optional. If omitted, p has a default value of 0.

n and p have a range of allowed values according to the following rules:
p ≤ n
1 ≤ n ≤ DEC_DIG
0 ≤ p ≤ DEC_PRECISION

Note: The header file <decimal.h> defines DEC_DIG (the maximum number of digits
n) and DEC_PRECISION (the maximum precision p). Currently, there is a limit
of a maximum of 31 digits.

© Copyright IBM Corp. 1996, 2000 343

Declaring Fixed-Point Decimal Constants
The syntax for fixed-point decimal constants is:

fixed-point-decimal-constant:
fractional-constant fixed-point-decimal-suffix

fractional-constant (use any one of the following formats):
digit-sequence . digit-sequence
. digit-sequence
digit-sequence .
digit-sequence

digit-sequence (use any one of the following formats):
digit
digit-sequence digit

fixed-point-decimal-suffix (use any one of the following formats):
D
d

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The components of the numeric part may include a digit sequence
representing the integral part, followed by a decimal point (.), followed by a digit
sequence representing the fractional part. Either the integral part, the fractional part,
or both are present.

Each fixed-point decimal constant has the attributes number of digits (digits) and
number of decimal places (precision). Leading or trailing zeros are not discarded
when the digits and the precision are determined.

The following table gives examples of fixed-point decimal constants and their
corresponding attributes:

Table 48. Fixed-Point Decimal Constants and Their Attributes
Fixed-Point Decimal Constant (digits, precision)

1234567890123456D (16, 0)
12345678.12345678D (16, 8)
12345678.d (8, 0)
.1234567890d (10, 10)
12345.99d (7, 2)
000123.990d (9, 3)
0.00D (3, 2)

Declaring Decimal Variables
The following example shows how you can declare a variable as a decimal type:
decimal(10,2) x;
decimal(5,0) y;
decimal(5) z;
decimal(18,10) *ptr;
decimal(8,2) arr[100];

In the previous example:

v x can have values between -99999999.99D and +99999999.99D.

344 OS/390 V2R10.0 C/C++ Programming Guide

v y and z can have values between -99999D and +99999D.

v ptr is a pointer to type decimal(18,10).

v arr is an array of 100 elements, where each element is of type decimal(8,2).

The syntax for the decimal type specifier is as follows:

%% decimal (constant-expression
, constant-expression

) %&

The constant-expression is evaluated as a positive integral constant expression.
Specifying a second constant-expression is optional. If left out, the default value is
0. Decimal variables decimal(n,0) and decimal(n) are type compatible.

Defining Decimal-Related Constants
Use the following numerical limits to define the decimal value in assignments and
expressions. <decimal.h> contains these predefined values.

v The smallest number in a decimal type

DEC_MIN
-9999999999999999999999999999999D

v The largest positive number in a decimal type

DEC_MAX
+9999999999999999999999999999999D

v The smallest number greater than zero in a decimal type

DEC_EPSILON
.0000000000000000000000000000001D

v Maximum number of significant digits that decimal types can hold

DEC_DIG
31

v Maximum number of decimal places that decimal types can hold

DEC_PRECISION
31

Using Operators
You can use arithmetic, relational, assignment, comma, conditional, equality, logical,
primary, and unary cast operators on a decimal data type. Conversions follow these
arithmetic conversion rules:

v First, if the type of either operand is long double, the other operand becomes
long double.

v Otherwise, if the type of either operand is double, the other operand becomes
double.

v Otherwise, if the type of either operand is float, the other operand becomes float.

v Otherwise, if the type of either operand is decimal, the other operand becomes
decimal.

v Otherwise, the integral promotions are performed on both operands. Then the
following rules are applied:

Chapter 25. Using the Decimal Data Type in C 345

– If the type of either operand is unsigned long int, the other operand becomes
unsigned long int.

– Otherwise, if the type of one operand is long int and the other is unsigned int,
the operand of type unsigned int is converted to long int, if the long int can
represent all values of an unsigned int. If a long int cannot represent all the
values of an unsigned int, both operands become unsigned long int.

– Otherwise, if the type of either operand is long int, the other operand becomes
long int.

– Otherwise, if the type of either operand is unsigned int, the other operand
becomes unsigned int.

– Otherwise, the type of both operands is int.

Arithmetic Operators
Figure 91 shows how to use arithmetic operators, and then describes certain
arithmetic, assignment, unary, and cast operators in more detail. It summarizes how
to add, subtract, multiply and divide decimal variables.

CBC3GDC1

Additive Operators
Additive and multiplicative operators follow the arithmetic conversion rules defined
in “Using Operators” on page 345.

Note: For performance reasons, generating negative zero is possible.

/*this example demonstrates arithmetic operations on decimal variables*/

#include <decimal.h> /* decimal header file */
#include <stdio.h>

int main(void)
{

decimal(10,2) op_1 = 12d;
decimal(5,5) op_2 = -.12345d;
decimal(24,12) op_3 = 12.34d;
decimal(20,5) op_4 = 11.01d;
decimal(14,5) res_add;
decimal(25,2) res_sub;
decimal(15,7) res_mul;
decimal(31,14) res_div;

res_add = op_1 + op_2;
res_sub = op_3 - op_1;
res_mul = op_2 * op_1;
res_div = op_3 / op_4;

printf("res_add =%D(*,*)\n",digitsof(res_add),
precisionof(res_add),res_add);

printf("res_sub =%D(*,*)\n",digitsof(res_sub),
precisionof(res_sub),res_sub);

printf("res_mul =%D(*,*)\n",digitsof(res_mul),
precisionof(res_mul),res_mul);

printf("res_div =%D(*,*)\n",digitsof(res_div),
precisionof(res_div), res_div);

return(0);
}

Figure 91. Arithmetic Operators Example

346 OS/390 V2R10.0 C/C++ Programming Guide

Refer to “Intermediate Results” on page 348 for details on how to get the
conversion type during alignment of the decimal point.

Relational Operators
Relational operators follow the arithmetic conversion rules defined in “Using
Operators” on page 345.

Figure 92 shows you how to use a relational expression less than (<) for decimals.
In this example, decimal types are compared with other arithmetic types (integer,
float, double, long double). In addition, the implicit conversion of the decimal types
is performed using the arithmetic conversion rules in “Converting Decimal Types” on
page 350. Leading zeros in the example are shown to indicate the number of digits
in the decimal type. You do not need to enter leading zeros in your decimal type
variable initialization.

CBC3GDC2

Refer to “Intermediate Results” on page 348 for details on how to get the
conversion type during alignment of the decimal point.

Equality Operators
Equality operators follow the arithmetic conversions defined in “Using Operators” on
page 345. Where the operands have types and values suitable for the relational
operators, the semantics for relational operators applies.

Note: Positive zero and negative zero compare equal. In the following example, the
expression always evaluates to TRUE:
(-0.00d == +0.00000d)

Refer to “Intermediate Results” on page 348 for details on how to get the convert
type during alignment of the decimal point.

/* this example shows how to use a relational expression with the */
/* decimal type */

#include <decimal.h>

decimal(10,3) pdval = 0000023.423d; /* Decimal declaration*/
int ival = 1233; /* Integer declaration*/
float fval = 1234.34; /* Float declaration*/
double dval = 251.5832; /* Double declaration*/
long double lval = 37486.234; /* Long double declaration*/

int main(void)
{

decimal(15,6) value = 000485860.085999d;
/*Perform relational operation between other data types and decimal*/

if (pdval < ival) printf("pdval is the smallest !\n");
if (pdval < fval) printf("pdval is the smallest !\n");
if (pdval < dval) printf("pdval is the smallest !\n");
if (pdval < lval) printf("pdval is the smallest !\n");
if (pdval < value) printf("pdval is the smallest !\n");

return(0);
}

Figure 92. Relational Operators Example

Chapter 25. Using the Decimal Data Type in C 347

Conditional Operators
Conditional operators follow the arithmetic conversions defined in “Using Operators”
on page 345. If both the second and third operands have an arithmetic type, the
usual arithmetic conversions are performed to bring them to a common type. If both
operands are decimal types, the operands are converted to the convert type and
the result has that type.

Refer to “Intermediate Results” for details on how to get the convert type during
alignment of the decimal point.

Intermediate Results
Use one of the following tables to calculate the size of the result. The tables
summarize the intermediate expression results with the four basic arithmetic
operators and conditional operators when applied to the decimal types. Most of the
time, you can use Table 49 to calculate the size of the result. It assumes no
overflow. If overflow occurs, use Table 50 to determine the resulting type.

Both tables assume the following:

v x has type decimal(n₁, p₁)

v y has type decimal(n₂, p₂)

v decimal(n,p) is the resulting type

Table 49. Intermediate Results (without overflow in n or p)

Expression (n, p)

x * y n = n₁ + n₂ p = p₁ + p₂

x / y n = DEC_DIG p = DEC_DIG - ((n₁ - p₁) + p₂)

x + y p = max(p₁, p₂) n = max(n₁ - p₁, n₂ - p₂) + p + 1

x − y same rule as addition

z ? x : y p = max(p₁, p₂) n = max(n₁ - p₁, n₂ - p₂) + p

You can use Table 50 to calculate the size of the result, whether there is an
overflow or not.

Table 50. Intermediate Results (in the general form)

Expression (n, p)

x * y n = min(n₁ + n₂, DEC_DIG)
p = min(p₁ + p₂, DEC_DIG - min((n₁ - p₁)
+ (n₂ - p₂), DEC_DIG))

x / y n = DEC_DIG
p = max(DEC_DIG - ((n₁ - p₁) + p₂), 0)

x + y ir
= min(max(n₁ - p₁, n₂ - p₂) + 1, DEC_DIG)
p = min(max(p₁, p₂), DEC_DIG - ir)
n = ir + p

x − y same rule as addition

z
? x : y

ir = max(n₁
- p₁, n₂ - p₂)
p = min(max(p₁, p₂), DEC_DIG - ir)
n = ir + p

348 OS/390 V2R10.0 C/C++ Programming Guide

If overflow occurs in n or p, a compile-time warning message is issued and the
decimal places are truncated. As much of the integral part is reserved as possible.
If the integral part is truncated as an expression in the static or extern initialization,
an error message is issued. If the integral part is truncated inside the block scope,
a warning is issued. On each operation, the complete result is calculated before
truncation occurs.

Assignment Operators
Assignment operators follow the arithmetic conversion rules defined in “Using
Operators” on page 345.

When values are assigned, an SIGFPE exception may be raised if the operands
contain values that are not valid.

Unary Operators
Use the following unary operators to determine the digits in a decimal type:

sizeof Determines the total number of bytes occupied by the decimal type

digitsof Determines the number of digits (n)

precisionof Determines the number of decimal digits (p)

sizeof Operator
When you use the sizeof operator with decimal(n,p), the result is an integer
constant. The sizeof operator returns the total number of bytes occupied by the
decimal type.

Each decimal digit occupies a halfbyte. In addition, a halfbyte represents the sign.
The number of bytes used by decimal(n,p) is the smallest whole number greater
than or equal to (n + 1)/2, that is, sizeof(decimal(n,p)) = ceil((n + 1)/2). The
sizeof result is calculated using this method because the OS/390 C compiler uses
packed decimal to implement decimal types.

The following example shows you how to determine the total number of bytes
occupied by the decimal type:
int y;
decimal (5, 2) x;
y = sizeof x; /* This would be calculated to be 3 bytes*/

/* (5+1)/2 = 3. */

digitsof Operator
When you use the digitsof operator with a decimal type, the result is an integer
constant. The digitsof operator returns the number of significant digits (n) in a
decimal type.

This example gives you the number of digits (n) in a decimal type.
decimal (5, 2) x;
int n;
n = digitsof x; /* the result is n=5 */

Note: Apply digitsof only to a decimal type.

precisionof Operator
When you use the precisionof operator with a decimal type, the result is an integer
constant. The precisionof operator tells you the number of decimal digits (p) of the
decimal type.

Chapter 25. Using the Decimal Data Type in C 349

This example gives you the number of decimal digits (p) of the decimal type.
decimal (5, 2) x;
int p;
p = precisionof x; /* the result is p=2 */

Note: Apply precisionof only to a decimal type.

Cast Operator
You can convert the following types explicitly:

v Decimal types to decimal types

v Decimal types to and from floating types

v Decimal types to and from integer types

Notes:

1. When you are explicitly casting to a decimal type, the discarding of the leading
nonzero digits does not cause an exception at run-time. For more information
about suppressing compiler messages and run-time exceptions, refer to
“Converting Decimal Types” on page 350.

2. An implicit conversion to a decimal type with an even number of digits may not
clear the pad digit, but an explicit cast will clear the pad digit.

Summary of Operators Used With Decimal Types
Table 51 summarizes all of the operators to be used with decimal types.

Table 51. Operators Used With Decimal Types

Operator Name Associativity Operators

Primary left to right ()

Unary right to left ++ −− + − ! & (typename)
sizeof digitsof precisionof

Multiplicative left to right * /

Additive left to right + −

Relational left to right < > <= >=

Equality left to right == !=

Conditional right to left ? :

Assignment right to left = += −= *= /=

Comma left to right ,

Converting Decimal Types
The OS/390 C compiler implicitly converts the following types:

v Decimal types to decimal types

v Decimal types to and from floating types

v Decimal types to and from integer types

Converting Decimal Types to Decimal Types
If the value of the decimal type to be converted is within the range of values that
can be represented exactly, the value of the decimal type is not changed.

350 OS/390 V2R10.0 C/C++ Programming Guide

|
|

If the value of the decimal type to be converted is outside the range of values that
can be represented, the value of the decimal type is truncated. Truncation may
occur on either the integral part or the fractional part or both.

When truncation occurs on the fraction part, no compile-time message or a run-time
exception occurs.

When truncation occurs on the integral part, a compile-time message, a run-time
exception or both are generated as follows:

v In the initialization of static or external variables

– Compile-time error if nonzero digits are truncated in the integral part

v In the initialization of automatic variables, an assignment or function call with
prototype

– Checkout warning at compile time

– Run-time exception SIGFPE may occur if nonzero digits are truncated in the
integral part at run time.

Note: An explicit cast is used to suppress compile-time messages and run-time
exceptions. A run-time exception may occur if any leading nonzero digits are
discarded and the operation is not an explicit cast operation.

Examples
In the following examples, message represents a compile-time message and
exception represents a run-time exception (that is, SIGFPE is raised).

Fractional Part Cannot Be Represented: Conversion of one decimal object to
another decimal object with smaller precision involves truncation on the right of the
decimal point.

Integral Part Cannot Be Represented: Conversion of one decimal object to
another decimal object with fewer digits involves truncation on the left of the
decimal point.

#include <decimal.h>

void func(void);
void dec_func(decimal(7, 1));
decimal(7, 4) x = 123.4567D;
decimal(7, 1) y;
decimal(7, 1) z = 123.4567D; /* z = 000123.4D <-- No message, */

/* No exception */
void func(void) {

decimal(7, 1) a = 123.4567D; /* a = 000123.4D <-- No message, * /
/* No exception */

y = x; /* y = 000123.4D <-- No message, No exception */
y = 123.4567D; /* y = 000123.4D <-- No message, No exception */
dec_func(x); /* <-- No message, No exception */

}

Figure 93. Fractional Part Cannot be Represented

Chapter 25. Using the Decimal Data Type in C 351

Converting Decimal Types to and from Integer Types

Conversion to Integer Types
When a value of decimal type is converted to integer type, the fractional part is
discarded. If the value of the integral part cannot be represented by the integer
type, the behavior is undefined.

When a negative decimal type is converted to an unsigned integer type, the
conversion proceeds as though these steps are followed:

1. The decimal type is converted to a signed integer type with the same size as
the unsigned integer type.

2. The signed integer type is converted to the unsigned integer type.

Example of Conversion to Integer Type

Conversion from Integer Types
When a value of integer type is implicitly converted to decimal type, the integer type
is converted to type decimal(10,0).

void func(void);
void dec_func(decimal(5, 2));
decimal(8, 2) w = 000456.78D;
decimal(8, 2) x = 123456.78D;
decimal(5, 2) y;
decimal(5, 2) z = 123456.78D; /* <-- Compile-time error */
decimal(5, 2) z1 = (decimal(5, 2)) 123456.78D;

/* z1 = 456.78D <-- No message, */
/* No exception */

void func(void) {
decimal(5, 2) a = 123456.78D; /* <-- Checkout warning */

/* and exception */
decimal(5, 2) a1 = (decimal(5, 2)) 123456.78D;

/* a1 = 456.78D <-- No message, */
/* No exception */

y = w; /* y = 456.78D <-- Checkout warning, No exception */
y = x; /* <-- Checkout warning and exception */
y = 123456.78D; /* <-- Checkout warning and exception */
dec_func(x); /* <-- Checkout warning and exception */

y = (decimal(5, 2)) w;
/* y = 456.78D <-- No message, No exception */

y = (decimal(5, 2)) x;
/* y = 456.78D <-- No message, No exception */

y = (decimal(5, 2)) 123456.78D;
/* y = 456.78D <-- No message, No exception */

dec_func((decimal(5, 2)) x);
/* <-- No message, No exception */

}

Figure 94. Integral Part Cannot be Represented

int i = 1234.5678d; /* i = 1234 */
int j = -789d; /* j = -789 */
int k = 9876543210d; /* k is undefined */

Figure 95. Conversion to Integer Type

352 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|

When a value of integer type is explicitly converted to decimal type, the conversion
proceeds as though these two steps are followed:

1. The integer type is converted to type decimal(10,0). A run-time exception can
never occur in this step.

2. Type decimal(10,0) is then converted to decimal(n,p). All rules for decimal
type to decimal type conversion apply in this step.

An unsigned integer type is converted to a positive decimal value.

If the value of the integral part cannot be represented by the decimal type, the
behavior is undefined.

Example of Conversion from Integer Type

Converting Decimal Types to and from Floating Types

Conversion to Floating Types
The result of the conversion might not be exact due to:

v The limitations of significant digits in different floating types

v The degree to which a value can be stored exactly in a floating type

v The loss of precision during conversion

In the following example, the content of each floating type variable depends on their
limitation of significant digits that are specified in <float.h>.

Conversion from Floating Types
When a value of floating type is converted to decimal type and the value being
converted cannot be represented by the decimal type, the result is rounded towards
zero. If the value of the floating type to be converted is within the range of values
that can be represented, but cannot be represented exactly, the result is also
rounded towards zero. The result retains as much value as possible. When any
leading nonzero digits are suppressed and the operation is not an explicit cast
operation, a decimal overflow exception occurs at run time and an SIGFPE exception
is raised.

#include <decimal.h>

decimal(10,2) pd01 = 1234; /* pd01 = 00001234.00d */
decimal(5,0) pd02 = 987654; /* compile-time error */
int main(void) {

decimal(5,0) pd03 = 987654; /* run-time exception */
decimal(13,4) pd04;

/* The number 321 is converted to decimal(10,0) before the */
/* addition is performed. */
pd04 = 1234.56d + 321; /* pd04 = 000001555.5600d */

}

Figure 96. Conversion from Integral Type

float a = 12345678901234567890.1234567890d;
double b = 12345678901234567890.1234567890d;
long double c = 12345678901234567890.1234567890d;

Figure 97. Conversion to Floating Type

Chapter 25. Using the Decimal Data Type in C 353

|
|

When a conversion from a floating type is made with static or external variable
initialization, a compile-time error message is issued.

The result of the conversion may not be exact because the internal representation
of System/370 floating-point instructions is hexadecimal based if FLOAT(HEX) mode
is used. The mapping between the two representations is not one-to-one, even
when the value of a float type is within the range of the decimal type.

Example of Conversion from Floating Type

Calling Functions
There are no default argument promotions on arguments that have type decimal
when the called function does not include a prototype. If the expression for the
called function has a type that includes a prototype, the behavior is as documented
in ANSI, with the exception of prototype with an ellipsis (...). If the prototype ends
with an ellipsis (...), default argument promotions are not performed on arguments
with decimal types.

A function may change the values of its parameters, but these changes cannot
affect the values of the arguments. However, it is possible to pass a pointer to a
decimal object, and the function may change the value of the decimal object to
which it points.

Using Library Functions
You can use variable arguments and I/O operations with decimals.

Using Variable Arguments with Decimal Types
You can use the va_arg macro with a decimal type decimal(n,p).
var_type va_arg(va_list arg_ptr, var_type);

Each invocation of va_arg modifies arg_ptr so that the values of successive
arguments are returned in turn.

Formatting Input and Output Operations
Use the following functions to print the value of a decimal type:

v fprintf()

v printf()

v sprintf()

v vfprintf()

v vprintf()

v vsprintf()

#include <decimal.h>

decimal(10,2) pd11 = 1234.0; /* pd11 = 00001234.00d */
decimal(5,0) pd12 = 987654.0; /* compile-time error */
int main(void) {

decimal(5,0) pd13 = 987654.0; /* run-time exception */
decimal(13,4) pd14 = 12.34567890; /* fractional part is truncated */

}

Figure 98. Conversion from Floating Type

354 OS/390 V2R10.0 C/C++ Programming Guide

Use the following functions to read the value of a decimal type:

v fscanf()

v scanf()

v sscanf()

The conversion specifier for decimal types is one of the following:
%D(n,p)
%D(n)

For more information about these functions and their keywords, see the OS/390
C/C++ Run-Time Library Reference.

Validating Values
It is possible to have nonvalid representation of decimal value stored in memory,
such as input from file or overlay memory. If the nonvalid decimal value is used in
an operation or assignment, the result may not be as expected. A built-in function
can be used to report whether the decimal representation is valid or not. The
function call can be in the following form:
status = decchk (x);

The built-in function decchk() accepts a decimal-type expression as argument and
returns a status value of type int.

The status can be interpreted as follows:

0 Valid decimal representation value (including nonpreferred but valid sign,
A-F)

1 Leftmost halfbyte is not zero in a decimal-type number that has an even
number of digits (for example, 123 is stored in decimal(2,0))

2 Incorrect digits (not 0-9)

4 Incorrect sign (not A-F)

Macro define names for function return status (in <decimal.h>):
#define DEC_VALUE_OK 0
#define DEC_BAD_NIBBLE 1
#define DEC_BAD_DIGIT 2
#define DEC_BAD_SIGN 4

The function return status is the OR of all errors that were detected.

Fix Sign
A built-in function can be used to fix nonpreferred sign variables. The function call
can be in the following form:
x = decfix (x);

The built-in function decfix() accepts a decimal-type expression as argument and
returns a decimal value that has the same size (that is, same decimal types) and
same value as the argument, but with the correct preferred sign. The function does
not change the content of the argument.

Chapter 25. Using the Decimal Data Type in C 355

|

|
|

|

Decimal Absolute Value
The built-in function decabs() accepts a decimal-type expression as argument and
returns the absolute value of the decimal argument (the same decimal type as the
argument, and the same magnitude, but positive). The function does not change the
content of the argument. The function call can be in the following form:
y = decabs (x);

See the OS/390 C/C++ Run-Time Library Reference for more information on the
decabs(), decchk(), and decfix() library functions.

356 OS/390 V2R10.0 C/C++ Programming Guide

Programming Example

CBC3GDC3

/* this example demonstrates the use of the decimal type */
/* always include decimal.h when decimal type is used */

#include <decimal.h>

/* Declares a decimal(10,2) variable */
decimal(10,2) pd01;

/* Declares a decimal(15,4) variable and initializes it with the */
/* value 1234.56d */
decimal(15,4) pd02 = 1234.56d;

/* Structure that has decimal-related members */
struct pdec

{ /* members' data types */
int m; /* - integer */
decimal(23,10) pd03; /* - decimal(23,10) */
decimal(10,2) pd04[3]; /* - array of decimal(10,2) */
decimal(10,2) *pd05; /* - pointer to decimal(10,2) */
} pd06,
pd07 = &pd06; / pd07 points to pd06 */

/* Array of decimal(31,30) */
decimal(31,30) pd08[2];

/* Prototype for function that accepts decimal(10,2) and int as */
/* arguments and has return type decimal(25,5) */
decimal(25,5) product(decimal(10,2), int);

decimal(5,2) PdCnt; /* decimal loop counter */
int i;

int main(void)
{

pd01 = -789.45d; /* simple assignment */
pd06.m = digitsof(pd06.pd03) + precisionof(pd02); /* 23 + 4 */
pd06.pd03 = sizeof(pd01);
pd06.pd04[0] = pd02 + pd01; /* decimal addition */
*(pd06.pd04 + 1) = (decimal(10,2)) product(pd07->pd04[0], pd07->m);
pd07->pd04[2] = product(pd07->pd04[0], pd07->pd04[1]);
pd07->pd05 = &pd01; /* taking the address of a */

/* decimal variable */
/* These two statements are different */
pd08[0] = 1 / 3d;
pd08[1] = 1d / 3d;

printf("pd01 = %D(10,2)\n", pd01);
printf("pd02 = %*.*D(*,*)\n",

20, 5, digitsof(pd02), precisionof(pd02), pd02);
printf("pd06.m = %d, pd07->m = %d\n", pd06.m, pd07->m);
printf("pd06.pd03 = %D(23,10), pd07->pd03 = %D(23,10)\n",

pd06.pd03, pd07->pd03);

Figure 99. Decimal Type — Example 1 (Part 1 of 2)

Chapter 25. Using the Decimal Data Type in C 357

Output from Programming Example One
pd01 = -789.45
pd02 = 1234.56000
pd06.m = 27, pd07->m = 27
pd06.pd03 = 6.0000000000, pd07->pd03 = 6.0000000000
pd06.pd04[0] = 445.11, pd07->pd04[0] = 445.11
pd06.pd04[1] = 12017.97, pd07->pd04[1] = 12017.97
pd06.pd04[2] = 5348886.87, pd07->pd04[2] = 5348886.87
*(pd06.pd05) = -789.45, *(pd07->pd05) = -789.45
pd08[0] = 0.333333333333333333333000000000
pd08[1] = 0.333333333333333333333333333333

/* You will get an infinite loop if floating type is */
/* used instead of the decimal types. */
for (PdCnt = 0.0d; PdCnt != 3.6d; PdCnt += 1.2d)
{

i = PdCnt / 1.2d;
printf("pd06.pd04[%d] = %D(10,2), \

pd07->pd04[%d] = %D(10,2)\n",
i, pd06.pd04[i], i, pd07->pd04[i]);

}

printf("*(pd06.pd05) = %D(10,2), *(pd07->pd05) = %D(10,2)\n",
*(pd06.pd05), *(pd07->pd05));

printf("pd08[0] = %D(31,30)\n", pd08[0]);
printf("pd08[1] = %D(31,30)\n", pd08[1]);

return(0);
}

/* Function definition for product() */
decimal(25,5) product(decimal(10,2) v1, int v2)
{

/* The following happens in the return statement */
/* - v2 is converted to decimal(10,0) */
/* - after the multiplication, the expression has resulting */
/* type decimal(20,2) (i.e. (10,2) * (10,0) ==> (20,2)) */
/* - the result is then converted implicitly to decimal(25,5) */
/* before it is returned */
return(v1 * v2);

}

Figure 99. Decimal Type — Example 1 (Part 2 of 2)

358 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GDC4

Note: See “Intermediate Results” on page 348 to understand the output from this
example and to see why decimal variables with size 31 should be used with
caution in arithmetic operations.

Output from Programming Example Two
pd01 = 1235.5670
pd02 = 1235.5678

Decimal Exception Handling
OS/390 C decimal instructions produce the following exceptions that are unique to
decimal operations:

v Data exception (interrupt code hex ’7’)

This may be caused by nonvalid sign or digit codes in a packed decimal number
operated on by packed decimal instructions, for example, ADD DECIMAL or COMPARE
DECIMAL.

When an operation is performed on decimal operands and the assignment is not
through an explicit cast operation, the following situations cause run-time
exceptions at execution time and SIGFPE is raised.

v Decimal-overflow exception (interrupt code hex ’A’)

This exception may be caused when nonzero digits are lost because the
destination field in a decimal operation is too short to contain the result.

Note: The following unhandled decimal overflow message is the same for both
decimal overflow and fixed overflow conditions:
CEE3210S The system detected a Decimal-overflow exception.

/* this example demonstrates the use of the decimal type */

#include <decimal.h>

decimal(31,4) pd01 = 1234.5678d;
decimal(29,4) pd02 = 1234.5678d;

int main(void)
{

/* The results are different in the next two statements */
pd01 = pd01 + 1d;
pd02 = pd02 + 1d;

printf("pd01 = %D(31,4)\n", pd01);
printf("pd02 = %D(29,4)\n", pd02);

/* Warning: The decimal variable with size 31 should not be */
/* used in arithmetic operation. */
/* In the above example: (31,4) + (1,0) ==> (31,3) */
/* (29,4) + (1,0) ==> (30,4) */

return(0);
}

Figure 100. Decimal Type — Example 2

Chapter 25. Using the Decimal Data Type in C 359

However, because the fixed overflow condition is normally disabled
(masked) and is ignored at run time, fixed overflow conditions should not
occur.

v Decimal-divide exception (interrupt code hex ’B’)

This exception may be caused when, in decimal division, the divisor is zero, or
the quotient exceeds the specified data-field size. The decimal divide is indicated
if the sign codes of both the divisor and dividend are valid, and if the digit or
digits used in establishing the exception are valid.

Note: The following unhandled divide message does not distinguish between a
decimal-divide condition and a fixed divide-by-zero condition:
CEE3211S The system detected a Decimal-divide exception.

Both are mapped into the same error message.

v A decimal exception may be produced by the printf() family when processing
an nonvalid decimal operand. This may result in abnormal termination of your
program with the run-time message: Under OS/390:
CEE3207S The system detected a Data exception.

Under CICS:
EDCK007 ABEND=8097 Data Exception

Other exceptions indicated by the decimal instruction set are not unique.

System Programming Calls Restrictions
Decimal overflow conditions are supported for System Programming Calls only with
the run-time library.

printf() and scanf() Restrictions
You must ensure that valid packed decimal data is present when attempting to use
it with run-time library decimal routines. No additional validation is performed on
decimal to ensure format correctness. Use the decchk() routine to validate decimal
data operands in such circumstances.

Additional Considerations
v When the operands of a decimal operation contain nonvalid digits, the result is

undefined, and a run-time exception can occur. To validate a decimal number,
call the decchk() built-in function in your code.

v Code should be written in a manner that does not depend on the ability of the
run-time library to recover from a decimal overflow exception.

v In a multiprocessor configuration, decimal operations cannot be used safely to
update a shared storage location when the possibility exists that another
processor may also be updating that location. This possibility arises because the
bytes of a decimal operand are not necessarily accessed concurrently.

v If a decimal exception occurs in user code or library routines, the expected
results of the instruction causing the exception or the library routine where the
exception occurred are undefined. The results produced by the library routine’s
execution are also undefined.

v If a SIGFPE handler is coded to handle decimal exceptions, it should reenable
itself before resuming normal execution or recovery from the error. This
reestablishes the exception environment and is consistent with good
programming practice.

360 OS/390 V2R10.0 C/C++ Programming Guide

Error Messages
If an overflow occurs at run time, the exception handler issues the following
run-time error messages:
IBM482I 'ONCODE'=0310 'FIXEDOVERFLOW' CONDITION RAISED

Unhandled exception. This result may be produced in a C-only environment only for
decimal overflow conditions. Fixed-point overflow exception is not allowed in the
Program Mask.

Note: The Program Mask in the Program Status Word (PSW) is enabled for
decimal overflow exceptions.

IBM301I 'ONCODE'=0320 'ZERODIVIDE' CONDITION RAISED

Unhandled decimal or fixed overflow. Fixed overflow is normally masked and
ignored at C run time, but it may occur in interlanguage calls.
IBM537I 'ONCODE'=8097 DATA EXCEPTION

Unhandled data exception

The error messages for FIXEDOVERFLOW and ZERODIVIDE mean that either the
fixed-point overflow condition or the decimal overflow condition has caused the
condition reported.

Under CICS

Decimal overflow condition exceptions are supported in CICS with C and the
following run-time message is produced:

EDCK017 ABEND=0320 Fixed or Decimal Overflow

Decimal Exceptions and Assembler Interlanguage Calls
Calls to an assembler language procedure or function assume that the called
routine will save and restore the value of the Program Mask if the routine alters it.
Ensure that the Program Mask is preserved across an assembler language
interface. If it is not preserved, the recognition of subsequent decimal overflow
exceptions in C code will be unpredictable.

Chapter 25. Using the Decimal Data Type in C 361

362 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 26. Using the Decimal Data Type in C++

This section describes how you use the IBinaryCodedDecimal class and the decimal
class to represent numerical quantities accurately in C++ business and commercial
applications for financial calculations.

The IBinaryCodedDecimal Class
The IBinaryCodedDecimal class allows representation of up to 31 significant digits,
including integral and fractional parts. Two digits can represent the fractional part of
a dollar accurately following the decimal point. You do not have to use floating-point
arithmetic, which is more suitable for scientific and engineering computations.
These computations often use numbers much larger than the largest that the
IBinaryCodedDecimal object can store.

The same declarations and operators that you use on other data types, such as
float, are applied to IBinaryCodedDecimal objects. You can declare typedefs,
arrays, and structures that have IBinaryCodedDecimal objects. You can apply
arithmetic, relational, assignment, comma, conditional, equality, logical, primary, and
unary operators on the IBinaryCodedDecimal object. You can pass
IBinaryCodedDecimal objects in function calls.

Header File and Constants for IBinaryCodedDecimal
You must include this statement in any file that uses the IBinaryCodedDecimal
class:

#include <idecimal.hpp>

The file must be included before any use of the IBinaryCodedDecimal object.

Constants Defined in idecimal.hpp
Table 52 lists the binary coded decimal constants that the Binary Coded Decimal
Class Library defines:

Table 52. Constants Defined in idecimal.hpp

Constant Name Description

DEC_DIG The maximum number of significant digits that
IBinaryCodedDecimal can hold.

DEC_MIN The minimum value that IBinaryCodedDecimal can
hold.

DEC_MAX The maximum value that IBinaryCodedDecimal can
hold.

DEC_EPSILON The smallest incremental or decremental value that
IBinaryCodedDecimal can hold.

DFT_DIG The default number of digits (15) for the default
constructor.

DFT_PREC The default number of digits after the decimal point
(5) for the default constructor.

DFT_LNG_DIG The default number of digits (20) for a long type.

© Copyright IBM Corp. 1996, 2000 363

Constructing IBinaryCodedDecimal Objects
You can use the IBinaryCodedDecimal constructor to construct IBinaryCodedDecimal
objects or arrays of IBinaryCodedDecimal objects. The following example shows
how to construct an IBinaryCodedDecimal object to have a value (12) with
DFT_LNG_DIG, number of digits (20) and number of digits after the decimal point (0):

IBinaryCodedDecimal a(12L);

The following example shows how to construct an IBinaryCodedDecimal object to
have a value INT_MAX with number of digits (16) and number of digits after the
decimal point (5):

IBinaryCodedDecimal b(16,5,INT_MAX);

IBinaryCodedDecimal Input and Output
You can use the input and output operators for the I/O Stream Library to perform
input and output operations on IBinaryCodedDecimal. See OS/390 C/C++ IBM Open
Class Library User’s Guide for more in-depth information on using the I/O Stream
Library.

Arithmetic Operators for IBinaryCodedDecimal
The IBinaryCodedDecimal class defines a set of arithmetic operators with the same
precedence as the corresponding real operators. With these operators, you can
code expressions on IBinaryCodedDecimal objects such as the expressions shown
in the example below:
IBinaryCodedDecimal BCD_1(2.220446049250313L);
IBinaryCodedDecimal BCD_2 = + BCD_1;
IBinaryCodedDecimal BCD_1(2.220446049250313L);
IBinaryCodedDecimal BCD_2 = -BCD_1;

Relational Operators
You can use the relational operators <, >, <=, and >= for IBinaryCodedDecimal
objects and compare IBinaryCodedDecimal objects with other arithmetic types
(integer, float, double, and long double):
IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

if (BCD_1 < BCD_2)
...

Equality Operators
You can use equality operators with IBinaryCodedDecimal objects to compare
IBinaryDecimalCoded objects for equality.
IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

if (BCD_1 != BCD_2)
...

Converting IBinaryCodedDecimal Objects
The IBinaryCodedDecimal class defines a set of conversion operators. With these
operators you can convert IBinaryCodedDecimal objects to other data types.

364 OS/390 V2R10.0 C/C++ Programming Guide

An IBinaryCodedDecimal Object to an IBinaryCodedDecimal Object
If the value of an IBinaryCodedDecimal object that is to be converted to another
IBinaryCodedDecimal object is not within the range of values that can be
represented exactly, the value of the IBinaryCodedDecimal object to be converted is
truncated. If truncation occurs in the fractional part, there is no exception raised. If
assignment causes truncation in the integral part, then there is an exception in
which a IDecimalDataError object is thrown. This exception occurs when an
integral value is lost during conversion to a different type, regardless of what
operation requires the conversion:

IBinaryCodedDecimal targ_1(4,2);
IBinaryCodedDecimal targ_2(4,2);
IBinaryCodedDecimal op_1("1234.56");
IBinaryCodedDecimal op_2("12.34");

targ_1=op_1; // An exception is generated because the integral
// part is truncated; targ_1=("34.56").

targ_2=op_2; // No exception is generated because neither the
// integral nor the fractional part is truncated;
// targ_2=("12.34").

An exception occurs on assignment to a smaller target only when the integral part
is truncated.

When assigning one IBinaryCodedDecimal object to another IBinaryCodedDecimal
object with a smaller precision, the result is truncation of the fractional part:

IBinaryCodedDecimal x("123.4567");
IBinaryCodedDecimal y(7,1);

y = x; // y = ("123.4")

When assigning one IBinaryCodedDecimal object with another IBinaryCodedDecimal
object with a smaller integral part, the result is truncation of the integral part. An
exception occurs if the value is too large to fit:

IBinaryCodedDecimal x("123456.78");
IBinaryCodedDecimal y(5,2);

y = x; // y = ("456.78")

When assigning one IBinaryCodedDecimal object to another IBinaryCodedDecimal
object with a smaller integral part, and smaller precision, the result is truncation of
the integral, and fractional parts. An exception occurs if the value is too large to fit:

IBinaryCodedDecimal x("123456.78");
IBinaryCodedDecimal y(4,1);

y = x; // y = ("456.7")

Number of Digits in an IBinaryCodedDecimal Object
When you use the member function digitsOf() with an IBinaryCodedDecimal
object, you can find out the total number of digits n in an IBinaryCodedDecimal
object:

int n;
IBinaryCodedDecimal x(5, 2);
n = x.digitsOf(); // the result is n=5

Chapter 26. Using the Decimal Data Type in C++ 365

Precision of a IBinaryCodedDecimal Object
When you use the member function precisionOf() with an IBinaryCodedDecimal
object, you can find out the number of decimal digits p in an IBinaryCodedDecimal
object:

int p;
IBinaryCodedDecimal x(5, 2);
p=x.precisionOf(); // The result is p=2

IBinaryCodedDecimal Object Exceptions
The IDecimalDataError exception class is thrown whenever the integral part is
truncated as the result of any arithmetic operation.

The Decimal Class
OS/390 C++ supports the decimal data type through the IBinaryCodedDecimal class
as well as the decimal class. Use the decimal class to improve the performance of
your applications relative to using the IBinaryCodedDecimal class. The decimal
class is compatible with the decimal data type in C. This class permits you to
represent up to 31 significant digits, including integral and fractional parts.

You can declare typedefs, arrays, and structures that have decimal objects. You can
apply arithmetic, relational, assignment, equality, and unary operators on the
decimal object. You can pass decimal objects in function calls.

Header File for the Decimal Class
You must include this statement in any file that uses the decimal class:

#include <idecimal.hpp>

The file must be included before any use of the decimal object.

Constructing Decimal Objects
You can use the decimal constructor to construct decimal objects or arrays of
decimal objects.

Use the template specifier decimal<w,p> to declare decimal objects. The template
specifier decimal<w,p> designates a decimal number with w digits, and p decimal
places. In the specifier, w is the total number of digits for the integral and decimal
parts combined, and p is the number of digits for the decimal part only. For
example, decimal <5,2> represents a number, such as 123.45, where w=5 and
p=2. Specifying the value for p is optional. If the value for p is omitted, OS/390 C++
uses a default value of 0.

In the specifier, w and p have a range of allowed values according to the following
rules:
0 ≤ p ≤ w
1 ≤ w ≤ 31

You can construct a decimal object using an integer, a char *, an
IBinaryCodedDecimal object, or another decimal object. The decimal class does not
support other object types.

The following example shows how you can construct a decimal type:

366 OS/390 V2R10.0 C/C++ Programming Guide

decimal<10,2> x("4.67"); // char *
decimal<5,0> y(7); // integer
decimal<5> z=y; // another decimal object
decimal<18,10> *ptr; // pointer
decimal<8,2> arr[100]; // array
IBinaryCodedDecimal a(12) //another IBinaryCodedDecimal object
decimal<10,3> b(a);

In the previous example:

v x has a value of +4.67.

v y and z have a value of +7.

v ptr is a pointer to type decimal <18,10 >.

v arr is an array of 100 elements, where each element is of type decimal <8,2>.

v b has the value of the IBinaryCodedDecimal object a, +12.

Decimal Class Input and Output
You can use the input and output operators for the I/O Stream Library to perform
input and output operations on decimal. See OS/390 C/C++ IBM Open Class
Library User’s Guide for more in-depth information on using the I/O Stream Library.

Operators for Decimal Class

Arithmetic Operators
The decimal class defines a set of arithmetic operators with the same precedence
as the corresponding real operators. With these operators, you can perform
arithmetic calculations between two decimal objects, or between a decimal object
and an integer.
decimal<5,2> x("9.45");
decimal<8,3> y(-3);
decimal <20,13> sum = x + y;

Intermediate Results: Use one of the following tables to calculate the size of the
result. The tables summarize the intermediate expression results with the four basic
arithmetic operators when applied to the decimal types. Most of the time, you can
use Table 53 to calculate the size of the result. It assumes no overflow. If overflow
occurs, use Table 54 on page 368 to determine the resulting type.

Both tables assume the following:

v x has type decimal <w₁, p₁>
v y has type decimal <w₂, p₂>
v decimal<w,p> is the resulting type

Table 53. Intermediate Results (without overflow in w or p)

Expression (w, p)

x * y w = w₁ + w₂
p = p₁ + p₂

x / y w = 31
p = 31 - ((w₁ - p₁) + p₂)

x + y p = max(p₁, p₂)
w = max(w₁ - p₁, w₂ - p₂) + p + 1

x − y same rule as addition

Chapter 26. Using the Decimal Data Type in C++ 367

You can use Table 54 to calculate the size of the result, whether there is an
overflow or not.

Table 54. Intermediate Results (in the general form)

Expression (w, p)

x * y w = min(w₁ + w₂, 31)
p = min(p₁ + p₂, 31 - min((w₁ - p₁) + (w₂ - p₂), 31))

x / y w = 31
p = max(31 - ((w₁ - p₁) + p₂), 0)

x + y ir = min(max(w₁ - p₁, w₂ - p₂) + 1, 31)
p = min(max(p₁, p₂), 31 - ir)
w = ir + p

x − y same rule as addition

Relational Operators
You can use the relational operators <, >, <=, and >= for decimal objects. You can
compare two decimal objects, or a decimal object with an integer.
decimal<5,2> x("10.0");
decimal<8,3> y("-2.3");

if (x < y)
...

Equality Operators
You can use equality operators with decimal objects to compare decimal equality
operators != == for decimal objects. You can compare two decimal objects, or a
decimal object with an integer for equality.

The following example compares two decimal objects with an integer for equality.
decimal<5,2> x(15);
decimal<5,2> y(-15);

if (x != y)
...

The following example compares a decimal object with an integer for equality.
decimal<5,2> x(15);

if (x != -15)
...

Converting Decimal Objects
The decimal class defines a set of conversion operators and functions. With these
operators and functions, you can convert decimal objects to and from other data
types.

If the value that is to be converted is not within the range of values that can be
represented exactly, OS/390 C++ truncates this value. If truncation occurs in the
fractional part, OS/390 C++ does not raise an exception. If assignment causes
truncation in the integral part, OS/390 C++ raises an exception. This exception
occurs when an integral value is lost during conversion to a different type,
regardless of the operation requires the conversion.

Decimal Object to a Decimal Object
The following is an example of converting a decimal object to another decimal
object:

368 OS/390 V2R10.0 C/C++ Programming Guide

decimal <5,2> x(3);
decimal <31,15> y;

y = x;

Decimal Object to an IString Object
OS/390 C++ provides a member function, asString(), to convert a decimal object
to an IString object. The following is an example of such a conversion:
decimal<5,2> x("3.46");
IString y = x.asString();

Decimal Object From a char * Type
The following is an example of converting a char * type to a decimal object:
char * x = "1234.5";
decimal<5,2> y;

y = x;

Decimal Object From an Integer Type
The following is an example of converting an integer to a decimal object:
int x=3;
decimal<3,1> y=x;

Decimal Object to and from an IBinaryCodedDecimal Object
The following is an example of converting a decimal object from an
IBinaryCodedDecimal object:
IBinaryCodedDecimal y(12);
decimal<5,2> x(y);

OS/390 C++ provides a member function, asBCD(), to convert a decimal object to
an IBinaryCodedDecimal object. The following is an example of such a conversion:
decimal<5,2> x("3.46");
IBinaryCodedDecimal y = x.asBCD();

Number of Digits in an Decimal Object
When you use the member function digitsOf() with a decimal object, you can find
out the total number of digits w in a decimal object:

int w;
decimal<5, 2> x;
w = x.digitsOf(); // the result is w=5

Precision of a Decimal Object
When you use the member function precisionOf() with a decimal object, you can
find out the number of decimal digits p in a decimal object:

int p;
decimal<5,2> x;
p=x.precisionOf(); // The result is p=2

Decimal Object Exceptions
OS/390 C++ decimal instructions produce the following exceptions:

v Data exception (interrupt code hex ’7’)

This may be caused by invalid sign or digit codes in a packed decimal number
operated on by packed decimal instructions.

v Decimal-overflow exception (interrupt code hex ’A’)

This exception may be caused when nonzero digits are lost because the
destination field in a decimal operation is too short to contain the result.

Chapter 26. Using the Decimal Data Type in C++ 369

CEE3210S The system detected a Decimal-overflow exception.

v Decimal-divide exception (interrupt code hex ’B’)

This exception may be caused when, in decimal division, the divisor is zero, or
the quotient exceeds the specified data-field size. The decimal divide is indicated
if the sign codes of both the divisor and dividend are valid, and if the digit or
digits used in establishing the exception are valid.

Note: The following unhandled divide message does not distinguish between a
decimal-divide condition and a fixed divide-by-zero condition:
CEE3211S The system detected a Decimal-divide exception.

Both are mapped into the same error message.

v SIGFPG exception

During the conversion of char * to the decimal object, there is a possibility that
the value of the integer part cannot be represented by the decimal type. In that
case, the result of the conversion is undefined and OS/390 C++ raises a SIGFPG
exception.

370 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 27. Handling Exceptions, Error Conditions, and
Signals

This chapter discusses how to handle error conditions and signals with OS/390
C/C++. It describes how to establish, enable and raise a signal, and provides a list
of signals supported by OS/390 C/C++.

This chapter also describes some aspects of C++ object-oriented exception
handling. The object-oriented approach uses the try, throw, and catch mechanism.
Refer to OS/390 C/C++ Language Reference for a complete description. Some
library functions (abort(), atexit(), exit(), setjmp() and longjmp()) are affected
by C++ exception handling; refer to OS/390 C/C++ Run-Time Library Reference for
more information.

C++ exception handling is supported in all OS/390 environments that are supported
by C++ (including CICS and IMS); you must run your application with the TRAP(ON)
run-time option. To turn off C++ exception handling, use the compiler option NOEXH.
For more information on this compiler option, see OS/390 C/C++ User’s Guide.

Note: If C++ exception handling is turned off you will get code which runs faster
but is not ANSI conformant.

The C error handling approach using signals is supported in a OS/390 C++
program, but there are some restrictions (refer to “Handling C Software Exceptions
under C++”).

OS/390 Language Environment uses a stack-based model to handle error
conditions. This environment establishes a last-in, first-out (LIFO) queue of 0 or
more user condition handlers for each stack frame. The OS/390 Language
Environment condition handler calls the user condition handler at each stack frame
to handle error conditions when they are detected. For more information about the
callable services in OS/390 Language Environment, refer to “Handling Signals
Using Language Environment Callable Services” on page 375.

The basis for error handling in OS/390 UNIX C/C++ application programs is the
generation, delivery, and handling of signals. Signals can be generated and
delivered as a result of system events or application programming. You can code
your application program to generate and send signals and to handle and respond
to signals delivered to it.

Two types of signal handling are supported for catching signals: ANSI C and
POSIX.1. Each of these has standard signal delivery rules, which are discussed in
this chapter. Asynchronous signal delivery under OS/390 UNIX is also discussed.
For additional information on the subject of POSIX-conforming signals, see The
POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick, (Redwood City, CA:
The Benjamin/Cummings Publishing Company, Inc., 1991).

Handling C Software Exceptions under C++
Using the C and C++ condition handling schemes together in an OS/390 C++
program may result in undefined behavior. This applies to the use of try, throw and
catch with signal() and raise(), with OS/390 Language Environment condition
handlers such as CEEHDLR, or with CICS HANDLE ABEND under CICS. The behavior
with respect to running destructors for automatic objects is undefined, due to control

© Copyright IBM Corp. 1996, 2000 371

being transferred to non-C++ exception handlers (such as signal handlers) and
stacks being collapsed. If a C software exception is not handled and results in
program termination, the behavior for destructors for static non-local objects will
also be undefined.

With OS/390 UNIX, in a multithreaded environment, OS/390 C++ exception stacks
are managed on a per-thread basis. This means an exception thrown on one thread
cannot be caught on another thread, including the IPT where main() was started. If
the exception is not handled by the thread from which it was thrown, then the
terminate() function is called.

Handling Hardware Exceptions under C++
You cannot use try, throw, and catch to handle hardware exceptions.

If a hardware exception resulting in abnormal termination occurs in a OS/390 C++
program, destructors for static and automatic objects are not run. If a hardware
exception occurs, and a handler was registered for the exception using signal(),
the behavior of destructors for automatic objects is undefined.

Tracebacks under C++
A traceback is not produced if a thrown object was caught and handled.

If an object is thrown, and no catch clauses exist that will handle the thrown object,
the program will call terminate(). By default, terminate() calls abort(), and the
traceback produced will show that this has occurred. The traceback will not show
the point from which the object was originally thrown. Instead, it will show that the
object was thrown from the last encountered catch clause.

In the following example, sub1() throws object a. Because sub1() does not have
any catch clauses to handle a, C++ attempts to find a suitable catch clause in the
calling sub function, and then in the main function. Because no catch clauses can
be found to handle object a, the traceback will show that object a was thrown from
main().

372 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCH1

If an object is thrown and a catch clause catches but then rethrows that object, or
throws another object, and no catch clauses exist for the rethrown or subsequently
thrown object, the traceback starts at the point from which the rethrow or
subsequent throw occurred. The first object thrown is considered to have been
caught and handled.

/* example of C++ exception handling */

#include <iostream.h>
#include <stdlib.h>

class A {
int i;
public:

A(int j) { i = j; cout << "A ctor: i= " << i << '\n'; }
A() { cout << "A dtor: i= " << i << '\n'; }

};
class B {

char c;
public:

B(char d) { c = d; cout << "B ctor: c= " << c << '\n'; }
B() { cout << "B dtor: c= " << c << '\n'; }

};
void sub(void);
void sub1(void);

main() {
try {

sub();
}
//traceback will show that the thrown object was from here because
//no catch clauses match the thrown object and the last rethrow
//occurred here.
catch(int i) { cout << "caught an integer" << '\n'; }
catch(char c) { cout << "caught a character" << '\n'; }
exit(55);

}

void sub() {
try {

sub1();
}
//neither catch clause will catch object a, so again a will be
//rethrown
catch(double d) { cout << "caught a double" << '\n'; }
catch(float f) { cout << "caught a float" << '\n'; }
return;

}

void sub1() {
A a(3001);
try {

throw(a);
}
//neither catch clause will catch object a, so a will be rethrown
catch(B b) { cout << "caught a B object" << '\n'; }
catch(short s) { cout << "caught a short" << '\n'; }
return;

}

Figure 101. Example Illustrating C++ Exception Handling/Traceback

Chapter 27. Handling Exceptions, Error Conditions, and Signals 373

In the following example, the traceback would show that the testeh function
rethrows an integer. Because there is no catch clause to handle the rethrown
integer, the traceback will also show that terminate() and then abort() were
called.

CBC3GCH2

/* example of C++ exception handling */

#include <iostream.h>
#include <stdlib.h>

int testeh(void);
class A {

int i;
public:

A(int j) { i = j; cout << "A ctor: i= " << i << '\n'; }
A() { cout << "A dtor: i= " << i << '\n'; }

};
class B {

char c;
public:

B(char d) { c = d; cout << "B ctor: c= " << c << '\n'; }
B() { cout << "B dtor: c= " << c << '\n'; }

};
A staticA(333);
B staticB('z');
void sub();

main() {
sub();
return(55);

}

void sub()
{

A c(3001);
try {

cout << "calling testeh" << '\n';
testeh(); // int will be rethrown from testeh()

}
// no catch clauses for the rethrown int
catch(char c) { cout << "caught char" << '\n'; }
catch(short s) { cout << "caught short s = " << s << '\n'; }
cout << "this line should not be printed" << '\n';
return;

}
testeh()
{

A a(2001),a1(1001);
B b('k');
short k=12;
int j=0,l=0;

try {
cout << "testeh running" << '\n';
throw (6); // first throw: an int

}
catch(char c) { cout << "testeh caught char" << '\n';}
catch(int j) { cout << "testeh caught int j = " << j << '\n';

try { // int should be caught here
cout << "testeh again rethrowing" << '\n';
throw; // rethrow the int

}
catch(char d) { cout << "char d caught" << '\n'; }

}
cout << "this line should not be printed" << '\n';
return(0);

}

Figure 102. Example Illustrating C++ Exception Handling/Traceback

374 OS/390 V2R10.0 C/C++ Programming Guide

Handling Signals with POSIX(OFF) Using signal() and raise()
The OS/390 C environment provides two functions that alter the signal handling
capabilities available in the run-time environment: signal() and raise(). The
signal() function registers a condition handler and the raise() function raises the
condition.

In general, for C++ programs you are encouraged to use try, throw, and catch to
perform exception handling. However, you can also use the OS/390 C signal() and
raise() functions.

You can use the signal() function to perform one of the following actions:

v Ignore the condition. For example, use the SIG_IGN condition to specify
signal(SIGFPE,SIG_IGN).

v Reset the Global Error Table for default handling. For example, use the SIG_DFL
condition to specify signal(SIGSEGV,SIG_DFL).

v Register a function to handle the specific condition. For example, pass a pointer
to a function for the specific condition with signal(SIGILL,cfunc1). The function
registered for signal() must be declared with C linkage.

Handling Signals Using Language Environment Callable Services
You can set up user signal handlers with the OS/390 Language Environment
condition handling services. Some of the OS/390 Language Environment callable
services available for condition handling are:

CEEHDLR
Register a user-written condition handler.

CEEHDLU
Remove a registered user-written condition handler.

CEESGL
Raise a OS/390 Language Environment condition.

In addition, with OS/390 Language Environment, when an exception occurs after an
interlanguage call, the exception may be handled where it occurs, or percolated to
its caller (written in any OS/390 Language Environment-conforming language), or
promoted. For more information on how to handle exceptions under the OS/390
Language Environment condition handling model, refer to OS/390 Language
Environment Programming Guide.

Specific considerations for C and C++ under OS/390 Language Environment:

1. The TRAP run-time option (equivalent to the former C/370 run-time options SPIE
and STAE) determines how the OS/390 Language Environment condition
manager is to act upon error conditions and program interrupts. If the TRAP(OFF)
run-time option is in effect, conditions detected by the operating system, often
due to machine interrupts, will not be handled by the OS/390 Language
Environment environment and thus cannot be handled by a OS/390 C/C++
program.

Note: TRAP(OFF) only blocks the handling of hardware (program checks) and
operating system (abend) conditions. It does not block software
conditions such those that are associated with a raise or CEESGL. Any
conditions that are blocked because of TRAP(OFF) are not presented to
any handlers (whether registered by a signal or by CEEHDLR). In particular,

Chapter 27. Handling Exceptions, Error Conditions, and Signals 375

even for TRAP(OFF), conditions that are initiated by a signal or by CEESGL
are presented to handlers registered by either signal() or CEEHDLR.

The use of the TRAP(OFF) option is not recommended; refer to OS/390
Language Environment Programming Reference for more information.

2. You can use the ERRCOUNT run-time option to specify how many errors are to be
tolerated during the execution of your program before an abend occurs. The
counter is incremented by one for every severity 2, 3, or 4 condition that occurs.
Both hardware-generated and software-generated signals increment the counter.

If your C++ program uses try, throw, and catch, it is recommended that you
specify either ERRCOUNT(0), which allows an unlimited number of errors, or
ERRCOUNT(n), where n is a fairly high number. This is because OS/390 C++
generates a severity 3 condition for each thrown object. In addition, each catch
clause has the potential to rethrow an object or to throw a new object. In a large
C++ program, many conditions can be generated as a result of objects being
thrown, and thus the ERRCOUNT can be exceeded if the value used for it is too
low. The installation default used for ERRCOUNT is usually a low number.

Note: The OS/390 C/C++ registered condition handlers (those registered by
signal() and raise()), are activated after the OS/390 Language
Environment registered condition handlers for the current stack frame are
activated. This means that if there are condition handlers for both OS/390
C/C++ and OS/390 Language Environment, the OS/390 Language
Environment handlers are activated first.

Combining C++ condition handling (using try, throw, and catch), with
OS/390 Language Environment condition handling may result in undefined
behavior.

Handling Signals Using OS/390 UNIX with POSIX(ON)
OS/390 UNIX signal processing allows flags to control the behavior of signal
processing. Using these flags, you can simulate these signals and a wide variety of
other signals such as ANSI, POSIX.1, and BSD.

ANSI C has the following standard signal delivery rules:

v Traditionally, signal actions are established only through the signal().

v During signal delivery, the signal action is reset to SIG_DFL before the user signal
action catcher function receives control.

v During signal delivery to a user signal catcher function, the signal mask is not
changed.

POSIX.1 has the following standard signal delivery rules:

v Signal actions are typically established through the sigaction() function. With
the addition of XPG4 support, there are a number of new flags that have been
defined for sigaction() that extend its flexibility.

v During signal delivery, the signal action is not changed.

v During signal delivery to a user signal catcher function, the signal mask is
changed to the union of:

– The signal mask at the time of the interruption

– A signal mask that blocks the signal type being delivered

The signal mask is restored when the signal catcher function returns.

376 OS/390 V2R10.0 C/C++ Programming Guide

BSD signals for the most part are consistent with the POSIX rules above except for
the following:

v BSD signal mask is a 32-bit mask whereas the OS/390 UNIX signal mask is a
64-bit mask. The relationship of the bits to specific signals is not the same.
Therefore, we recommend you change to use the sigset manipulation functions,
such as, sigadd(), sigdelete(), sigempty().

v Traditionally, for BSD to generate a signal action, the signal() function was
used. However, because the signal() function is used in ANSI, BSD applications
should be changed to use the bsd_signal() function.

v During signal delivery, the signal action is not changed.

v During signal delivery to a user signal catcher function, the signal mask is
changed to the union of:

– The signal mask at the time of the interruption

– The signal mask specified in the sa_mask field of the sigaction() function

The signal mask is restored once the signal catcher function returns.

For compatibility, OS/390 C/C++ supports the three standards listed above, and
additional functions provided by XPG4.

Under OS/390 C/C++, the primary function for establishing signal action is the
sigaction() function. However, there are a number of other functions that you can
use to effect signal processing. All signal types are accessible regardless of the
function used to establish the signal action.

The following list includes functions that will establish a signal handler for a signal
action:

BSD Function Purpose

bsd_signal() BSD version of signal()

sigaction() Examine and/or change a signal action

sigignore() Set disposition to ignore a signal

sigset() Change a signal action and/or a thread’s signal mask

signal() Specify signal handling

The following is a list of other signal related functions:

Other Signal Related
Functions

Purpose

abort() Stop a program

kill() Send a signal to a process

pthread_kill() Send a signal to a thread

raise() Send a signal to yourself

sigaddset() Add a signal to a signal set

sigdelset() Delete a signal from a signal set

sigemptyset() Initialize a signal set to exclude all signals

sigfillset() Initialize a signal set to include all signals

sighold() Add a signal to a thread’s signal mask

siginterrupt() Allow signals to interrupt functions

Chapter 27. Handling Exceptions, Error Conditions, and Signals 377

Other Signal Related
Functions

Purpose

sigismember() Test if a signal is in a signal set

sigpause() Unblock a signal and wait for a signal

sigprocmask() Examine and/or change a thread’s signal mask

sigqueue() Queue a signal to a process

sigrelse() Remove a signal from a thread’s signal mask

sigstack() Set and/or get signal stack context

sigaltstack() Set and/or get signal alternate stack context

sigsuspend() Change mask and suspend the thread

sigwait() Wait for asynchronous signal

sigpending() Examine pending signals

sigtimedwait() Wait for queued signals

sigwaitinfo() Wait for queued signals

Asynchronous Signal Delivery under OS/390 UNIX
An OS/390 UNIX application program that you are developing might require its
active processes to be able to react and respond to events occurring in the system
or resulting from the actions of other processes communicating with its processes.
One way of accomplishing such interprocess communication is for you to code your
application program to identify signal conditions and determine how to react or
respond when a signal condition is received from another application process.

Before you attempt to code your OS/390 UNIX C/C++ application program to deliver
and handle signals, you should identify all the processes that might cause signal
conditions to be received by your application program’s processes. You also need
to know which signal condition codes are valid for your OS/390 UNIX C/C++
application program and where the signal.h header file will be located and
available to your application program. Your system programmer or the application
program’s designer should provide this information.

Note: Signal condition codes are defined in the signal.h include file.

A signal is a mechanism by which a process can be notified of, or affected by, an
event occurring in the system. Examples of such events include hardware
exceptions and specific actions by processes. The term signal also refers to an
event itself.

The POSIX.1-defined sigaction() function allows a calling application process to
examine a specific signal condition and specify the processing action to be
associated with it.

You can code your application program to use the sigaction() function in different
ways. Two simplistic examples of using signals within an OS/390 UNIX C/C++
application program follow:

1. A process is forked but the process is aborted if the signal handler receives an
incorrect value.

2. A request is received from a client process to provide information from a
database. The server process is a single point of access to the database.

378 OS/390 V2R10.0 C/C++ Programming Guide

||

If coded properly for handling and delivering interprocess signals, your application
program can receive signals from other processes and interpret those signals such
that the appropriate processing procedure occurs for each specific signal condition
received. Your application program also can send signals and wait for responses to
signal handling events from other application processes. Note that signals are not
the best method of interprocess communication, because they can easily be lost if
more than one is delivered at the same time. You may want to use other methods
of interprocess communication, such as pipes, message queues, shared memory,
or semaphores.

For descriptions of the OS/390 UNIX supported OS/390 C/C++ signal handling
functions, see OS/390 C/C++ Run-Time Library Reference

Note: If your OS/390 UNIX C/C++ application program calls another high-level
language program that is not an OS/390 UNIX C/C++ application program,
you need to disable signal handling to block all signals from the OS/390
UNIX C/C++ application program. If the called program encounters a
program interrupt check situation, the results are unpredictable.

C Signal Handling Features under OS/390 C/C++
The terms used to describe implementation features and concepts are:

v Establishing a signal handler

v Enabling a signal

v Interrupting a program

v Raising a signal

Establishing a Signal Handler
A signal handler for a signal, sig_num, becomes established when signal(sig_num,
sig_handler) is executed. (Two values of sig_handler are reserved: SIG_IGN and
SIG_DFL. They are special values that establish the action taken.) sig_handler is a
pointer to a function to be called when the signal is raised. This function is also
known as a signal handler. Under C++, the signal handler function must have C
linkage, by declaring it as extern "C". Under C, the function must be written in C
with the default linkage in effect. That is, sig_handler cannot have OS, PLI, C++, or
COBOL linkage. The signal handler for the signal ceases to be established when:

v The signal is explicitly reset to the system default by using signal(sig_num,
SIG_DFL).

v You indicate that a signal is to be ignored by using signal(sig_num, SIG_IGN).

v The signal is implicitly reset to the system default when the signal is raised.
When sig_handler is called, signal handling is reset to the default as if an
implicit signal(sig_num, SIG_DFL) had been executed. Depending on the
purpose of the signal handler, you may want to reestablish the signal from within
the signal handler.

v Under C, a loaded executable is deleted using the release() function and a
signal handler for the signal resides in the executable. In this case, default
handling will be reset for all the affected signals.

v A DLL module is explicitly loaded using dllload(), a function pointer in that
module is obtained using dllqueryfn(), a signal handler is establishing using
that function, and the DLL module is then explicitly deleted using dllfree().
Default handling will be reset for the affected signal.

Chapter 27. Handling Exceptions, Error Conditions, and Signals 379

Note: A C signal handler can be written in C, or can be written in C++ and
declared as extern "C" so that it has C linkage.

Enabling a Signal
A signal is enabled when the occurrence of the condition will result in either the
execution of an established signal handler or the default system response. The
signal is disabled when the occurrence is to be ignored, such as, when the signal
action is SIG_IGN. This can be done by making the call signal(sig_num, SIG_IGN).
Using OS/390 UNIX with POSIX(ON), SIG_IGN may be set with several other
functions, such as, sigaction(). In addition to changing the signal action to
SIG_IGN, the signal can be enabled or disabled (blocked) using the sigprocmask()
function.

Interrupting a Program
Program interrupts or errors detected by the hardware and identified to the program
by operating system mechanisms are known as hardware signals. For example, the
hardware can detect a divide by zero and this result can be raised to the program.

Raising a Signal
Signals that are explicitly raised by the user, by using the raise() function or using
OS/390 UNIX with POSIX(ON) using the kill(), killpg(), or pthread_kill()
functions, are known as software signals.

Identifying Hardware and Software Signals
The following is a list of signals supported with OS/390 C/C++ with POSIX(OFF):

SIGABND System abend.

SIGABRT Abnormal termination (software only).

SIGFPE Erroneous arithmetic operation (hardware and software).

SIGILL Invalid object module (hardware and software).

SIGINT Interactive attention interrupt by raise() (software only).

SIGIOERR Serious software error such as a system read or write. You can
assign a signal handler to determine the file in which the error
occurs or whether the condition is an abort or abend. This
minimizes the time required to locate the source of a serious error.

SIGSEGV Invalid access to memory (hardware and software).

SIGTERM Termination request sent to program (software only).

SIGUSR1 Reserved for user (software only).

SIGUSR2 Reserved for user (software only).

The following is a list of the OS/390 C/C++ supported signals (when running on
OS/390 UNIX with POSIX(ON)):

SIGABND System abend.

SIGABRT Abnormal termination (software only).

SIGALRM Asynchronous timeout signal generated as a result of an alarm().

SIGBUS Bus error.

SIGCHLD Child process terminated or stopped.

380 OS/390 V2R10.0 C/C++ Programming Guide

SIGCONT Continue execution, if stopped.

SIGDCE DCE event.

SIGFPE Erroneous arithmetic operation (hardware and software).

SIGHUP Hangup, when a controlling terminal is suspended or the controlling
process ended.

SIGILL Invalid object module (hardware and software).

SIGINT Asynchronous CNTL-C from one of the OS/390 UNIX shells or a
software generated signal.

SIGIO Completion of input or output.

SIGIOERR Serious software error such as a system read or write. Assign a
signal handler to determine the file in which the error occurs or
whether the condition is an abort or abend. Minimize the time
required to locate the source of a system error.

SIGKILL An unconditional terminating signal.

SIGPIPE Write on a pipe with no one to read it.

SIGPOLL Pollable event.

SIGPROF Profiling timer expired.

SIGQUIT Terminal quit signal.

SIGSEGV Invalid access to memory (hardware and software).

SIGSTOP Stop executing.

SIGSYS Bad system call.

SIGTERM Termination request sent to program (software only).

SIGTRAP Debugger event.

SIGTSTP Terminal stop signal.

SIGTTIN Background process attempting read.

SIGTTOU Background process attempting write.

SIGURG High bandwidth is available at a socket.

SIGUSR1 Reserved for user (software only).

SIGUSR2 Reserved for user (software only).

SIGVTALRM Virtual timer expired.

SIGXCPU CPU time limit exceeded.

SIGXFSZ File size limit exceeded.

The applicable hardware signals or exceptions are listed in Table 55 on page 382. It
also lists those hardware exceptions that are not supported (for example, fixed-point
overflow) and are masked.

The applicable software signals or exceptions that are supported with POSIX(OFF)
are listed in Table 56 on page 382 (see Table 57 on page 384 for the POSIX(ON)
signals).

Chapter 27. Handling Exceptions, Error Conditions, and Signals 381

Table 55. Hardware Exceptions - Default Run-Time Messages and System Actions

C Signal Hardware Exception

Default Run-Time
Message with
OS/390 Language
Environment

Default System Action with
OS/390 Language
Environment Library

SIGILL Operation exception CEE3201 Abnormal termination MVS
rc=3000Privileged operation

exception
CEE3202

Execute exception CEE3203

SIGSEGV Protection exception CEE3204 Abnormal termination MVS
rc=3000Addressing exception CEE3205

Specification
exception

CEE3206

SIGFPE Data exception CEE3207 Abnormal termination MVS
rc=3000Fixed-point divide CEE3209

Decimal overflow (for
C only)

CEE3210

Decimal divide CEE3211

Exponent overflow CEE3212

Floating point divide CEE3215

Note: Under TSO, SIGINT will not be raised if you press the attention key. It must be raised
using raise().

The default run-time program mask is enabled for decimal overflow exceptions.

Table 56 shows software signals with POSIX(OFF) or exceptions, their origin,
default run-time messages and default system actions.

Table 56. Software Exceptions - Default Run-Time Messages and System Actions with
POSIX(OFF)

C Signal Software Exception Default Run-Time
Message with
OS/390 Language
Environment

Default System Action with
OS/390 Language
Environment Library

SIGILL raise(SIGILL) EDC6001 Abnormal Termination MVS
rc=3000

SIGSEGV raise(SIGSEGV) EDC6002 Abnormal Termination MVS
rc=3000

SIGFPE raise(SIGFPE) EDC6002 Abnormal Termination MVS
rc=3000

SIGABND raise(SIGABND) EDC6003 Abnormal Termination MVS
rc=3000

SIGTERM raise(SIGTERM) EDC6004 Abnormal Termination MVS
rc=3000

SIGINT raise(SIGINT) EDC6005 Abnormal Termination MVS
rc=3000

SIGABRT raise(SIGABRT) EDC6006 Abnormal Termination MVS
rc=2000

382 OS/390 V2R10.0 C/C++ Programming Guide

Table 56. Software Exceptions - Default Run-Time Messages and System Actions with
POSIX(OFF) (continued)

C Signal Software Exception Default Run-Time
Message with
OS/390 Language
Environment

Default System Action with
OS/390 Language
Environment Library

SIGUSR1 raise(SIGUSR1) EDC6007 Abnormal Termination MVS
rc=3000

SIGUSR2 raise(SIGUSR2) EDC6008 Abnormal Termination MVS
rc=3000

SIGIOERR raise(SIGIOERR) EDC6009 Signal is ignored

SIGABND Considerations
When the SIGABND signal is registered with an address of a C handler using the
signal() function, control cannot resume at the instruction following the abend or
the invocation of raise() with SIGABND. If the C signal handler is returned, the
abend is percolated and the default behavior occurs. The longjmp() or exit()
function can be invoked from the handler to control the behavior.

If SIG_IGN is the specified action for SIGABND and an abend occurs (or SIGABND was
raised), the abend will not be ignored because a resume cannot occur. The abend
will percolate and the default action will occur.

Two macros are available in signal.h header file that provide information about an
abend. The __abendcode() macro returns the abend that occurred and __rsncode()
returns the corresponding reason code for the abend. These values are available in
a C signal handler that has been registered with the SIGABND signal. If you are
looking for the abend and reason codes, using these macros, they should only be
checked when in a signal handler. The values returned by the __abendcode() and
__rsncode() macros are undefined if the macros are used outside a registered
signal handler.

SIGIOERR Considerations
When the SIGIOERR signal is raised, codes for the last operation will be set in the
__amrc structure to aid you in error diagnosis.

Default Handling of Signals
The run-time environment will perform default handling of a given signal unless the
signal is established (signal(sig_num, sig_handler)) or the signal is disabled
(signal(sig_num, SIG_IGN)). A user can also set or reset default handling by
coding:
signal(sig_num, SIG_DFL);

The default handling depends upon the signal that was raised. Refer to the two
preceding tables for information on the default handling of a given signal.

Note: When using the atexit() library function, the atexit list will not be run if the
application is abnormally terminated.

Using OS/390 UNIX
The following table describes the default actions for signals that may be delivered to
OS/390 UNIX C/C++ application programs:

Chapter 27. Handling Exceptions, Error Conditions, and Signals 383

Table 57. Default Signal Processing with POSIX(ON)

Signal Default Action

SIGABND Clean up the OS/390 C/C++ run-time library, issue message CEE5204, and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. If the signal is
generated as a result of an abend condition, as opposed to being software generated by a
raise(), kill(), or pthread_kill() function, the CEE5204 message is issued along with a
trace-back message indicating a user function was in control when the abend occurred.

SIGABRT Clean up the OS/390 C/C++ run-time library, issue message CEE5207 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGALRM Clean up the OS/390 C/C++ run-time library, issue message CEE5214 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGCHLD The signal is ignored.

SIGCONT The process is continued if it was stopped. Otherwise, the signal is ignored.

SIGDCE The signal is ignored.

SIGFPE Clean up the OS/390 C/C++ run-time library, issue message CEE5201, and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. If the signal is
generated as a result of an abend condition, as opposed to being software generated by a
raise(), kill(), or pthread_kill() function, the CEE5201 message is issued along with a
trace-back message indicating a user function was in control when the abend occurred.

SIGHUP Clean up the OS/390 C/C++ run-time library, issue message CEE5210 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGILL Clean up the OS/390 C/C++ run-time library, issue message CEE5202, and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. If the signal is
generated as a result of an abend condition, as opposed to being software generated by a
raise(), kill(), or pthread_kill() function, the CEE5202 message is issued along with a
trace-back message indicating a user function was in control when the abend occurred.

SIGINT Clean up the OS/390 C/C++ run-time library, issue message CEE5206 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. In past releases,
the default action for this signal was to ignore the signal.

SIGIO The signal is ignored.

SIGIOERR The signal is ignored. In a POSIX application running on OS/390 UNIX SIGIOERR is not
supported directly by the kernel. Instead, OS/390 C/C++ maps SIGIOERR to SIGIO. Any
application using SIGIOERR should not also use SIGIO.

SIGKILL End the process with no OS/390 C/C++ run-time cleanup.

SIGPIPE Clean up the OS/390 C/C++ run-time library, issue message CEE5213 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

384 OS/390 V2R10.0 C/C++ Programming Guide

Table 57. Default Signal Processing with POSIX(ON) (continued)

Signal Default Action

SIGQUIT Clean up the OS/390 C/C++ run-time library, issue message CEE5220 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGSEGV Clean up the OS/390 C/C++ run-time library, issue message CEE5203 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGSTOP The process is stopped.

SIGTERM Clean up the OS/390 C/C++ run-time library, issue message CEE5205 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGTRAP Clean up the OS/390 C/C++ run-time library, issue message CEE5222 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGTSTP The process is stopped.

SIGTTIN The process is stopped.

SIGTTOU The process is stopped.

SIGUSR1 Clean up the OS/390 C/C++ run-time library, issue message CEE5208 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. In past releases,
the default action for this signal was to ignore the signal.

SIGUSR2 Clean up the OS/390 C/C++ run-time library, issue message CEE5209 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. In past releases,
the default action for this signal was to ignore the signal.

SIGPOLL Clean up the OS/390 C/C++ run-time library, issue message CEE5225 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGURG The signal is ignored.

SIGBUS Clean up the OS/390 C/C++ run-time library, issue message CEE5227 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGSYS Clean up the OS/390 C/C++ run-time library, issue message CEE5228 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGWINCH The signal is ignored.

SIGXCPU Clean up the OS/390 C/C++ run-time library, issue message CEE5230 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

Chapter 27. Handling Exceptions, Error Conditions, and Signals 385

Table 57. Default Signal Processing with POSIX(ON) (continued)

Signal Default Action

SIGXFSZ Clean up the OS/390 C/C++ run-time library, issue message CEE5231 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGVTALRM Clean up the OS/390 C/C++ run-time library, issue message CEE5232 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGPROF Clean up the OS/390 C/C++ run-time library, issue message CEE5233 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

Dubbed Process: A process that is not from a call to a fork() function or to a program main() function through an
exec() function.

The following chart shows how the C and OS/390 Language Environment error
handling approaches interact.

386 OS/390 V2R10.0 C/C++ Programming Guide

MAP 0040: Summary of C Error Handling

001

Signal is raised. Is SIG_IGN set for the signal? Or is the signal blocked?
Yes No

002

Continue at Step 006.

003

Is the signal for a SIGABND?
Yes No

004

Resume at the next instruction.

005

Condition is percolated for default behavior.

006

Is the signal asynchronous (or previously blocked)?
Yes No

007

Is a OS/390 Language Environment user handler registered?
Yes No

008

Is a C handler established for the signal by signal() or
sigaction() with the SA_OLD_STYLE or SA_RESETHAND flag
set?
Yes No

009

Continue at Step 017 on page 388.

010

Run C handler using ANSI rules and resume at the next instruction.

011

Run OS/390 Language Environment user handler. The handler can resume,
percolate or promote the signal. See OS/390 Language Environment
Programming Guide for more details.

Chapter 27. Handling Exceptions, Error Conditions, and Signals 387

012

Is a C handler established for the signal?
Yes No

013

Perform default processing.

014

Was the C handler established by signal() or sigaction() with the
SA_OLD_STYLE or SA_RESETHAND flag set?
Yes No

015

Run C handler using POSIX rules and transfer control to the next instruction
following the asynchronous interrupt.

016

Run C handler using ANSI rules and transfer control to the next instruction following
asynchronous interrupt.

017

At stack frame 0?
Yes No

018

Default handling for the signal and percolate to next stack frame.

019

Was a C handler established?
Yes No

020

Perform default processing.

021

Run C handler using POSIX signal delivery rules and resume at next instruction.

Signal Considerations using OS/390 UNIX
The following restrictions and inconsistencies exist for OS/390 UNIX C/C++
application program signal handling:

v Signal processing is blocked by the kernel when an OS/390 UNIX C/C++
application program is running on a request block (RB) other than the one the
main() routine was started on.

v An OS/390 UNIX C/C++ application program should not use the longjmp()
function to exit from a signal catcher established through the use of sigaction().
The sigsetjmp() and siglongjmp() functions should be used instead of setjmp()
and longjmp(). The longjmp() function can be used if the signal() function was
used to established the signal catcher.

MAP 0040 (continued)

388 OS/390 V2R10.0 C/C++ Programming Guide

v An OS/390 UNIX C/C++ application program must not use the macro versions of
the getc(), putc(), getchar(), and putchar() functions to perform I/O to the
same file from an asynchronous signal catcher function.

v Floating point registers are saved before a call to the signal catcher function and
restored when the signal catcher returns. This is done for all signals.

v For OS/390 UNIX C/C++ application programs, the errno value is saved before a
call to the signal catcher function and restored when the signal catcher returns.

Example of C Signal Handling under OS/390 C or OS/390 C++
In the following example, the call to signal() in main() establishes the function
signal handler to process the interrupt signal when it occurs. An error value
returned from this call to signal() causes the program to end with a printed error
message. The signal handler function asks you to enter a y or Y from the
keyboard if you want to halt the program. Entering any other character causes the
program to resume operation.

CBC3GEC1

/* this example demonstrates signal handling */

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

#ifdef __cplusplus /* __cplusplus is implicitly defined when */
extern "C" { /* the program is compiled with the OS/390 C/C++ */

#endif /* compiler */

void handler(int);

#ifdef __cplusplus
}

#endif

int main(void) {
if (signal(SIGINT,handler) == SIG_ERR) {

perror("Could not set SIGINT");
abort();

}
/* add code here if desired */

raise(SIGINT);
/* add code here if desired */

return(0);
}

void handler(int sig_num) {
char ch;

signal(SIGINT, handler);
printf("End processing?\n");
ch = getchar();
if (ch == 'y' ││ ch == 'Y')

exit(0);

}

Figure 103. Example Illustrating Signal Handling

Chapter 27. Handling Exceptions, Error Conditions, and Signals 389

390 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 28. Optimizing Code

This chapter describes ways to make an application compiled by the OS/390 C/C++
compiler perform better under OS/390. The chapter contains the following sections.

1. “Input/Output Considerations”

Things you should consider for efficient I/O processing.

2. “Programming Recommendations” on page 395

Things you should consider when designing, writing, and modifying your
program to help the compiler generate better code.

3. “Compiler Options to Improve Performance” on page 402

How to use the compiler and library to tune your program for better
performance.

4. “Memory Optimization” on page 408

How to optimize your use of dynamic memory.

5. “Using XPLINK” on page 409

The performance implications of using XPLINK, not using XPLINK, or mixing
XPLINK and non-XPLINK routines in an application.

6. “Compile Time Considerations” on page 410

Things you should consider when compiling your code.

Interprocedural Analysis (IPA), through the IPA compiler option, can also improve
the execution time of your OS/390 C/C++ application. IPA is a mechanism for
performing optimizations across compilation unit boundaries. It also performs
optimizations not otherwise available with the OS/390 C/C++ compiler, such as:

v Inlining across compilation units

v Program partitioning

v Coalescing of global variables

v Code straightening

v Unreachable code elimination

v Call graph pruning of unreachable functions

For an overview of IPA, refer to the chapter “Chapter 29. Optimizing Your C/C++
Code with Interprocedural Analysis” on page 413.

You may also find useful information in the IBM Redbook Tuning Large C/C++
Applications on OS/390 UNIX System Services. This Redbook is available on the
web at:

http://www.redbooks.ibm.com/abstracts/sg245606.html

Input/Output Considerations

When Accessing MVS Data Sets
v Consider the use of the file when choosing DCB parameters:

– Specify largest possible BLKSIZE (blocked files).

– Use recfm = FBS or F over FB unless dealing with a PDS. The use of standard
(S) blocks optimizes the sequential processing of a file on a direct-access
device.

© Copyright IBM Corp. 1996, 2000 391

|

|
|

|
|
|

|

|

– fseek() on sequential files is most efficient when using recfm = F or recfm =
FBS.

– If you are accessing an existing sequential file created as FB, and you know
that there are no short blocks in the file, specify FBS on the call to fopen() or
freopen() to enable the library to perform faster repositions.

The proper choice of file attributes is important for efficient I/O.

v When you do not need to reposition within a file, take advantage of NOSEEK for
more efficient reading and writing to a data set. You can also specify NCP or
BUFNO on the DD statement for MVS DASD data sets, thereby reducing the clock
time of the application. See “Multiple Buffering” on page 120 for more information.

v If possible, read or write a block at a time to minimize the I/O overhead and
elapsed time.

v Using text I/O for writing can be slower than using binary or record I/O. When
you use binary or record I/O, the application ensures that the data is written to
the file in the correct format.

v If you are using FB or FBS files, use binary I/O instead of record I/O. This way,
you can read or write more than one record at a time.

v Use fread() instead of fgets(), and fwrite() in place of fputs(), wherever
possible.

v Use putc() instead of fputc(), and getc() instead of fgetc(), if you must read
or write a character.

The fputc() function, as defined by ANSI, puts a single character to the text
stream. Special action occurs when writing a control character. On the other
hand, the putc() macro buffers characters in storage and invokes fputc() only
when encountering a control character. This reduces call overhead when you are
writing characters one at a time.

v If you are using hiperspace memory files, you can use setvbuf() to set the
buffer size.

The default buffer size for memory files in hiperspace is 16K. You can override
this by calling setvbuf() after fopen(), but before performing any I/O operations
on the file. The minimum buffer size is 4K. If you specify a smaller size, it is
ignored, and the default is used instead.

If your file will be large, you can improve execution time by increasing the buffer
size. This will result in less frequent flushing of the buffer to the hiperspace, but
will cost you memory in the user address space for the larger buffers. For
example,

rc = setvbuf(fp, NULL, _IOFBF, 32768);

Alternatively, if your memory is constrained, you can reduce requirements for
memory in the user address space by reducing the buffer size. This will result in
more frequent flushing of the buffer to the hiperspace. For example,

rc = setvbuf(fp, NULL, _IOFBF, 4096);

Please refer to “Chapter 15. Performing Memory File and Hiperspace I/O
Operations” on page 209 for more info on hiperspace memory files.

v When writing to text files that do not use DBCS characters, ensure that
MB_CUR_MAX is set to 1 for the current locale. This will prevent internal I/O checks
for DBCS strings.

v Avoid using fscanf() or fprintf() if you can use other I/O routines instead. For
example, use fwrite() rather than fprintf() to write out a format string with no
substitution variables.

392 OS/390 V2R10.0 C/C++ Programming Guide

v When using fflush() beware of NULL file pointers; fflush(NULL) flushes all open
streams.

v Specify DCB parameters on fopen() only when you are creating the file. When
you are appending, updating or reading a file, these attributes are retrieved from
the existing file.

Many file attributes (DCB parameters) are possible when you open a file with
OS/390 C/C++. DCB parameters specified on fopen() must be compatible with
those of the file or the ddname. This checking may cause unwanted overhead.

v Use fgetpos() and fsetpos() instead of ftell() and fseek() when you are
saving a position you will return to later. fgetpos() saves more information about
the position than ftell().

v Where possible, use striped data sets. These data sets improve overall I/O
throughput.

v For temporary files, use memory files rather than files created with tmpfile().

You can use MVS memory files from an OS/390 UNIX C++ application program.
However, use of the fork() function from the program clears a memory file and
removes access from a hiperspace memory file for the child process. Use of an
exec function from the program clears a memory file when the process address
space is cleared.

v For large memory files (1MB or larger) in which you perform random seeking,
use hiperspace memory files, if they are available.

v When your library is below the 16M line, use hiperspace memory files.

The non-hiperspace files use up your storage from below the line. Hiperspace
memory files do not reside in user virtual storage. Changing a memory file to a
hiperspace memory file saves user virtual storage only if the file is larger than
one hiperspace memory file buffer.

v For VSAM I/O use VSAM buffers appropriately and use flocate() instead of ftell()
and fseek().

When Accessing HFS Files
v Use fread() instead of fgets(), and fwrite() in place of fputs(), wherever

possible.

v Use putc() instead of fputc(), and getc() instead of fgetc(), if you must write
or read a character.

v When using fflush(), beware of NULL file pointers; fflush(NULL) flushes all open
streams.

v Changing the buffer size for access to HFS may provide advantages. You may
want to set the buffer size to be the length of the read or write operation that you
normally do. Use the setvbuf() function to change the buffer size.

Note: When you include the header file stdio.h, macros are defined for getc(),
putc(), getchar(), and putchar(). In order to use the function calls
instead of the macro calls, use #undef after the stdio.h header file is
included. If you are working with a threaded application, these macros are
automatically undefined forcing the application to use function calls, which
are thread safe. The feature test macro _ALL_SOURCE causes these four
macros to be undefined. However, if you require _ALL_SOURCE, and want
these macros to be used in a non multi-threaded application, you can use
feature test macro _ALL_SOURCE_NOTHREADS.

Chapter 28. Optimizing Code 393

When Using the I/O Stream Class Library with C++
v Unit-buffering incurs a significant performance penalty. Unit-buffering can be

enabled by setting the ios::unitbuf flag. It is enabled for the cerr object by
default.

v The sync_with_stdio() function enables unit-buffering of I/O Stream standard
streams, to ensure their synchronization with C standard streams. However, a
runtime performance penalty is incurred to ensure this synchronization.

v In many cases, the C I/O functions are faster than using the C++ I/O Stream
library. Mixing C I/O and the I/O Stream library to access the same file will cause
undefined results.

Using Library Extensions
If you are using C, consider fetch() or DLLs instead of system() for calling other C
modules; if you are using C++, use DLLs.

Effective use of DLLs may improve the performance of your application. Following
are some suggestions that may improve performance:

v If you are using a particular DLL frequently across multiple address spaces, the
DLL can be installed in the LPA or ELPA. When the DLL resides in a PDSE, the
dynamic LPA services should be used. Installing in the LPA/ELPA may give you
the performance benefits of a single rather than multiple load of the DLL.

v Be sure to specify the RENT option when you bind your code. Otherwise, each
load of a DLL results in a separately loaded DLL with its own writable static.

v Group external variables into one external structure.

v When using OS/390 UNIX avoid unnecessary load attempts.

OS/390 Language Environment supports loading a DLL residing in the HFS or a
dataset. However, the location from which it tries to load the DLL first varies
depending whether your application runs with the run-time option POSIX(ON) or
POSIX(OFF).

If your application runs with POSIX(ON), OS/390 Language Environment tries to
load the DLL from the HFS first. If your DLL is a data set member, you can avoid
searching the HFS directories. To direct a DLL search to a dataset, prefix the
DLL name with two slashes (//) as is in the following example.
//MYDLL

If your application runs with POSIX(OFF), OS/390 Language Environment tries to
load your DLL from a dataset. If your DLL is an HFS file, you can avoid
searching a dataset. To direct a DLL search to the HFS, prefix the DLL name
with a period and slash (./) as is done in the following example.
./mydll

Note: DLL names are case sensitive in the HFS. If you specify the wrong case
for your DLL that resides in the HFS, it will not be found in the HFS.

– For IPA, you should only export subprograms (functions and C++ methods) or
variables that you need for the interface to the final DLL. If you export
subprograms or variables unnecessarily (for example, by using the EXPORTALL
option), you severely limit IPA optimization. In this case, global variable
coalescing and pruning of unreachable or 100% inlined code does not occur.
To be processed by IPA, DLLs must contain at least one subprogram.
Attempts to process a data-only DLL will result in a compilation error.

– The suboption NOCALLBACKANY of the compiler option DLL is more efficient than
the CALLBACKANY suboption. The CALLBACKANY option calls an OS/390

394 OS/390 V2R10.0 C/C++ Programming Guide

Language Environment routine at run-time. This run-time service enables
direct function calls. Direct function calls are function calls through function
pointers that point to actual function entry points rather than function
descriptors. The use of CALLBACKANY will result in extra overhead at every
occurrence of a call through a function pointer. This is unnecessary if the calls
are not direct function calls.

A system() call does full environment initialization and termination, but a fetched
module and a DLL shares the environment of the calling routine.

Note: Compiling source with the DLL option may cause a degradation in
performance.

Use memory files as efficient temporary files by specifying the type=memory attribute
in fopen() before creating the temporary file. Some applications use temporary files
to pass data between program modules.

When using one of the OS/390 UNIX shells, an MVS memory file may or may not
make an efficient temporary file. This depends on whether your OS/390 UNIX
C/C++ application program uses fork() and exec() functions to call another
program to run in a child process. The child process does not inherit MVS memory
files after an exec() function.

Programming Recommendations
This section contains tips on how to write code to get the best results from the
optimization techniques used by the compiler.

Using Variables
Keep the following in mind when you choose the variables and data structures for
your application:

v Use local variables, preferably automatic variables, as much as possible.

The compiler can accurately analyze the use of local variables, while it has to
make several worst-case assumptions about global variables. These assumptions
tend to hinder optimizations. For example, if you code a function that uses
external variables, and calls several external functions, the compiler assumes
that every call to an external function could change the value of every external
variable.

v In some cases using local copies of global variables will help performance.

If none of the function calls will affect the global variables being used, and you
have to read them frequently with function calls interspersed, copy the global
variables to local variables. Next, use these local variables to help the compiler
perform optimizations that otherwise would not be done.

Using IPA can improve the performance of code written using global variables,
because it coalesces global variables. IPA puts global variables into one or more
structures and accesses them using offsets from the beginning of the structures.

v If you need to share variables only between functions within the same
compilation unit, use static variables instead of external variables.

Organize your source code so references to a given set of externally defined
variables occur only in one source file, and then use static variables instead of
external variables.

In a file with several related functions and static variables, the optimizer can
gather and use more information about the variables.

Chapter 28. Optimizing Code 395

Use a local static variable instead of an external variable or a variable defined
outside the scope of a function.

The #pragma isolated_call preprocessor directive can improve the run-time
performance of optimized code by allowing the compiler to make fewer
assumptions about the storage of external and static variables. Refer to OS/390
C/C++ Language Reference for more information about the #pragma
isolated_call directive.

IPA global variable coalescing helps improve optimization in the same way that
changing external variables to static variables does. Global variable coalescing
causes variables that are frequently used together to be mapped close together
in memory.

v Group external data into structures (all elements of an external structure use the
same base address) or arrays wherever it makes sense to do so.

To access an external variable, the compiler has to make an extra memory
access to obtain the variable’s address. The compiler removes extraneous
address loads, but this means that the compiler has to use a register to keep the
address. Using many external variables simultaneously requires many registers,
thereby causing spilling of registers to storage.

v The compiler treats register variables the same way it treats automatic variables
that do not have their address taken.

v Minimize the use of pointers.

Use of pointers inhibits most memory optimizations such as dead store
elimination in C and C++.

Using the #pragma disjoint directive to list identifiers that do not share the same
physical storage can improve the run-time performance of optimized code. See
OS/390 C/C++ Language Reference for more information on the #pragma
disjoint directive.

Passing Function Arguments
Optimization is effective when using function arguments. It is usually better to pass
a value as an argument to a function than to let the function take the value from a
global variable.

The #pragma isolated_call preprocessor directive lists functions that have no side
effects, that is, that do not modify global storage. Using it can improve the run-time
performance of optimized code. Refer to OS/390 C/C++ Language Reference for
examples and more information about this directive.

Coding Expressions
When coding expressions consider the following recommendations:

v If components of an expression are duplicate expressions, code them either at
the left end of the expression or within parentheses. For example:
a = b*(x*y*z); /* Duplicates recognized */
c = x*y*z*d;
e = f + (x + y);
g = x + y + h;

a = b*x*y*z; /* No duplicates recognized */
c = x*y*z*d;
e = f + x + y;
g = x + y + h;

The compiler can recognize x*y*z and x + y as duplicate expressions because
they are coded in parentheses or coded at the left end of the expression.

396 OS/390 V2R10.0 C/C++ Programming Guide

v When components of an expression in a loop are constant, code the constant
expressions either at the left end of the expression or within parentheses. If c, d,
and e are constant and v, w, and x are variable, the following examples show the
difference in evaluation:
v*w*x*(c*d*e); /* Constant expressions recognized */
c + d + e + v + w + x;

v*w*x*c*d*e; /* Constant expressions not recognized */
v + w + x + c + d + e;

Coding Conversions
Avoid forcing the compiler to convert numbers between integer and floating-point
internal representations. Conversions require several instructions, including some
double-precision floating-point arithmetic. For example:

CBC3GOP3

When you must use mixed-mode arithmetic, code the integral, floating-point, and
decimal arithmetic in separate computations as much as possible.

Arithmetic Considerations
v Wherever possible, use multiplication rather than division. For example,

x*(1.0/3.0); /* 1.0/3.0 is evaluated at compile time */

produces faster code than:
x/3.0;

v Assign the divisor’s reciprocal to a temporary variable and then multiply by that
variable. Divide many values by the same number in your code.

Using Loops and Control Constructs
For the for-loop index variable:

v Use a long type variable whenever possible. In the current implementation, long
and int are equivalent, but long is better for portability.

v Use the auto or register storage class over the extern or static storage class.

v If you use an enum variable, expand the variable to be a fullword.

/* this example shows how numeric conversions are done */

int main(void)
{

int i;
float array[10]={1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0}
float x = 1.0;
for (i = 0; i < 10; i++)

{
array[i] = array[i]*x; /* No conversions needed */
x = x + 1.0;
}

for (i = 1; i <= 9; i++)
array[i] = array[i]*i; /* Conversions may be needed */

return(0);
}

Figure 104. Numeric Conversions Example

Chapter 28. Optimizing Code 397

v Do not use the address operator (&) on the index.

v The index should not be a member of a union.

When using if statements:

v Order the if conditions efficiently; put the most decisive tests first and the most
expensive tests last.

By performing the most common tests first, you increase the efficiency of your
code; fewer tests are required to meet the test conditions.

if (command.is_classg &&
command.len == 6 &&
!strcmp (command.str, "LOGON")) /* call to strcmp() most expensive */
logon ();

Choosing a Data Type
v Use the int data type instead of char when performing arithmetic operations.

char_var += '0';
int_var += '0'; /* better */

v A char type variable is efficient when you are:

– Assigning a literal to a char variable

– Comparing the variable with a char literal
char_var = 27;
if (char_var == 'D')

v These data types are more expensive to reference:

Table 58. Referencing data types

More Expensive Less Expensive

unsigned short signed short (Although unsigned short is less
expensive on many systems, the OS/390
implementation of signed short is less
expensive.)

signed char unsigned char

long double double

Longer decimal Shorter decimal

IBinaryCodedDecimal decimal (for limitations, see “Chapter 25.
Using the Decimal Data Type in C” on
page 343)

v For storage efficiency, the compiler will pack enumeration variables in 1, 2 or 4
bytes depending on the largest value of a constant.

If performance is critical, expand the size to a fullword by adding an enumeration
constant with a large value.
enum byte { land, sea, air, space };
enum word { low, medium, high, expand_to_fullword = INT_MAX };

For example, fullword enumeration variables are preferred when used as function
parameters.

v For efficient use of extern variables:

– Place scalars ahead of arrays in extern struct.

– Copy heavily referenced scalars to auto or register variables (especially in a
loop).

v Consider the following points when using float

398 OS/390 V2R10.0 C/C++ Programming Guide

– When passing variables of type float to a function, an implicit widening to
double occurs (which takes time).

– On some machines divides of type float are faster than those of type double.

v When using bit fields:

– Even though the compiler supports a bit field spanning more than 4 bytes, the
cost of referencing it is higher.

– An unsigned bit field is preferred over a signed bit field.

– A bit field used to store integer values should have length 8, 16, or 24 bits
and be on a byte boundary.
struct { unsigned xval :8,

xbool :1,
xmany :6,
xset :1;

} b;

if (b.xval == 3)...
if (b.xmany + 5 == x) /* inefficient because it does not */

/* fall on a byte boundary */...
if (b.xbool)...

Using Built-In Library Functions and Macros
v Include the appropriate library header files to trigger the use of built-in functions

(that is, compiler-generated expansion for the function).

Including the proper library header files also prevents parameter type mismatch
and ensures optimal performance. For a list of the built-in functions, see
“Appendix I. Using Built-In Functions” on page 831. If you want to call a built-in
function explicitly, enclose the function name in parentheses when you make the
call, as follows: (memcpy)(buf1, buf2, len).

Note: At NOOPT the compiler may not expand all built-in functions.

v You should always include the ctype.h header file to use the following macros
rather than their equivalent functions:

isalpha()
isalnum()
iscntrl()
isdigit()
isgraph()

islower()
isprint()
ispunct()
isspace()

isupper()
isxdigit()
toupper()
tolower()

v If you are using the cs() or cds() function with arguments other than the ones
declared in the prototypes in stdlib.h, the compiler may not be able to generate
correct code at OPT. In this case, use the NOANSIALIAS option.

v Arrays are compared using a loop (one element at a time). When comparing two
arrays for equality, the loop is replaced with a memcmp(). In some cases, this
means that the execution of many machine instructions are replaced by the
execution of a few.

For example:
if (!memcmp (a, b, sizeof(a)))

/* arrays are equal */

is more efficient than a comparison in a loop such as:

Chapter 28. Optimizing Code 399

|
|
|

int a[1000], b[1000];

for (i = 0; i < 1000; ++i)
if (a[i] != b[i])

break;

if (i == 1000)
/* arrays are equal */

v Neither the C nor C++ language allows structure comparison, because structures
may contain padding bytes with undefined values. In cases where you know that
no padding bytes exist, use memcmp() to compare structures. The AGGREGATE
compiler option is used to obtain a structure and union map.

v The memset() library function should be used to initialize a character buffer and
when an array needs to be initialized to a repetitive byte pattern (such as zeros).

v As well, use memset() to clear structs, unions, arrays or character buffers as
follows:
char c[10];

for (i = 0; i < 10; i++) /* do not use */
c[i] = ' ';

memset (c, ' ', sizeof (c)); /* better */

v Use the alloca() function to automatically allocate memory from the stack. This
function frees memory at the end of a function call when OS/390 C/C++
collapses the stack. See the OS/390 C/C++ Run-Time Library Reference for
more information on this function.

v When using strlen() do not hide size information. Less code is needed for
strlen() when the upper bound is known at compile time.
char small_str_array[100];
char *small_str_ptr;...
x = strlen(small_str_ptr); /* unknown upper bound */

x = strlen(small_str_array); /* better */

v If you are concatenating strings, use strcat().

v If you are performing character to integer conversions, use atoi() rather than
sscanf().

v Try to replace strxxx() functions with their corresponding memxxx() functions,
because memxxx() functions are more efficient. To minimize the execution cost of
a strxxx() function, use fixed-length character buffers or to save the length of
incoming string (including null terminator) for subsequent calls to memcpy() and
memcmp().
total_len = strlen (s) + 1;...
for (i = 0; i < 10; i++)

if (memcmp (s, t[i], total_len) == 0) /* total_len ≤ sezeof(t) */...

memcpy (a, s, total_len);

Note: You cannot replace all strcmp() calls with a memcmp() call taking a
strlen() value of one of the strings. memcmp() will not stop comparing
strings when it encounters a null in one of the strings. This may result in
an attempt to access protected storage which follows the shorter string.
This, in turn, could result in an exception.

400 OS/390 V2R10.0 C/C++ Programming Guide

Using pragmas to Improve Performance
This section describes pragmas that can affect performance. For information about
using these pragmas, see OS/390 C/C++ Language Reference.

#pragma disjoint
Lists identifiers that do not share the same physical storage, which provides more
opportunities for optimizations.

#pragma export
Selectively exports functions or variables from a DLL module. The EXPORTALL
compiler option exports all functions or variables, which may result in larger
executables.

#pragma inline
Together with the INLINE compiler option, ensures that frequently used functions
are inlined.

This directive is only supported in C; however, you can use the inline keyword in
C++.

#pragma isolated_call
Lists functions that have no side effects (that do not modify global storage). This
directive can improve the run-time performance of optimized code by allowing the
compiler to make fewer assumptions about the storage of external and static
variables.

#pragma leaves
Specifies that a function never returns to the instruction following a call to that
function. This directive provides information to the compiler that enables it to
explore additional opportunities for optimization.

#pragma noinline
Prevents infrequently used functions, such as routines for debugging and handling
exceptions, from being inlined.

#pragma option_override
Allows you to specify optimization options on a per-routine basis rather than on only
a per-compilation basis. It enables you to specify which functions you do not want
to optimize while compiling the rest of the program optimized. This directive helps
you to isolate which function is causing problems under optimization.

#pragma reachable
Declares that the point in the program after the specified function can be the target
of a branch from some unknown location. That is, you can reach the instruction
after the specified function from a point in your program other than the return
statement in the named function.

This directive provides information to the compiler that enables it to explore
additional opportunities for optimization.

#pragma strings
Indicates whether strings should be placed in read-only memory or read/write
memory.

To reduce the memory requirements for DLLs, specify #pragma strings(readonly),
so that string literals are not placed in the writable static area. You can also use the
ROSTRING compiler option, which informs the compiler that string literals are
read-only.

Chapter 28. Optimizing Code 401

#pragma variable
Indicates if a named external object is used in reentrant or non-reentrant fashion. If
an object is marked as RENT, its references or its definition will be in the writable
static area, which is in modifiable storage. If an object is marked as NORENT, its
references or its definition will be in the code area.

To reduce the memory requirements for DLLs, specify #pragma
variable(var_name,NORENT), so that constant variables are not placed in the
writable static area. You can also use the ROCONST compiler option to inform the
compiler that constant variables are not to be placed in the writable static area.

Compiler Options to Improve Performance
The OS/390 C/C++ compiler provides several facilities to allow you to tune your
code for performance:

v The OPTIMIZE option (see “Using the OPTIMIZE Option”)

v The XPLINK option (see “Using XPLINK” on page 409)

v INLINE tuning options for C and C++ (see “Inlining” on page 404)

v Additional tuning options (see “Additional Compiler Options that Affect
Performance” on page 407)

v Interprocedural Analysis (IPA) as provided by the IPA compile-time option. Refer
to “Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis” on
page 413 for an overview.

Using the OPTIMIZE Option
During optimization, the compiler changes the unoptimized code sequences,
derived from the source code, into equivalent code sequences that execute faster
and usually require less memory space. It is possible for an expression that would
normally cause an exception to be removed by optimization, thus preventing the
exception.

Note: The OS/390 C/C++ compiler provides one level of optimization. Optimized
code takes significantly more time to compile then unoptimized code, but will
likely result in faster running code.

Because the optimization is achieved by transforming the code using knowledge
obtained from a larger program context, the direct correspondence between source
and object code is often lost. Optimized code is also more sensitive to subtle coding
errors.

One example of a subtle coding error is to type cast a pointer variable incorrectly.
The compiler assumes ANSI conformance when doing optimization. If your program
does not conform, you may receive undefined results. Refer to the ANSIALIAS option
in the OS/390 C/C++ User’s Guide for more information.

Optimizations Performed by the Compiler
The compiler performs several optimizations, including:

Inlining
Inlining replaces certain function calls with the actual code of the function
being performed. For more information on inlining, see “Inlining” on
page 404.

For OS/390 C/C++, automatic inlining is performed by default when you
specify OPTIMIZE. For OS/390 C, you can override this inlining by using the

402 OS/390 V2R10.0 C/C++ Programming Guide

NOINLINE option. For further information on the INLINE option, refer to the
OS/390 C/C++ User’s Guide. For OS/390 C++, you can override this by
specifying the #pragma noinline directive for a particular function. See
OS/390 C/C++ Language Reference for more information.

Value Numbering
Value numbering involves local constant propagation, local expression
elimination, and folding several instructions into a single instruction.

Straightening
Straightening is rearranging the program code to minimize branching logic
and to combine physically separate blocks of code.

Common Expression Elimination
Common expressions recalculate the same value in a subsequent
expression. The duplicate expression can be eliminated by using the
previous value. This is done even for intermediate expressions within
expressions. For example, if your program contains the following
statements:

a = c + d;
.
.
.

f = c + d + e;

the common expression c + d is saved from its first evaluation and is used
in the subsequent statement to determine the value of f.

Code Motion
If variables used in a computation within a loop are not altered within the
loop, it may be possible to perform the calculation outside of the loop and
use the results within the loop.

Strength Reduction
Less efficient instructions are replaced with more efficient ones. For
example, in array addressing, an add instruction replaces a multiply.

Constant Propagation
Constants used in an expression are combined and new ones generated.
Some mode conversions are done, and compile-time evaluation of some
intrinsic functions takes place.

Instruction Scheduling
Instructions are reordered to minimize execution time.

Dead Store Elimination
The compiler eliminates stores when the value stored is never referred to
again. For example, if two stores to the same location have no intervening
load, the first store is unnecessary, and is therefore removed.

Dead Code Elimination
The compiler may eliminate code for calculations that are not required.
Other optimization techniques may cause code to become dead.

Graph Coloring Register Allocation
The compiler uses a global register allocation for the whole function,
thereby allowing variables to be kept in registers rather than in memory.

These optimization techniques may be performed both locally and globally.
Increases in storage and compilation time requirements over NOOPT will occur.

Chapter 28. Optimizing Code 403

Inlining
Inlining replaces certain function calls with the actual code of the function and is
performed before all other optimizations. Inlining not only eliminates the linkage
overhead but also exposes the entire function to the caller and thus enables the
compiler to better optimize your code.

Note: See “Inlining under IPA” on page 407 for information on differences in inlining
under IPA.

Two types of calls are not inlined:

v A call where the number of parameters on the call does not match that on the
function definition. An example of this is a variable argument function call.

v A call that is directly recursive; the routine calls itself.

Consider the following C++ program:

CBC3GOP1

In this example, if you specify the inline keyword for the function which_group(),
and compile with OPTIMIZE, after optimizations, the compiler determines that the
above code is equivalent to:

/* this example demonstrates optimization */

#include <stdio.h>
inline int which_group (int a) {

if (a < 0) {
printf("first group\n");
return(99);

}
else if (a == 0) {

printf("second group\n");
return(88);

}
else {

printf("third group\n");
return(77);

}
}

int main (void) {

int j;

j = which_group (7);

return(j);
}

Figure 105. Optimization Example

404 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GOP2
The OS/390 C/C++ inliner supports two modes of running: selective and automatic.

Selective Mode
Selective mode enables you to specify in your source code the functions that you
do and do not want inlined. If you know which functions are frequently invoked from
within a compile unit, using C you can simply add the appropriate #pragma inline
directives in your source and compile with INLINE (NOAUTO,REPORT,,). For a C++
program, just add inline keywords to your source. (C++ programs cannot be
compiled in NOAUTO mode.)

If your code contains complex macros, the macros can be made into static routines
at no execution-time cost. All static routines that are interfaces to a data object can
be placed into a header file.

Automatic Mode in C
Automatic mode assists you with starting to optimize your code. It allows the
compiler to choose potential functions to inline. The compiler will inline all routines
that are less than the threshold in abstract code units (ACUs) until the function that
the functions are inlined into is greater than limit abstract code units. The threshold
and limit parameters are defined as follows:

threshold Maximum relative size of a function to inline. The default value is
100 Abstract Code Units (ACUs). ACUs are proportional in size to
the executable code in the function; your C code is translated into
ACUs by the compiler. Specifying a threshold of 0 is equivalent to
specifying NOAUTO.

Note that the proportion of ACUs to executable code in a function is
different under IPA.

limit Maximum relative size a function can grow before auto-inlining
stops. The default is 1000 ACUs for the specific function. Specifying
a limit of 0 is equivalent to specifying NOAUTO.

Note: When functions become too large, run-time performance can degrade.

Under the OS/390 UNIX shell, to provide assistance in choosing which routines to
inline, use the c89 -W option to pass the INLRPT option to the OS/390 C compiler. At
NOOPT, you will also need to specify the INLINE option. The default at NOOPT is
NOINLINE.

For example, at NOOPT, to get INLINE(AUTO,REPORT,100,1000), use one of the
following c89 commands:
c89 -W "0,inline(,REPORT,,)" example.c
c89 -W "0,inline,inlrpt"

/* this example demonstrates optimization */

#include <stdio.h>

int main(void) {

printf("third group\n"); /* a lot less code generation */

return(77);
}

Figure 106. Optimization Example

Chapter 28. Optimizing Code 405

|
|

To get the same value at OPT, pass the INLRPT option to the OS/390 C compiler as
follows:
c89 -2 -W "0,inlrpt"

Note: Inlining a function that is rarely invoked can degrade performance. Use the
#pragma noinline directive to instruct the automatic inliner not to inline these
types of functions. The #pragma inline and the #pragma noinline directives
are honored by automatic inlining regardless of the limit and threshold you
have specified.

Automatic Mode in C++
When you compile with the OS/390 C++ compiler and the OPTIMIZE option,
automatic mode inlining is done using a threshold of 100 and a limit of 2000. For
best performance, use #pragma noinline(...) to ensure that debugging routines
and routines that are not often used are not inlined. The inline keyword and the
#pragma noinline directive are honored by automatic inlining. See OS/390 C/C++
Language Reference for more information on this #pragma.

Improving Your Performance
While automatic inlining is the best choice the compiler can make for you, you can
further improve your performance. Use #pragma inline and #pragma noinline to
reduce the need to modify your inlining choices when you change your application.
You may want to wait until you have a stable application before you do the following
steps.

1. Compile with the OPTIMIZE option and ask for a report from the inliner.

a. For C, compile with INLINE(,REPORT,,) or INLRPT and OPTIMIZE.

b. For C++, compile with INLRPT and OPTIMIZE.

2. Look at the report to see if anything was inlined that should not have been; for
example, routines for debugging or handling exceptions. Add #pragma noinline
to your source to insure that these functions do not get inlined.

3. Add the inline keyword (for C++) or the #pragma inline directive (for C) to any
frequently used routines to ensure that it gets inlined.

4. Recompile with OPTIMIZE then, regenerate the inline report and reanalyze for
functions that should and should not be inlined.

5. For C you should also vary the limit and threshold values.

v The inline report tells you the abstract code units (ACUs) for each function.
These should help you determine an appropriate threshold to start from. In
general your initial threshold should be as small as possible, and your initial
limit should be in the 1000 to 2000 range.

v Increase the threshold by an increment small enough to catch a few more
routines each time.

v Change the limit when you wish. Because performance will improve as a
function of both the limit and the threshold values, it is not recommended
that you change both the limit and threshold at the same time.

6. Repeat the process until you feel that you have found the best performance
parameters. You should run your application to determine if the tuning has found
the best performance parameters.

7. When you are satisfied with the selection of inlined routines, add the appropriate
#pragma inline directives or inline keywords to the source. That is, when the
selected routines are forced with these directives, you can then compile the
program in selective mode. This way, you do not need to be affected by
changes made to the heuristics used in the automatic inliner.

406 OS/390 V2R10.0 C/C++ Programming Guide

Inline defaults
Automatic and selective inlining are performed when compiler option OPTIMIZE is
specified. In C, you can override this by specifying the NOINLINE option when you
specify your optimization level; in C++, you can override this by specifying the
#pragma noinline directive for a particular function. See OS/390 C/C++ Language
Reference for more information on this directive.

Inlining under IPA
The IPA Inliner functions differently from the regular inliner:

v It performs inlining across compilation units, rather than within a compilation unit.

v It handles inlining of functions with variable argument lists.

v It inlines calls from recursive cycles (for example, where function A calls function
B calls function C calls function A). However, it avoids making the functions too
large.

Additional Compiler Options that Affect Performance
The following sections describe compiler options that affect performance. For
information about using these options, see OS/390 C/C++ User’s Guide.

ANSIALIAS
The ANSIALIAS option specifies whether type-based aliasing is to be used during
optimization. Type-based aliasing will improve optimization.

ARCHITECTURE and TUNE
The ARCHITECTURE option specifies which architecture the executable program’s
instructions will be generated for; the TUNE option specifies which architecture the
executable program will be optimized for. ARCHITECTURE allows the optimizer to take
advantage of specific hardware instruction sets. TUNE allows the optimizer to take
advantage of architectural differences such as scheduling of instructions.

COMPRESS
Use the COMPRESS option to suppress the generation of function names in the
function control block to reduce the size of your application’s load module. The
amount of reduction depends on the average function size in the application, as
compared to the length of the function name.

COMPACT
When the COMPACT option is active, the compiler favors optimizations that tend to
limit the growth of the code. Depending on your specific program, the object size
may increase or decrease and the execution time may increase or decrease.

Any time you change your program, or change the release of the compiler, you
should reevaluate your use of the COMPACT option.

CVFT (C++ Only)
Use the NOCVFT option to reduce the size of the writable static area for constructors
that call virtual functions within the class hierarchy where virtual inheritance is used.

EXH (C++ Only)
To improve run time of your C++ code, consider using NOEXH. The resultant code will
run faster, but will not be ANSI-compliant if the program uses exception handling.

EXPORTALL
Use the EXPORTALL option only if you want to export all external functions and
variables in the source file so that a DLL application can use them. If you only need
to export some externally defined functions and variables, use the #pragma export
directive or the _Export C++ keyword instead of EXPORTALL.

Chapter 28. Optimizing Code 407

|
|
|
|

|
|

|
|

Using EXPORTALL can severely limit IPA optimization, and can cause your modules to
be larger than necessary.

IGNERRNO
The IGNERRNO option informs the compiler that the program is not using errno,
allowing the compiler more freedom in exploring optimization opportunities for
certain library functions (for example, sqrt). You need to include the system header
files to get the full benefit of this option.

IPA
The IPA option specifies that the compiler uses interprocedural analysis. This can
lead to significant performance improvements. For more information, see
“Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis” on
page 413.

LIBANSI
The LIBANSI option specifies whether or not all functions with the name of an ANSI
C library function are in fact the system functions. This allows the optimizer to
generate code based on existing knowledge concerning the behavior of the function
(for example, whether or not any side effects are associated with a particular library
function).

ROCONST
The ROCONST option specifies that the const qualifier is respected by the program.
Variables that are defined with the const keyword are not overridden by a casting
operation.

ROSTRING
The ROSTRING option specifies that strings are placed in read-only memory. It has
the same effect as the #pragma strings(readonly) directive.

SPILL
Specifying a very large spill size may force the compiler to generate less than
optimal code. For this reason, you may not want to specify the large spill size for
the entire application. For example, you can specify the large spill size for only the
one particular compilation unit that needs it or use #pragma option_override.

STRICT_INDUCTION
With strict induction, induction (loop counter) variables are not optimized. This
guards against problems that can occur if an optimized induction variable overflows.

If it is certain that the induction variables will not overflow, use the
NOSTRICT_INDUCTION option. This option can improve the performance of induction
variables that are smaller than the register size on the processor.

Memory Optimization
Memory allocations can significantly affect your application’s performance. Use the
following run-time options to optimize your run-time space requirements: ANYHEAP,
BELOWHEAP, HEAP, HEAPPOOLS, LIBSTACK, THREADSTACK, STACK, and STORAGE.

You can use the RPTSTG(ON) option to find out about your storage usage for the
given run of your application. You can then use the STACK and HEAP run-time options
to ensure that the initial stacks and heaps are sufficiently large, and that increments
are of the optimal size. The initial STACK size should be large enough that it will not
need to be extended during the program’s execution.

408 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|

|
|

|
|
|

You can also tune I/O storage by using the _EDC_STOR_INITIAL and
_EDC_STOR_INCREMENT environment variables. The I/O storage usage is not in the
storage report.

You can use the __heaprpt() function to obtain a summary heap storage report
while your application is running, without having to specify the RPTSTG(ON) option.
See OS/390 C/C++ Run-Time Library Reference for more information on the
__heaprpt() function.

If your application is multi-threaded or often uses malloc(), realloc(), calloc(),
and free(), you should consider using the HEAPPOOLS run-time option. Although
storage requirements may increase, you can expect better performance.

See OS/390 Language Environment Programming Guide for more information on
run-time storage.

Using XPLINK
Applications that make many calls to small functions get the most benefit from using
XPLINK. Many C++ applications are structured this way, because of the object
oriented programming model. C applications that make many function calls may
also be suitable for XPLINK.

To further enhance the performance of an XPLINK application, specify the
FLOAT(IEEE) compiler option. This option means that you use the IEEE binary
floating-point math library, which has been recompiled entirely in XPLINK. The
hexadecimal math library remains non-XPLINK, and therefore requires a call
through glue code from XPLINK applications.

You should also use the HEAPPOOLS(ON) run-time option. This reduces latch
contention on malloc() and free(), which have also been recompiled entirely in
XPLINK. If HEAPPOOLS(OFF) is in effect, calls to malloc() and free() require a call
through glue code from XPLINK applications.

When You Should Not Use XPLINK
Functions compiled XPLINK and NOXPLINK cannot be combined in the same
program object, unless you use an OS linkage specification as described in
“Chapter 19. Using Linkage Specifications in C or C++” on page 239 and OS/390
Language Environment Writing Interlanguage Applications.

XPLINK provides a significant performance enhancement to some applications, but
can degrade the performance of applications that are not suitable for XPLINK.

One way to call an XPLINK function from a non-XPLINK program object is to use
the DLL call mechanism. There is an overhead cost associated with calls made
from non-XPLINK to XPLINK, and from XPLINK to non-XPLINK. This overhead
includes the need to swap from one stack type to another and to convert the
passed parameters to the style accepted by the callee. Applications that make a
large number of these ″cross-linkage″ calls may lose any benefit obtained from the
parts that have been compiled XPLINK, and in fact performance could be degraded
from the pure non-XPLINK case. If the number of pure XPLINK function calls is
significantly greater than the number of ″cross-linkage″ calls, the cost saved on
XPLINK calls will offset the costs associated with calls that involve stack swapping.

Chapter 28. Optimizing Code 409

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

When you introduce an XPLINK program object into your application, for example
an XPLINK version of a vendor-DLL which your application uses, your application
must now run in an XPLINK environment (this is controlled by the XPLINK run-time
option). In an XPLINK environment, an XPLINK version of the C/C++ Run-Time
Library (RTL) is used. You cannot have both the non-XPLINK and XPLINK versions
of the C/C++ RTL active at the same time, so non-XPLINK callers of the C/C++
RTL will also incur this stack swapping overhead in an XPLINK environment.

The maximum performance improvement can be achieved by recompiling an entire
application XPLINK. The further the application gets from pure XPLINK, the less the
performance improvement. At some point, you may actually see a performance
degradation.

The only compiler that currently supports the XPLINK compile option is the IBM
OS/390 C/C++ compiler. All COBOL and PL/I programs are non-XPLINK. Calls
between COBOL or PL/I and XPLINK-compiled C/C++ are cross-linkage calls and
will incur the stack swapping overhead.

For more information on making ILC calls with XPLINK, refer to OS/390 Language
Environment Writing Interlanguage Applications.

Applications that use Language Environment facilities that are not supported in an
XPLINK environment (for example, PIPI), or that use products that are not
supported in an XPLINK environment (for example, CICS), can not be recompiled
as XPLINK applications.

For more information about XPLINK, see OS/390 Language Environment
Programming Guide.

Compile Time Considerations
This section contains tips on what you can do to improve compile time.

Programmer Tips
v You can add code to the beginning and end of a header file to ensure that it is

not processed unnecessarily during compilation. The following example contains
code that is included in a header file called myheader.

??=ifndef __myheader
??=ifdef __COMPILER_VER__

??=pragma filetag ("IBM-1047")
??=endif

#define __myheader 1
.
.
. /* header file contents */

??=endif

You must ensure that the filetag statement, if used, appears before the first
statement or directive except for any conditional compilation directives. The ifndef
statement is the first non-comment statement in the header file (the actual token
used after the ifndef statement is your choice). The define statement must follow;
it cannot appear before the filetag statement, but it must appear before any other
preprocessor statement (other than comments).

Note that the header can contain comment statements.

410 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

v Use the system header files from HFS instead of partitioned data sets to improve
compile time. Specify the following compiler options to do this:

– For C++: NOSEARCH SEARCH('/usr/include/', '/usr/lpp/ioclib/include/')

– For C: NOSEARCH SEARCH('/usr/include/')

v With the MEMORY compiler option (the default), the compiler uses a memory file in
place of a work file if possible. This option increases compilation speed, but you
may require additional memory to use it. If the compilation fails because of a
storage error, increase your storage size or recompile your program using the
NOMEMORY option.

v If your application has many recursive templates, the FASTTEMPINC compiler
option may improve the compilation time. This option defers generating object
code until the final versions of all template definitions have been determined.
Then, a single compilation pass generates the final object code. Time is not
wasted generating object code that will be discarded and generated again.

If your application has very few recursive template definitions, NOFASTTEMPINC
may be faster than FASTTEMPINC.

v If a source file does not have try/catch blocks or throws objects, the NOEXH C++
compiler option may improve the compilation time. The resultant code will not be
ANSI-compliant if the program uses exception handling.

v To improve your OPT compile time at the expense of run-time performance, you
can specify:

MAXMEM Limits the amount of memory used for local tables of specific,
memory intensive optimizations. If this amount of memory is
insufficient for a particular optimization, the compiler performs
somewhat poorer optimization and issues a warning message.
Reducing the MAXMEM value from 2G to 10M may disable
some optimizations, which may cause some decrease in
execution performance.

NOINLINE Disables inlining, and may decrease the compile time with a
decrease in execution performance.

v You can improve your compile time by using precompiled headers. Use the
options GENPCH and USEPCH together to automatically create and maintain
precompiled header files for your application. If you use these options
consistently, precompiled header files are created if they do not exist, and used if
they do. When a source file changes, the precompiled version automatically
regenerates the next time you compile your program. See OS/390 C/C++ User’s
Guide for more information on precompiled headers.

System Programmer Tips
v Use packs that are cached with DASD fast write.

If you are working in OS/390 UNIX System Services, to avoid I/O contention give
each user a separate mountable file system. This lets you spread user file
systems across multiple DASD devices.

If the compiler is not in LPA, tune your jobs to avoid channel and pack contention
when the headers and the compiler are on the same pack and multiple compile
jobs are executing.

v You can use the filecache command to store frequently used header files in an
HFS file system.

v If you do a lot of application development on your machine, put the compiler and
run-time library in the LPA. Similarly, if you are working in OS/390 UNIX System
Services also put the c89/cxx/cc utilities in LPA.

Chapter 28. Optimizing Code 411

|
|
|

v You can define /tmp as a RAM disk by specifying:
FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)

This is described in more detail in OS/390 UNIX System Services Planning,
SC28-1890.

For more information about tuning in OS/390 UNIX System Services, go to the
following web address:
http://www.s390.ibm.com/oe/bpxa1tun.html

412 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 29. Optimizing Your C/C++ Code with Interprocedural
Analysis

This chapter describes how you can optimize your code using OS/390 C/C++
Interprocedural Analysis (IPA).

Note: IPA does not support XPLINK.

Types of Procedural Analysis
The OS/390 C/C++ compiler performs both intraprocedural and interprocedural
analysis.

Intraprocedural analysis is a mechanism for performing optimization for each
function in a compilation unit, using only the information available for that function
and compilation unit.

Interprocedural analysis is a mechanism for performing optimization across function
boundaries. The C/C++ compiler performs limited interprocedural analysis if inlining
is in effect. But this form of interprocedural analysis only applies within a
compilation unit.

Interprocedural analysis through the IPA compiler option improves upon the limited
interprocedural analysis described above. When you invoke interprocedural analysis
through the IPA option, the compiler performs optimizations across the entire
program. It also performs optimizations not otherwise available with the C/C++
compiler. The types of optimizations performed include:

Inlining across compilation units
Inlining replaces certain function calls with the actual code of the function.
Inlining not only eliminates the linkage overhead but also exposes the entire
function to the caller and thus enables the compiler to better optimize your
code.

Program partitioning
Program partitioning improves performance by reordering functions to
exploit locality of reference. Functions that call each other frequently will be
closer together in memory.

Coalescing of global variables
The compiler puts global variables into one or more structures and
accesses the variables by calculating the offsets from the beginning of the
structures. This lowers the cost of variable access and exploits data locality.

Code straightening
Code straightening streamlines the flow of your program.

Unreachable code elimination
Unreachable code elimination removes unreachable code within a function.

Call graph pruning of unreachable functions
Call graph pruning of unreachable functions removes code that is 100%
inlined or never referenced.

Intraprocedural constant and set propagation
IPA propagates floating point and integer constants to their uses and

© Copyright IBM Corp. 1996, 2000 413

|

|

|

computes constant expressions at compile time. Also, variable uses that are
known to be one of several constants can result in the folding of
conditionals and switches.

Intraprocedural pointer alias analysis
IPA tracks pointer definitions to their uses, resulting in more refined
information about memory locations that a pointer dereference may use or
define. This enables other parts of the compiler to better optimize code
around such dereferences. IPA tracks data and function pointer definitions.
When a pointer dereference can only refer to a single memory location or
function, the dereference is rewritten to be an explicit reference to the
memory location or function.

Intraprocedural copy propagation
IPA propagates expressions defining some variables to the uses of the
variable. This creates additional opportunities for constant expression
folding. It also eliminates redundant variable copies.

Intraprocedural unreachable code and store elimination
IPA removes definitions of variables that cannot be reached, along with the
computation feeding the definition.

Conversion of reference (address) arguments to value arguments
IPA converts reference (address) arguments to value arguments when the
formal parameter is not written in the called procedure.

Conversion of static variables to automatic (stack) variables
IPA converts static variables to automatic (stack) variables when their use is
limited to a single procedure invocation.

The execution time for code optimized using IPA is normally faster than for code
optimized using regular interprocedural analysis, intraprocedural analysis, or the OPT
compiler option. Not all applications are suited for IPA optimization, however, and
the performance gains realized from using IPA will vary.

This chapter provides an overview of the Interprocedural Analysis (IPA) processing
that is available through the IPA compiler option. For more information about the
effects of IPA on compiling, compiler options, and compiler listings, refer to the
OS/390 C/C++ User’s Guide . For more information about the effects of IPA on
#pragmas, refer to the OS/390 C/C++ Language Reference.

Compiler Processing Flow
IPA changes the flow of compiler processing. This section explains the differences.

Regular Compiler Execution
If you specify the NOIPA compiler option (the default), the compiler processes source
files as shown in Figure 107 on page 415. The output is an object module for each
source file processed. You can then bind the object modules to produce an
executable module.

414 OS/390 V2R10.0 C/C++ Programming Guide

Compiler Execution with IPA
IPA processing consists of two steps: IPA Compile and IPA Link. You run the IPA
Compile step once for each compilation unit, and run the IPA Link step once for the
program as a whole. The final output is a single IPA-optimized object module which
you must bind with the binder to produce an executable load module. To get the
maximum benefit from IPA, run both the IPA Compile and IPA Link steps.

You can invoke the IPA Compile step in the same environments that you use for a
regular compilation. You can only invoke the IPA Link step in MVS batch (without
the ISPF interface provided with the compiler) or in one of the OS/390 UNIX shell
environnments through the c89 utility.

This section describes the flow of IPA processing under MVS batch. The flow of
processing with the c89 utility is the same, but there are differences in how you
invoke IPA. Refer to “Invoking IPA from the c89 Utility” on page 422 for more
information.

IPA Compile Step Processing
You invoke the IPA Compile step by specifying the IPA(NOLINK) compiler option
(NOLINK is the default suboption). During the IPA Compile step, the compiler creates
optimized objects. These objects contain information that the IPA Link step can use
for further optimization.

The following processing takes place for each compilation unit that you specify for
the IPA Compile step:

1. The compiler determines the final suboptions for the IPA option, based upon the
compiler options and IPA suboptions that you specified. This is necessary
because the compiler does not support some combinations of compiler options
and IPA suboptions. The compiler issues a warning message if it finds
unsupported combinations.

2. The compiler promotes some IPA suboptions based upon the presence of
related compiler options and issues informational messages if it does so. Refer
to the Compiler Options chapter in the OS/390 C/C++ User’s Guide for more
information.

3. The compiler generates an IPA object file. This object file contains control
information for a compilation unit required for the IPA Link step.

Analysis phase

Invocation parameters

Compiler

Code generation
phase

Source file(s)
Listing sections
Messages

Object module(s)
Listing sections
Messages

Figure 107. Flow of regular compiler processing

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 415

|
|
|
|
|

|
|
|
|

The IPA object module produced by IPA (NOLINK,NOOBJECT) has the same
structure as a regular object module. It can not be used as input to the
prelinker, linker, or binder. If attempted, the binder will generate the following
error diagnostic message:
IEW2696E 3D01 AN ERROR WAS DETECTED IN AN EXTENDED OBJECT
MODULE AT RECORD 4 WITHIN MEMBER CBC3BL07 IDENTIFIED BY
DDNAME SYSLIN. ERRORID = 566.
IEW2307E 1032 CURRENT INPUT MODULE NOT INCLUDED BECAUSE OF INVALID DATA.

The prelinker and linker will appear to process these files correctly. To locate
this problem, the IPA object contains an external reference to @@DOIPA. This
reference remains unresolved unless the file is processed by the IPA Link step.
If you attempt to link the IPA object file, the linker issues an error message.

Each IPA object contains a CSECT that includes the ESD name @@IPAOBJ.

4. If you specify the OBJECT suboption of the IPA option, the compiler produces a
combined IPA and conventional object file. The IPA object connection occurs
through the conventional object through END records. While the conventional
object file is not required by the IPA Link step, creating it permits you to bind
this file to create an executable module without IPA optimization. It is difficult to
debug IPA optimized code. You can use an executable module that is not
optimized to debug your program.

During the IPA Compile step, the compiler generates information that allows you to
create object libraries with the C370LIB utility or to create OS/390 UNIX archives
with the ar utility. The information consists of XSD and ESD records for the external
symbols that were defined in the compilation units of your program. You can use
the object libraries and OS/390 UNIX archives for autocall searching in the IPA Link
step. During autocall searching, the IPA Link step searches these libraries and
archives for external references from your program.

IPA Compile step processing is shown in Figure 108 on page 417.

416 OS/390 V2R10.0 C/C++ Programming Guide

IPA Link Step Processing
You invoke the IPA Link step by specifying the IPA(LINK) compiler option. During
this step, the compiler links the IPA objects that were produced by the IPA Compile
step (along with non-IPA object files and load modules, if specified), does
partitioning, performs optimizations, and generates the final object code.

The following processing takes place:

1. The compiler determines the final suboptions for the IPA option, based upon the
compiler options and IPA suboptions you specify. This is necessary because
some combinations of compiler options and IPA suboptions are unsupported.
The compiler issues informational and warning messages for unsupported
combinations.

2. The compiler links IPA object files, as well as non-IPA object files and load
modules (if specified). The compiler also merges information from the IPA
Compile step.

Input for the Link step comes from one of three sources:

v The primary input file (specified by the SYSIN ddname). This can be either:

– A set of IPA Link control statements that you create

These may be INCLUDE and LIBRARY IPA Link control statements that
explicitly identify secondary input files. IPA uses the same control
statement format (with some exceptions) used by the binder.

– The IPA object file from the compilation unit that contains the main function
or fetchable entry point. If you specify this file, the compiler searches for
all other IPA files using the SYSLIB ddname.

Analysis phase

Invocation parameters
(IPA or IPA(NOLINK),

other suboptions may be
specified)

Compiler

IPA compile
optimization phase

IPA object
creation

Code generation
phase (optional)

Source file(s)
Listing sections
Messages

Messages
IPA object(s)

Messages

Listing sections
Messages
Regular object(s)

Figure 108. IPA Compile step processing

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 417

v One or more secondary input files

The secondary input file may contain:

– IPA object files or PDS libraries

– Conventional object files or PDS libraries

– Load module libraries

– OS/390 UNIX archive libraries

– IPA Link control statements

These secondary input files are to be used for autocall searches. You can
specify these files through the SYSLIB ddname or explicitly include them
through INCLUDE or LIBRARY IPA Link control statements on the IPA Link step.

Load module libraries are used to support library interface routines (such as
CICS and Language Environment) that are implemented as load module
libraries. Since IPA must resolve all parts of your application program before
beginning optimization, make all of these libraries as well as your application
object modules available to the IPA Link step.

The IPA Link step resolves external references using explicit and autocall
resolution. This allows IPA to identify the static and global data and the
external references for the whole program.

Ensure that you do not accidentally specify FB, LRECL 80 source files as
input to the IPA Link step. The IPA Link step will assume that records from
these files contain valid object information, and will retain them in the object
file. When the linkage editor processes the object file, it will determine the
records to be invalid, and will issue diagnostic messages.

v The IPA Link step control file. This file contains additional IPA control
directives. The CONTROL suboption of the IPA compiler option identifies this
file.

Refer to “Object Record Formats” on page 420 for more information about the
format of object records that you can specify on the IPA Link step. Refer to the
OS/390 C/C++ User’s Guide for more information about the IPA Link step
control file.

3. As objects are processed, IPA Link Step builds the program call graph, merging
the IPA object code according to its place in the call graph. If necessary, IPA
Link Step stores non-IPA object code for inclusion in the final object file, and
converts load module library members into object format for inclusion in the final
object file.

4. The compiler performs optimizations across the call graph. You specify the type
and extent of optimizations using the LEVEL suboption of the IPA compiler
option.

5. IPA Link Step divides the program call graph into separate units called
partitions. Refer to “Partitioning” on page 421 for more information. Partitioning
of the call graph is controlled by:

v The partition size limit that is specified in the IPA control file (refer to the
OS/390 C/C++ User’s Guide for a description of this file).

v The connectivity of your program. IPA places code that is isolated from the
rest of the program into a separate partition.

v Resolution of conflicting effects between the compiler options and #pragmas
specified for compilation units processed during the IPA Compile step. These

418 OS/390 V2R10.0 C/C++ Programming Guide

are the compiler options and #pragmas that generate information during the
analysis phase of the compiler for input to the code—generation phase.

IPA Link Step produces a final single object module for the program from these
partitions.

You must bind the IPA single object module to produce the executable module.

Note:

IPA Compile and IPA Link as follows:

v An object file produced by an OS/390 C/C++ IPA Compile that contains
IPA Object or combined IPA and conventional object information can be
used as input to the OS/390 C/C++ IPA Link of the same or later
Version/Release.

v An object file produced by an OS/390 C/C++ IPA Compile that contains
IPA Object or combined IPA and conventional object information cannot be
used as input by the OS/390 C/C++ IPA Link of an earlier
Version/Release. If this is attempted, the IPA Link will issue an error
diagnostic message.

v If the IPA object is recompiled by a later OS/390 C/C++ IPA Compile,
additional optimizations may be performed and the resulting application
program may perform better.

An exception to this is the IPA object files produced by the OS/390 Release
2 C IPA Compile. These must by recompiled from the program source using
an OS/390 Release 3 or later compiler before attempting to process them
with the OS/390 V2R10 C/C++ IPA Link.

IPA Link step processing is shown in Figure 109 on page 420.

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 419

Object File Formats
There are two object file formats generated by the High Level Assembler (HLASM)
and other OS/390 compilers and language translators.

Object File Format
The standard S/370 ″TEXT″ object format, packaged as fixed-length 80
byte records. Extensions to the basic format support long external symbols
when the OS/390 C/C++ compiler ″LONGNAME″ option is in effect. The
object file format is supported as input to IPA Link. The OS/390 C/C++
compiler produces only object file format files.

Generalized Object File Format (GOFF)
A hierarchical object file format introduced with HLASM R2, and the OS/390
Binder. This format is NOT supported as input to IPA Link.

Refer to OS/390 DFSMS Program Management for more information on object file
formats.

Object Record Formats

There are two basic types of object records which may be present in a file of object
file format. The descriptions follow below. For more information, refer to the IPA Link
chapter in the OS/390 C/C++ User’s Guide.

Note: You cannot use the vi editor to create these records. Only an editor that
supports fixed-length binary records may be used.

IPA object
link phase

Analysis/
optimization phase

Code generation
phase

Invocation parameters
(IPA(LINK, CONTROL(dsn))

(other IPA suboptions may be
specified)

Compiler

Primary input file (object)

IPA control file
Secondary input (object, load module)

Listing sections
Messages

Listing sections
Messages

Listing sections
Messages
Final object code

Figure 109. IPA Link step processing

420 OS/390 V2R10.0 C/C++ Programming Guide

|

|
|

Binary Object Records: Binary records may include IPA object information, or
they may include code and data generated through the OBJECT suboption of the IPA
compiler option during the IPA Compile step. The records include the following
types:

v ESD

v XSD

v TXT

v END

v RLD

The OS/390 C/C++ compiler or an equivalent language translator may generate
these object records.

IPA Link Control Statements: The syntax and format of IPA Link control
statements are similar to those of the statements processed by the binder,Prelinker,
and Linkage Editor. These statements can include the following types:

v ALIAS

v INCLUDE

v IMPORT

v LIBRARY

v NAME

v RENAME

The INCLUDE and LIBRARY control statements explicitly identify secondary input files.

You can specify the statements in a file or in a DD * stream. The logical records
can span multiple fixed-block, 80–column–wide physical records. The IPA Link step
allows but ignores blank records and comment control statements (those starting
with an asterisk in column 1).

The compiler performs syntax checking on the IPA Link Control Statement object
records. If it finds an error, it issues a diagnostic message and indicates the location
of the error.

Creating IPA Link Control Statements in Makefiles
An easy way to create a control statement object record is to use the shell printf
statement. For example, to create the object files foo.o and bar.o containing
ALIAS control statements for their respective uppercased names, specify:

foo.o bar.o:
printf "%-80s" " ALIAS $(@:b) " | tr [:lower:] [:upper:] \

>$(@:b).o 2>$(@:b).err

Partitioning
The final object file created by the IPA Link step is comprised of partitions.
Partitions have three purposes:

v They improve the locality of reference in a program by concentrating related code
in the same regions of storage. This improves load module execution time. This
improvement may be less dramatic for program objects which are paged into
storage on demand.

v They reduce the compiler memory requirements during object code generation
for that partition.

v They allow you to create programs larger than the 16 MB limit for code and data
in an individual S/370 object code CSECT.

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 421

|

|
|
|
|

|
|
|

|

There are four types of partitions:

v An initialization partition. This contains initialization code and data, and comment
data (which ensures that #pragma comment information is clearly visible at the
beginning of the program file and storage region).

v The primary partition. This contains the information for the main function.

v Secondary or other partitions.

v Residual CSECT name partitions. These contain CSECT definitions for all
CSECTs provided by the user in csect directives in the IPA Link control file which
were not used for generating initialization, primary, or secondary partitions.

IPA determines the number of each type of partition through the following:

v The partition directive in the control file specified by the CONTROL suboption of
the IPA option. Abstract Code Units (ACU’s) define the partition directive.

Note: There is a 16 MB limit on the size of a CSECT. If the length of a CSECT
in a partition exceeds this limit, the compiler issues a severe error
message and stops code generation. You can resolve the error by
specifying a smaller value for the partition directive. Refer to the OS/390
C/C++ User’s Guide for more information about the IPA Link step control
file.

v The connectivity within the program call graph. Connectivity refers to the volume
of calls between functions in a program.

v Conflict resolution between #pragmas and compiler options specified for different
compilation units. IPA attempts to resolve conflicts by applying a common option
across all compilation units. If it cannot, it forces the compilation units for which
the effects of the original option or #pragma are to be maintained into
separate partitions.

Refer to the OS/390 C/C++ User’s Guide for an example of the Partition Map listing
section.

Invoking IPA from the c89 Utility
You can invoke the IPA Compile step, the IPA Link step, or both. The step that c89
invokes depends upon the invocation parameters and type of files you specify. You
must specify the I phase indicator along with the W option of the c89 utility. You can
specify IPA suboptions as keywords separated by commas.

If you invoke the c89 utility with at least one source file and the -c c89 compiler
option, c89 automatically specifies the IPA(NOLINK) option and invokes the IPA
compile step. For example, the following command invokes the IPA Compile step
for the source file hello.c:
c89 -c -WI hello.c

If you invoke the c89 utility with at least one object file, do not specify the -c option
and do not specify any source files. c89 automatically specifies IPA(LINK) and
automatically invokes the IPA Link step and the binder. For example, the following
command invokes the IPA Link step and the binder, to create a program called
hello:
c89 -o hello -WI hello.o

If you invoke c89 with at least one source file for compilation and any number of
object files, and do not specify the -c c89 compiler option, c89 automatically invokes
the IPA Compile step once for each compilation unit and the IPA Link step once for

422 OS/390 V2R10.0 C/C++ Programming Guide

the entire program. It then invokes the binder. For example, the following command
invokes the IPA Compile step, the IPA Link step, and the binder to create a program
called foo:
c89 -o foo -WI,object foo.c

Specifying Options
When using c89, you can pass options to IPA, as follows:

v If you specify -WI, followed by IPA suboptions, the compiler passes those
suboptions to both the IPA Compile step and the IPA Link step.

v If you specify -Wc, followed by compiler options, the compiler passes those
options only to the IPA Compile step.

v If you specify -Wl,I, followed by compiler options, the compiler passes those
options only to the IPA Link step.

The following is an example of passing options:
c89 -2 -WI,noobject -Wc,source -Wl,I,"maxmem(2048)" file.c

If you specify the previous command, you pass the IPA(NOOBJECT) option to both
the IPA Compile and IPA Link steps, the SOURCE option to only the IPA Compile step,
and the MAXMEM(2048) option to only the IPA Link step.

Other Considerations
The c89 utility automatically generates all INCLUDE and LIBRARY IPA Link control
statements.

IPA under c89 supports the following types of files:

v MVS PDS members

v sequential files

v Hierarchical File System (HFS) files

v OS/390 UNIX archive (.a) files

Note that the OS/390 C/C++ compiler, which includes IPA, is packaged in load
module format, not OS/390 UNIX executable format.

Refer to the OS/390 UNIX System Services Command Reference for more
information about the c89 utility.

Controlling IPA Execution
There are three ways to control IPA execution:

v Compiler options, including the IPA compiler option and its suboptions

v Compiler #pragma directives

v IPA Link step control file directives

This section discusses the first two methods. Refer to the chapter on the IPA Link
step in the OS/390 C/C++ User’s Guide for information about the control file.

Specifying Compiler Options with IPA
The IPA compiler option that invokes IPA includes suboptions that are not discussed
in this chapter. Refer to the OS/390 C/C++ User’s Guide for a complete description
of the IPA option.

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 423

You should keep the following points in mind when specifying compiler options for
an IPA Compile or IPA Link step. Refer to the compiler options section of the
OS/390 C/C++ User’s Guide for more information on specifying compiler options
under IPA.

v Many compiler options do not have any special effect on IPA. For example, the
PPONLY option, used for source control, processes source code prior to IPA
Compile step analysis.

v Any compiler options that affect the way an object module is generated for a
regular compilation have the same effect for an object module generated with the
OBJECT suboption of the IPA compiler option.

v Some compiler options specified for the IPA Compile step generate information
for the IPA Link step. You must specify these options on both steps. This is the
situation for options that control code generation.

You must specify compiler options that affect the IPA Link step when you invoke
that step, even if you specified the same options on the IPA Compile step. The
IPA Link step uses defaults for options that are not specified.

v Some compiler options have special behavior or restrictions other than the
description above.

v #pragma directives that you specify in your source code may conflict across
compilation units with compiler options that you specify for the IPA Compile step.

#pragma directives that you specify in your source code or compiler options that
you specify for the IPA Compile step may conflict with options you specify for the
IPA Link step.

IPA will detect such conflicts and apply default resolutions with appropriate
diagnostic messages. The IPA Link step Compiler Options Map listing section
displays the conflicts and resolutions.

To avoid problems, use the same options and suboptions on the IPA Compile
and IPA Link steps. Also, if you use #pragma directives in your source code,
specify the corresponding options (if they exist) for the IPA Link step.

v You must specify either the LONGNAME compiler option or the #pragma longname
preprocessor directive for the IPA Compile step (unless you invoke the step
through the c89 utility). Otherwise, the compiler generates an unrecoverable
error.

v If you specify a compiler option that is irrelevant for a particular step, IPA ignores
it (without issuing a message).

v During the IPA Compile step, IPA handles conflicting effects between IPA
suboptions and certain compiler options that affect code generation. The compiler
uses a combination of compiler options and IPA suboptions to determine the
information that the IPA object contains.

Specifying Pragmas under IPA
Many #pragmas do not have any special behavior under IPA. They have the same
effect on a program compiled with the IPA option as they do for a program compiled
without the IPA option.

The following #pragmas do have special behavior under IPA. Refer to the OS/390
C/C++ Language Reference for details.

v comment

v csect

v export

v longname

424 OS/390 V2R10.0 C/C++ Programming Guide

v option_override

v options

v pagesize

v runopts

v strings

v target

IPA may detect conflicting effects from #pragmas or compiler options that you
specified for different compilation units in the IPA Compile step. It resolves these
conflicting effects during the IPA Link step. There may also be conflicting effects
between #pragmas and equivalent compiler options specified for the IPA Link step.
IPA resolves these conflicts similarly to the way it resolves conflicting effects from
compiler options specified for the IPA Compile and IPA Link steps. The Compiler
Options Map section of the IPA Link step listing lists the conflicting effects of options
and #pragmas, and the corresponding resolutions.

You must specify either the LONGNAME compiler option or the #pragma longname
preprocessor directive for the IPA Compile step (unless you invoke the step through
the c89 utility). Otherwise, the compiler generates an unrecoverable error.

Effects of IPA on Your Program
If you compile your program with IPA, the execution time for your program is
normally faster than it would be if you requested inlining or other forms of
optimization.

For best optimization results, specify both the OPT and IPA options.

You should be aware that not all programs benefit equally from IPA. Those most
likely to show performance gains are those that:

v Contain a large number of functions

v Contain a large number of compilation units

v Contain a large number of functions that are not in the same compilation units as
their callers

v Do not perform a large number of input/output operations

You should debug your code before attempting to use IPA. The IPA(NOLINK,OBJECT)
option can help, by allowing you to create a conventional object that you can bind
without running the IPA Link step first.

In some cases, incorrect code may compile successfully without IPA but not compile
with IPA. This is because the IPA Link step enforces more rules than the regular
compiler does. The IPA Link step knows about your entire program.

The regular compiler only has an isolated (compilation unit based) view of your
program, and must assume that you have coded your entire application
consistently.

Other effects of IPA:

v IPA affects compilation time:

– If you invoke the IPA Compile step for each compilation unit in your program,
and the IPA Link step for the program as a whole, the combined compilation

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 425

|
|
|

time is higher than it is for a program compiled without IPA. This is due to the
IPA-specific optimizations that the IPA Compile and IPA Link steps perform.

– If you specify IPA(NOOBJECT) for the IPA Compile step, the compilation time for
the IPA Compile step is comparable to that for a program compiled without
IPA. If you specify IPA(OBJECT), compilation time for the IPA Compile step
increases, but the benefit is that you can use the created object to build an
executable module for debugging.

v If you compile with the IPA compiler option, the size of your object file is larger
than it would be if you compiled without IPA. This is due to the extra information
that the IPA Compile step stores in the object file for the IPA Link step.

v If you specify the OPT option on the IPA Link step, and your program is complex,
you may require 256 MB or more of memory.

Restrictions
You should be aware of the following restrictions when using IPA:

v IPA is not supported in an MTF environment.

v IPA is supported in an SP C environment only when the main function is present.

Locale Support
The LOCALE compiler option has the following effects on IPA:

v It triggers the processing of pragma filetag. This only applies to the IPA Compile
step, as source code is only processed during this step.

v It indicates the code page to be used to generate the listings.

v It indicates the date and time formats to be used to generate the listings.

The LOCALE option only controls processing for the IPA step for which it is specified.
The locale that you specify for the IPA Compile step does not determine the locale
that the IPA Link step uses.

During the IPA Compile step, the compiler converts source code by using the code
page identified by the LOCALE compiler option. As with non-IPA compilations, the
conversion applies to identifiers, literals, and listings. The locale that you specify for
the IPA Compile step becomes recorded in the IPA object file.

The LOCALE option specified for the IPA Link step is used:

v For the encoding of the message and listing text

v For date and time formatting in the Source File Map section of the listing

v In the text in the object comment string that records the date and time of IPA Link
step processing

You should use the same code page for IPA Compile step processing for all of the
source files in your program. This code page should match the code page of the
run-time environment. Otherwise, your application may not run correctly. If the code
page used for any compilation unit for the IPA Compile step does not match the
code page used for the IPA Link step, the IPA Link step issues an informational
message.

426 OS/390 V2R10.0 C/C++ Programming Guide

Date and Time Stamps Within IPA Objects
IPA Compile step processing determines the values specified by the date and time
stamps. If you run the IPA Link step, the date and time stamps will reflect the
compilation date and time from the IPA Compile step. They will not reflect the date
and time when the IPA Link step generated the code.

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 427

428 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 30. Network Communications under UNIX System
Services

This chapter discusses interprocess communication, including MVS Sockets for
OS/390 UNIX and the X/Open Transport Interface (XTI) for OS/390 UNIX and the
internetworking involved.

Many products today supply a socket interface. The three types of Application
Programmer’s Interfaces(API) for the sockets which will be covered in this chapter
are:

v X/Open Socket

v Berkeley Socket

v Open Socket

If you are running with some other socket API, this material will not necessarily
apply.

Your OS/390 UNIX C/C++ application program can take advantage of sockets or
XTI to communicate with a related application (server or client).

The X/Open Transport Interface (XTI) defines an independent transport service
interface that allows multiple users to communicate at the transport level of the OSI
reference model. More information can be found at the end of this chapter.

Understanding OS/390 UNIX Sockets and Internetworking
OS/390 UNIX provides support for an enhanced version of an industry-accepted
protocol for client/server communication known as sockets. The three types of
Application Programmer’s Interfaces(API), for the sockets which will be covered in
this chapter are:

v X/Open Socket: The API type of socket as defined by X/Open in XPG4.2.

v Berkeley Socket: The socket API that represents a migration path for programs
coded under the HOT1120 and HOT1130 elements. It allows use of the BSD4.3
interface and function in the X/Open environment. Its purpose is to expedite the
porting of existing BSD4.3 applications.

v Open Socket: The API type of socket for the HOT1120 and HOT1130 OS/390
UNIX elements, which use a BSD4.3 interface. In OS/390 UNIX, this interface is
available with the OS/390 C/C++ Language Environment; see Berkeley Socket.
This API will be deleted from any replacement of the HOT1130 OS/390 UNIX
element. Support for existing Open Sockets binding and running will continue to
be available.

The OS/390 UNIX socket API provides support for both UNIX domain sockets and
Internet domain sockets. UNIX domain sockets, or local sockets, allow interprocess
communication within MVS independent of TCP/IP. Local sockets behave like
traditional UNIX-domain sockets and allow processes to communicate with one
another on a single system. Internet sockets allow application programs to
communicate with others in the network using TCP/IP.

This chapter provides some background information about OS/390 UNIX sockets
and about network communication in general. It is intended to provide an overview
of the programming concepts associated with using OS/390 UNIX sockets and
network communication.

© Copyright IBM Corp. 1996, 2000 429

For information about using the socket API, see OS/390 C/C++ Run-Time Library
Reference.

The Basics of Network Communication
This section takes a look at network communication from a very high level and
defines some terms used throughout the book. For more detailed information on
OS/390 network communication and TCP/IP sockets, see TCP/IP for MVS: User’s
Guide and TCP/IP for MVS: Programmer’s Reference.

Network communication, or internetworking, defines a set of protocols (that is, rules
and standards) that allow application programs to talk with each other without
regard to the hardware and operating systems where they are run. Internetworking
allows application programs to communicate independently of their physical network
connections.

Internetworking technology called TCP/IP is named after its two main protocols:
Transmission Control Protocol (TCP) and Internet Protocol (IP). To understand
TCP/IP, you should be familiar with the following terms:

client A process that requests services on the network.

server A process that responds to a request for service from a client.

datagram The basic unit of information, consisting of one or more data
packets, which are passed across an Internet at the transport level.

packet The unit or block of a data transaction between a computer and its
network. A packet usually contains a network header, at least one
high-level protocol header, and data blocks. Generally, the format of
data blocks does not affect how packets are handled. Packets are
the exchange medium used at the Internetwork layer to send data
through the network.

Transport Protocols for Sockets
A protocol is a set of rules or standards that each host must follow to allow other
hosts to receive and interpret messages sent to them. There are two general types
of transport protocols:

v A connectionless protocol is a protocol that treats each datagram as independent
from all others. Each datagram must contain all the information required for its
delivery.

An example of such a protocol is User Datagram Protocol (UDP). UDP is a
datagram-level protocol built directly on the IP layer and used for
application-to-application programs on a TCP/IP host. UDP does not guarantee
data delivery, and is therefore considered unreliable. Application programs that
require reliable delivery of streams of data should use TCP.

v A connection-oriented protocol requires that hosts establish a logical connection
with each other before communication can take place. This connection is
sometimes called a virtual circuit, although the actual data flow uses a
packet-switching network. A connection-oriented exchange includes three phases:

1. Start the connection

2. Transfer data

3. End the connection

An example of such a protocol is Transmission Control Protocol (TCP). TCP
provides a reliable vehicle for delivering packets between hosts on an Internet.

430 OS/390 V2R10.0 C/C++ Programming Guide

TCP breaks a stream of data into datagrams, sends each one individually using
IP, and reassembles the datagrams at the destination node. If any datagrams are
lost or damaged during transmission, TCP detects this and retransmits the
missing datagrams. The data stream that is received is therefore a reliable copy
of the original.

These types of protocols are illustrated in Figure 111 on page 439, and in
Figure 112 on page 440.

What Is a Socket?
A socket can be thought of as an endpoint in a two-way communication channel.
Socket routines create the communication channel, and the channel is used to send
data between application programs either locally or over networks. Each socket
within the network has a unique name associated with it called a socket
descriptor—a fullword integer that designates a socket and allows application
programs to refer to it when needed.

Using an electrical analogy, you can think of the communication channel as the
electrical wire with its plug and think of the port, or socket, as the electrical socket
or outlet, as shown in Figure 110.

This figure shows many application programs running on a client and many
application programs on a server. When the client starts a socket call, a socket
connection is made between an application on the client and an application on the
server.

Another analogy used to describe socket communication is a telephone
conversation. Dialing a phone number from your telephone is similar to starting a
socket call. The telephone switching unit knows where to logically make the correct
switch to complete the call at the remote location. During your telephone
conversation, this connection is present and information is exchanged. After you
hang up, the connection is broken and you must start it again. The client uses the
socket() function call to start the logical switch mechanism to connect to the server.

Application
A

Application
A

Application
B

Application
B

Application
C

Application
C

Application
D

Application
D

Application
E

Application
E

Application
F

Application
F

System
Software

System
Software

TCP

I P

TCP

I P

Figure 110. An Electrical Analogy Showing the Socket Concept

Chapter 30. Network Communications under UNIX System Services 431

As with file access, user processes ask the operating system to create a socket
when one is needed. The system returns an integer, the socket descriptor (sd), that
the application uses every time it wants to refer to that socket. The main difference
between sockets and files is that the operating system binds file descriptors to a file
or device when the open() call creates the file descriptor. With sockets, application
programs can choose to either specify the destination each time they use the
socket—for example, when sending datagrams—or to bind the destination address
to the socket.

Sockets behave in some respects like UNIX files or devices, so they can be used
with such traditional operations as read() or write(). For example, after two
application programs create sockets and open a connection between them, one
program can use write() to send a stream of data, and the other can use read()
to receive it. Because each file or socket has a unique descriptor, the system knows
exactly where to send and to receive the data.

You can wait on a socket using the following asynchronous I/O functions:

v aio_read() - Asynchronous read from a socket

v aio_write() - Asynchronous write to a socket

v aio_cancel() - Cancel an asynchronous I/O request

v aio_suspend() - Wait for an asynchronous I/O request

v aio_error() - Retrieve error status for an asynchronous I/O operation

v aio_return() - Retrieve return status for an asynchronous I/O operation

You can suspend the invoking thread until a specified asynchronous I/O event,
timeout, or signal occurs. These functions are described in OS/390 C/C++
Run-Time Library Reference.

OS/390 UNIX Socket Families
In OS/390 UNIX, there are two socket families supported—UNIX Domain Sockets,
known as local sockets, which are part of the UNIX Address Family (AF_UNIX), and
Internet Protocol Sockets, which are part of the Internet Address Family (AF_INET).

AF_UNIX sockets provide communication between processes on a single system.
This socket family supports two types of sockets—stream and datagram sockets.
These socket types are described in the next section.

AF_INET sockets provide a means of communicating between application programs
that are on different systems using the Transport Control Protocol provided by a
TCP/IP product. This socket family supports both stream and datagram sockets.
Each of these socket types is described in the next section.

OS/390 UNIX Socket Types
The OS/390 UNIX socket API provides application programs with a network
interface that hides the details of the physical network. The socket API supports
both stream sockets and datagram sockets, each providing different services for
application programs. Stream and datagram sockets interface to the transport layer
protocols, UDP and TCP. You choose the appropriate interface for an application.

Stream Sockets
Stream sockets act like streams of information. There are no boundaries between
data, so communicating processes must agree on their own mechanism to
distinguish information. Usually, the process sending information sends the length of
the data, followed by the data itself. The process receiving information reads the

432 OS/390 V2R10.0 C/C++ Programming Guide

length and then loops, accepting data until all of it has been transferred. Stream
sockets guarantee delivery of the data in the order it was sent and without
duplication. The stream socket interface defines a reliable connection-oriented
service. Data is sent without errors or duplication and is received in the same order
as it is sent. Flow control is built in, to avoid data overruns. No boundaries are
imposed on the data; the data is considered to be a stream of bytes.

Stream sockets are more common, because the burden of transferring the data
reliably is handled by the system rather than by the application.

Datagram Sockets
The datagram socket interface defines a connectionless service. Datagrams are
sent as independent packets. The service provides no guarantees; data can be lost
or duplicated, and datagrams can arrive out of order. The size of a datagram is
limited to the size that can be sent in a single transaction. No disassembly and
reassembly of packets is performed.

Guidelines for Using Socket Types
This section describes criteria to help you choose the appropriate socket type for an
application program.

If you are communicating with an existing application program, you must use the
same protocols as the existing application program. For example, if you
communicate with an application that uses TCP, you must use stream sockets. For
other application programs, you should consider the following factors:

v Reliability. Stream sockets provide the most reliable connection. Datagram
sockets are unreliable, because packets can be discarded, corrupted, or
duplicated during transmission. This may be acceptable if the application
program does not require reliability, or if the application program implements the
reliability on top of the sockets interface. The trade-off is the increased
performance available with datagram sockets.

v Performance. The overhead associated with reliability, flow control, packet
reassembly, and connection maintenance degrade the performance of stream
sockets in comparison with datagram sockets.

v Data transfer. Datagram sockets impose a limit on the amount of data
transferred in a single transaction. If you send less than 2048 bytes at a time,
use datagram sockets. As the amount of data in a single transaction increases,
use stream sockets.

Addressing within Sockets
The following sections describe the different ways to address within the socket API.

Address Families
Address families define different styles of addressing. All hosts in the same address
family use the same scheme for addressing socket endpoints. OS/390 UNIX
supports two address families—AF_INET and AF_UNIX. The AF_INET address
family defines addressing in the IP domain. The AF_UNIX address family defines
addressing in the OS/390 UNIX domain. In the OS/390 UNIX domain, address
spaces can use the socket interface to communicate with other address spaces on
the same host.

Note: In this case, the OS/390 UNIX domain is used in much the same way as the
UNIX domain on other UNIX-type systems.

Chapter 30. Network Communications under UNIX System Services 433

Socket Address
A socket address is defined by the sockaddr structure in the sys/socket.h include
file. The structure has three fields, as shown in the following example:
struct sockaddr {

unsigned char sa_len;
unsigned char sa_family;
char sa_data[14]; /* variable length data */

};

The sa_len field contains the length of the sa_data field. The sa_family field
contains the address family. It is AF_INET for the Internet domain and AF_UNIX for
the UNIX domain. The sa_data field is different for each address family. Each
address family defines its own structure, which can be overlaid on the sockaddr
structure. See “Addressing within the AF_INET Domain” for more information about
the Internet domain and “Addressing within the AF_UNIX Domain” on page 435 for
more information about the UNIX domain.

Internet Addresses
Internet addresses are 32-bit quantities that represent a network interface. Every
Internet address within an administered AF_INET domain must be unique. On the
other hand, it is not necessary that every host have a unique Internet address; in
fact, a host has as many Internet addresses as it has network interfaces.

Ports
A port is used to distinguish between different application programs using the same
network interface. It is an additional qualifier used by the system software to get
data to the correct application program. Physically, a port is a 16-bit integer. Some
ports are reserved for particular application programs or protocols and are called
well-known ports.

Network Byte Order
Ports and addresses are usually specified to calls using the network byte ordering
convention. This convention is a method of sorting bytes under specific machine
architectures. There are two common methods:

v Big-endian byte ordering places the most significant byte first. This method is
used in Motorola 6 microprocessors.

v Little-endian byte ordering places the least significant byte first. This method is
used in Intel 7 microprocessors.

Using network byte ordering for data exchanged between hosts allows hosts using
different architectures to exchange address information. See references in figures
Figure 114 on page 441, Figure 115 on page 442, and Figure 117 on page 443 for
examples of using the htons() call to put ports into network byte order. For more
information about network byte order, see OS/390 C/C++ Run-Time Library
Reference.

Note: The socket interface does not handle application program data byte ordering
differences. Application program writers must handle byte order differences
themselves.

Addressing within the AF_INET Domain
A socket address in the Internet address family comprises five fields: the address
family (AF_INET), an Internet address, the length of that Internet address, a port,

6. Motorola is a trademark of Motorola Corporation.

7. Intel is a trademark of Intel Corporation.

434 OS/390 V2R10.0 C/C++ Programming Guide

and a character array. The structure of an Internet socket address is defined by the
following sockaddr_in structure, which is found in the netinet/in.h include file:
struct in_addr {

ip_addr_t s_addr;

struct sockaddr_in {
unsigned char sin_len;
unsigned char sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8];

};

The sin_len field is set to the length of the sin_addr field, which is the Internet
address of the network used by the application program. It is also in network byte
order.

The sin_family field is set to AF_INET. The sin_port field is the port used by the
application program, in network byte order. The sin_zero field should be set to all
zeros.

Addressing within the AF_UNIX Domain
A socket address in the AF_UNIX address family is comprised of three fields: the
address family (AF_UNIX), the length of the following pathname, and the pathname
itself. The structure of an AF_UNIX socket address is defined as follows:
struct sockaddr_un {

unsigned char sun_len;
unsigned char sun_family;
char sun_path[108]; /* pathname */

};

This structure is defined in the sockaddr_un structure found in sys/un.h include file.
The sun_family field is set to AF_UNIX; sun_path contains the null-terminated
pathname; and sun_len contains the length of the pathname.

The Conversation
The client and server exchange data using a number of functions. They can send
data using send(), sendto(), sendmsg(), write(), or writev(). They can receive
data using recv(), recvfrom(), recvmsg(), read(), or readv(). The following is an
example of the send() and recv() call:
send(s, addr_of_data, len_of_data, 0);
recv(s, addr_of_buffer, len_of_buffer, 0);

The send() and recv() function calls specify the sockets on which to communicate,
the address in memory of the buffer that contains, or will contain, the data
(addr_of_data, addr_of_buffer), the size of this buffer (len_of_data, len_of_buffer),
and a flag that tells how the data is to be sent. Using the flag 0 tells TCP/IP to
transfer the data normally. The server uses the socket that is returned from the
accept() call.

These functions return the amount of data that was either sent or received.
Because stream sockets send and receive information in streams of data, it can
take more than one call to send() or recv() to transfer all the data. It is up to the
client and server to agree on some mechanism of signaling that all the data has
been transferred.

Chapter 30. Network Communications under UNIX System Services 435

When the conversation is over, both the client and server call the close() function
to end the connection. The close() function also deallocates the socket, freeing its
space in the table of connections. To end a connection with a specific client, the
server closes the socket returned by accept(). If the server closes its original
socket, it can no longer accept new connections, but it can still converse with the
clients it is connected to. The following is an example of the close() call:
close(s);

The Server Perspective
Before the server can accept any connections with clients, it must register itself with
TCP/IP and “listen” for client requests on a specific port.

Allocation with socket()
The server must first allocate a socket. This socket provides an endpoint that clients
connect to.

A socket is actually an index into a table of connections, so socket numbers are
usually assigned in ascending order. In the C language, the programmer calls the
socket() function to allocate a new socket, as shown in the following example:
s = socket(AF_INET, SOCK_STREAM, 0);

The socket() function requires the address family (AF_INET), the type of socket
(SOCK_STREAM), and the particular networking protocol to use (when 0 is
specified, the system automatically uses the appropriate protocol for the specified
socket type). A new socket is allocated and returned.

bind()
At this point, an entry in the table of communications has been reserved for your
application program. However, the socket has no port or IP address associated with
it until you use the bind() function, which requires the following:

v The socket the server was just given

v The number of the port on which the server wishes to provide its service

v The IP address of the network connection on which the server is listening (to
understand what is meant by “listening”, see “listen()”)

In C language, the server puts the port number and IP address into a sockaddr_in
structure, passing it and the socket to the bind() function. For example:
bind(s, (struct sockaddr *)&server, sizeof(struct sockaddr_in));

listen()
After the bind, the server has specified a particular IP address and port. Now it
must notify the system that it intends to listen for connections on this socket. In C,
the listen() function puts the socket into passive open mode and allocates a
backlog queue of pending connections. In passive open mode, the socket is open
for clients to contact. For example:
listen(s, backlog_number);

The server gives the socket on which it will be listening and the number of requests
that can be queued (known as the backlog_number). If a connection request arrives
before the server can process it, the request is queued until the server is ready.

accept()
Up to this point, the server has allocated a socket, bound the socket to an IP
address and port, and issued a passive open. The next step is for the server
actually to establish a connection with a client. The accept() call blocks the server

436 OS/390 V2R10.0 C/C++ Programming Guide

until a connection request arrives, or, if there are connection requests in the backlog
queue, until a connection is established with the first client in the queue. The
following is an example of the accept() call:
client_sock = accept(s, &clientaddr, &addrlen);

The server passes its socket to the accept() call. When the connection is
established, the accept() call returns a new socket representing the connection
with the client. When the server wishes to communicate with the client or end the
connection, it uses this new socket, client_sock. The original socket s is now ready
to accept connections with other clients. The original socket is still allocated, bound,
and opened passively. To accept another connection, the server calls accept()
again. By repeatedly calling accept(), the server can establish almost any number
of connections at once.

select()
The server is now ready to start handling requests on this port from any client with
the server’s IP address and port number. Up to this point, it has been assumed that
the server will be handling only one socket. However, an application program is not
limited to one socket. Typically, a server listens for clients on a particular socket but
allocates a new socket for each client it handles. For maximum performance, a
server should operate only on those sockets that are ready for communication. The
select() call allows an application program to test for activity on a group of
sockets.

Note: The select() function can also be used with other descriptors, such as file
descriptors, pipes, or character special files.

To allow you to test any number of sockets with just a single call to select(), place
the sockets to test into a bit set, passing the bit set to the select() call. A bit set is
a string of bits where each possible member of the set is represented by a 0 or a 1.
If the member’s bit is 0, the member is not in the set. If the member’s bit is 1, the
member is in the set. Sockets are actually small integers. If socket 3 is a member
of a bit set, then the bit that represents it is set to 1 (on).

In C, the functions to manipulate the bit sets are the following:

FD_SET Sets the bit corresponding to a socket

FD_ISSET Tests whether the bit corresponding to a socket is set or cleared

FD_ZERO Clears the whole bit set

FD_CLR Clears a bit within the bit set

To be active, a socket is ready for reading data or for writing data, or an exceptional
condition may have occurred. Therefore, the server can specify three bit sets of
sockets in its call to the select() function: one bit set for sockets on which to
receive data; another for sockets on which to write data; and any sockets with
exception conditions. The select() call tests each socket in each bit set for activity
and returns only those sockets that are active.

A server that processes many clients at the same time can easily be written so that
it processes only those clients that are ready for activity.

The Client Perspective
The client first issues the socket() function call to allocate a socket on which to
communicate:

Chapter 30. Network Communications under UNIX System Services 437

s = socket(AF_INET, SOCK_STREAM, 0);

To connect to the server, the client places the port number and the IP address of
the server into a sockaddr_in structure. If the client does not know the server’s IP
address, but does know the server’s host name, the gethostbyname() function is
called to translate the host name into its IP address. The client then calls
connect(). The following is an example of the connect() call:
connect(s, (struct sockaddr *)&server, sizeof(struct sockaddr_in));

When the connection is established, the client uses its socket to communicate with
the server.

A Typical TCP Socket Session
You can use TCP sockets for both passive (server) and active (client) processes.
Whereas some functions are necessary for both types, some are role-specific. After
you make a connection, it exists until one of the following has occurred:

v The socket is closed by client or server

v A shutdown is performed by client or server for both read and write

v The socket is unconnected using a blank sockaddr structure with another
connect() call to the socket

During the connection, data is either delivered or an error code is returned by
TCP/IP.

See Figure 111 on page 439 for the general sequence of calls to be followed for
most socket routines using TCP, or stream sockets.

438 OS/390 V2R10.0 C/C++ Programming Guide

A Typical UDP Socket Session
User Datagram Protocol (UDP) socket processes, unlike TCP socket processes, are
not clearly distinguished by server and client roles. The distinction is between
connected and unconnected sockets. An unconnected socket can be used to
communicate with any host; but a connected socket, because it has a dedicated
destination, can send data to, and receive data from, only one host.

Both connected and unconnected sockets send their data over the network without
verification. Consequently, after a packet has been accepted by the UDP interface,
the arrival and integrity of the packet cannot be guaranteed.

See Figure 112 for the general sequence of calls to be followed for most socket
routines using UDP, or datagram, sockets.

Create a stream socket with the
call.

s
socket()

Create a stream socket with the
call.socket()

s

Client Server

Connect socket to a foreign host with the
call.connect()

s

Close socket and end the TCP/IP session
with the call.close()

s Close socket with the call.close()s

Accept another connection form a client,
or close the orginal socket with the

call.close()
s

Read and write data on socket
using the and calls,
until all the data has been exchanged.

send() recv()
s

For the server, socket remains available
to accept new connections. Socket
is dedicated to the client.

ns
s

Bind socket to a local address with the
call.bind()

s

With the call, alert the TCP/IP
machine of your willingness to accept
connections.

listen()

Accept the connection and receive a second
socket-for example, with the

call.
ns

accept()

Read and write data on socket
using the and calls,
until all the data has been exchanged.

ns
send() recv()

(Optional)
Bind socket to a local address with the

call.
s

bind()

Figure 111. A Typical Stream Socket Session

Chapter 30. Network Communications under UNIX System Services 439

A Typical Datagram Socket Session

Locating the Server’s Port
In the client/server model, the server provides a resource by listening for clients on
a particular port. Such application programs as FTP, SMTP, and Telnet listen on a
well-known port—a port assigned for use to a specific application program or
protocol. However, for your own client/server application programs, you need a
method of assigning port numbers to represent the services you intend to provide.
An easy method of defining services and their ports is to enter them into the
/etc/services file or the tcpip.ETC.SERVICES data set. In C, the programmer uses
the getservbyname() function to determine the port for a particular service. If the
port number for a particular service changes, only the /etc/services file or the
tcpip.ETC.SERVICES data set must be modified.

Note: TCP/IP is shipped with a tcpip.ETC.SERVICES file containing such
well-known services as FTP, SMTP, and Telnet.

Network Application Example
The following example illustrates using socket functions in a network application
program. The steps are written using many of the basic socket functions, C socket
syntax, and conventions described in this book.

Client Server

Create a datagram socket
with the call.

s
socket()

Create a datagram socket
with the call.

s
socket()

Bind socket to a local address with the
call.bind()

s Bind socket to a local address with the
call.bind()

s

Close socket and end the session
with the call.close()

s Close socket and end the session
with the call.close()

s

(Optional)
Connect socket using the
call to associate with the server address.

connect()s
s

(Optional)
Connect socket using the
call to associate with the server address.

connect()s
s

Send and receive data on socket ,
using the and calls,
until all the data has been exchanged.
Use the and calls if
was called.

s
sendto() recvfrom()

send() recv() connect()

Send and receive data on socket ,
using the and calls,
until all the data has been exchanged.
Use the and calls if
was called.

s
sendto() recvfrom()

send() recv() connect()

Figure 112. A Typical Datagram Socket Session

440 OS/390 V2R10.0 C/C++ Programming Guide

1. First, an application program must get a socket descriptor using the socket()
call, as in the example listed in Figure 113. For a complete description, see
OS/390 C/C++ Run-Time Library Reference

The code fragment in Figure 113 allocates a socket descriptor s in the Internet
address family. The domain parameter is a constant that specifies the domain
where the communication is taking place. A domain is the collection of
application programs using the same addressing convention. OS/390 UNIX
supports two domains: AF_INET and AF_UNIX. The type parameter is a
constant that specifies the type of socket, which can be SOCK_STREAM, or
SOCK_DGRAM.

The protocol parameter is a constant that specifies the protocol to use. For
AF_INET, it can be set to IPPROTO_UDP for SOCK_DGRAM and
IPPROTO_TCP for SOCK_STREAM. Passing 0 chooses the default protocol. If
successful, the socket() call returns a positive integer socket descriptor. For
AF_UNIX, the protocol parameter must be 0. These values are defined in the
netinet/in.h include file.

2. After an application program has a socket descriptor, it can explicitly bind a
unique address to the socket, as in the example listed in Figure 114. For a
complete description, see OS/390 C/C++ Run-Time Library Reference.

This example binds socket descriptor s to the address 129.5.24.1 and port
1024 in the Internet domain. Servers must bind to an address and port to
become accessible to the network. The example in Figure 114 shows two
useful utility routines:

v inet_addr() takes an Internet address in dotted-decimal form and returns it
in network byte order. For a complete description, see OS/390 C/C++
Run-Time Library Reference

#include <sys/socket.h>...
int s;...
s = socket(AF_INET, SOCK_STREAM, 0);

Figure 113. An Application Using socket()

int bind(int s, struct sockaddr *name, int namelen);...
int rc;
int s;
struct sockaddr_in myname;

/* clear the structure to be sure that the sin_zero field is clear */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr = inet_addr("129.5.24.1");

/* specific interface */
myname.sin_port = htons(1024);...
rc = bind(s, (struct sockaddr *) &myname,

sizeof(myname));

Figure 114. An Application Using bind()

Chapter 30. Network Communications under UNIX System Services 441

v htons() takes a port number in host byte order and returns the port in
network byte order. For a complete description, see OS/390 C/C++
Run-Time Library Reference.

Figure 115 shows another example of the bind() call. It uses the utility routine
gethostbyname() to find the Internet address of the host, rather than using
inet_addr() with a specific address.

3. After binding to a socket, a server that uses stream sockets must indicate its
readiness to accept connections from clients. The server does this with the
listen() call, as illustrated in the example in Figure 116.

The listen() call tells the TCP/IP address space that the server is ready to
begin accepting connections, and that a maximum of five connection requests
can be queued for the server. Additional requests are ignored. For a complete
description, see OS/390 C/C++ Run-Time Library Reference.

4. Clients using stream sockets begin a connection request by calling connect(),
as shown in the following example.

int bind(int s, struct sockaddr_in name, int namelen);...
int rc;
int s;
char *hostname = "myhost";
struct sockaddr_in myname;
struct hostent *hp;

hp = gethostbyname(hostname);

/*clear the structure to be sure that
the sin_zero field is clear*/

memset(&myname,0,sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = *((ip_addr_t

*)hp->h_addr);
myname.sin_port = htons(1024);...

rc = bind(s,(struct
sockaddr *) &myname, sizeof(myname));

Figure 115. A bind() Function Using gethostbyname()

int listen(int s, int backlog);...
int s;
int rc;...
rc = listen(s, 5);

Figure 116. An Application Using listen()

442 OS/390 V2R10.0 C/C++ Programming Guide

The connect() call attempts to connect socket descriptor s to the server with
an address servername. This could be the server that was used in the previous
bind() example. The caller optionally blocks, until the connection is accepted
by the server. After a successful return, the socket descriptor s is associated
with the connection to the server. For a complete description, see OS/390
C/C++ Run-Time Library Reference.

5. Servers using stream sockets accept a connection request with the accept()
call, as shown in the example listed in Figure 118.

If connection requests are not pending on socket descriptor s, the accept()
call optionally blocks the server. When a connection request is accepted on
socket descriptor s, the name of the client and length of the client name are
returned, along with a new socket descriptor. The new socket descriptor is
associated with the client that began the connection, and s is again available
to accept new connections. For a complete description, see OS/390 C/C++
Run-Time Library Reference.

6. Clients and servers have many calls from which to choose for data transfer.
The read() and write(), readv() and writev(), and send() and recv() calls
can be used only on sockets that are in the connected state. The sendto()
and recvfrom(), and sendmsg() and recvmsg() calls can be used at any time
on datagram sockets. The example listed in Figure 119 on page 444 illustrates
the use of send() and recv().

int connect(int s, struct sockaddr *name, int namelen);...
int s;
struct sockaddr_in servername;
int rc;...
memset(&servername, 0,sizeof(servername));
servername.sin_family = AF_INET;
servername.sin_addr = inet_addr("129.5.24.1");
servername.sin_port = htons(1024);...
rc = connect(s, (struct sockaddr *) &servername,
sizeof(servername));

Figure 117. An Application Using connect()

int accept(int s, struct sockaddr *addr, int *addrlen);...
int clientsocket;
int s;
struct sockaddr clientaddress;
int addrlen;...
addrlen = sizeof(clientaddress);...
clientsocket = accept(s, &clientaddress, &addrlen);

Figure 118. An Application Using accept()

Chapter 30. Network Communications under UNIX System Services 443

The example in Figure 119 shows an application program sending data on a
connected socket and receiving data in response. The flags field can be used
to specify additional options to send() or recv(), such as sending out-of-band
data. For more information see OS/390 C/C++ Run-Time Library Reference.

7. If the socket is not in a connected state, additional address information must
be passed to sendto() and can be optionally returned from recvfrom(). An
example of the use of the sendto() and recvfrom()calls is listed in Figure 120.

The sendto() and recvfrom() calls take additional parameters that allow the
caller to specify the recipient of the data or to be notified of the sender of the
data. For more information see OS/390 C/C++ Run-Time Library Reference.
Usually, sendto() and recvfrom() are used for datagram sockets, and send()
and recv() are used for stream sockets.

8. The writev(), readv(), sendmsg(), and recvmsg() calls provide the additional
features of scatter and gather data—two related operations where data is

int send(int socket, char *buf, int buflen, int flags);
int recv(int socket, char *buf, int buflen, int flags);...
int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
int s;...
bytes_sent = send(s, data_sent,
sizeof(data_sent), 0);...
bytes_received = recv(s,
data_received, sizeof(data_received), 0);

Figure 119. An Application Using send() and recv()

int sendto(int socket, char *buf, int buflen, int flags,
struct sockaddr *addr, int addrlen);

int recvfrom(int socket, char *buf, int buflen, int flags,
struct sockaddr *addr, int *addrlen);...

int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
struct sockaddr_in to;
struct sockaddr from;
int addrlen;
int s;...
memset(&to, 0, sizeof(to));
to.sin_family = AF_INET;
to.sin_addr = inet_addr("129.5.24.1");
to.sin_port = htons(1024);...
bytes_sent = sendto(s, data_sent,
sizeof(data_sent), 0, &to, sizeof(to));...
addrlen = sizeof(from); /* must be initialized */
bytes_received = recvfrom(s, data_received,

sizeof(data_received), 0, &from, &addrlen);

Figure 120. An Application Using sendto() and recvfrom()

444 OS/390 V2R10.0 C/C++ Programming Guide

received and stored in multiple buffers (scatter data), and then taken from
multiple buffers and transmitted (gather data). Scattered data can reside in
multiple data buffers. The writev() and sendmsg() calls gather the scattered
data and send it. The readv() and recvmsg() calls receive data and scatter it
into multiple buffers.

9. Applications can handle multiple descriptors. In such situations, use the
select() call to determine the descriptors that have data to be read, those that
are ready for data to be written, and those that have pending exceptional
conditions. An example of how the select() call is used is listed in Figure 121.

In this example, the application program uses bit sets to indicate that the
sockets are being tested for certain conditions and also indicates a timeout. If
the timeout parameter is NULL, the select() call blocks until a socket
becomes ready. If the timeout parameter is nonzero, select() waits up to this
amount of time for at least one socket to become ready on the indicated
conditions. This is useful for application programs servicing multiple
connections that cannot afford to block, waiting for data on one connection.
For a complete description, see OS/390 C/C++ Run-Time Library Reference.

10. In addition to select(), application programs can use the ioctl() or fcntl()
calls to help perform asynchronous (nonblocking) socket operations. An
example of the use of the ioctl() call is listed in Figure 122 on page 446.

fd_set readsocks;
fd_set writesocks;
fd_set exceptsocks;
struct timeval timeout;
int number_of_sockets;
int number_found;...
/* number_of_sockets previously set to the socket number of largest
* integer value.
* Clear masks out.
*/
FD_ZERO(readsocks);; FD_ZERO(&writesocks); FD_ZERO(&exceptsocks);
/* Set masks for socket s only */
FD_SET(s, &readsocks)
FD_SET(s, &writesocks)
FD_SET(s, &exceptsocks)...
/* go into select wait for 5 minutes waiting for socket s to become
ready or the timer has popped*/
rc = select(number_of_sockets+1,

&readsocks, &writesocks, &exceptsocks, &timeout);...
/* Check rc for condition set upon exiting select */
number_found = select(number_of_sockets,

&readsocks, &writesocks, &exceptsocks, &timeout);

Figure 121. An Application Using select()

Chapter 30. Network Communications under UNIX System Services 445

This example causes the socket descriptor s to be placed into nonblocking
mode. When this socket is passed as a parameter to calls that would block,
such as recv() when data is not present, it causes the call to return with an
error code, and the global errno value is set to EWOULDBLOCK. Setting the mode
of the socket to be nonblocking allows an application program to continue
processing without becoming blocked. For a complete description, see OS/390
C/C++ Run-Time Library Reference.

11. A socket descriptor, s, is deallocated with the close() call. (For a complete
description, see OS/390 C/C++ Run-Time Library Reference. An example of
close() is shown next.

Using Common INET
With Common INET (CINET), you have the capability to define up to 32 AF_INET
stacks or transport providers. The stacks can all be active at the same time. The
information for modifying BPXPRMxx and bringing up Common INET is in OS/390
UNIX System Services Planning.

For a server that you want to be able to listen to all of the available stacks at the
same time, specify INADDR_ANY and it will be listening to all at once.

The OS/390 UNIX Common INET layer performs a multiplexing/demultiplexing
function when more than one AF_INET stack is activated under OS/390 UNIX. Each
stack has its own home IP addresses and when a program binds to a specific IP
address that socket becomes associated with the one stack that is that IP address.
When a program binds to INADDR_ANY, 0.0.0.0, the socket remains available to all
the stacks.

There are three ways that an INADDR_ANY program can associate itself with a single
stack:

int ioctl(int s, unsigned long command, char *command_data);...
int s;
int dontblock;
char buf[256];
int rc;...
dontblock = 1;...
rc = ioctl(s, FIONBIO, (char *) &dontblock);...
if (((rc=recv(s, buf, sizeof(buf),
0)) < 0)&&(errno == EWOULDBLOCK))

/* no data available */
else

/* either got data or some other error occurred */

Figure 122. An Application Using ioctl()

int close(int s);...
int rc;
int s;
rc = close(s);

Figure 123. An Application Using close()

446 OS/390 V2R10.0 C/C++ Programming Guide

v Call setibmopt(IBMTCP_IMAGE) - This sets a process so all future socket() calls
create sockets with only the one specified stack.

v The _BPXK_SETIBMOPT_TRANSPORT environment variable can be used in the PARM=
parameter of an MVS started proc to effectively issue a SETIBMOPT outside of the
program.

v Call ioctl(SIOCSETRTTD) - This associates an existing socket with the one
specified stack, removing the others.

Also, you should be able to set up things so gethostbyname() returns the home IP
address of the local TCP/IP you are interested. With that, you can issue a specific
bind() to that IP address. This may not be useful though, if that stack has multiple
IP addresses and you really want to use INADDR_ANY to service all of them.

Compiling and Binding
This section describes how to bind, load, and run OS/390 C programs containing
OS/390 UNIX sockets. This information is specific to the OS/390 UNIX application
program interface and assumes that you are familiar with the information on
compiling and binding OS/390 UNIX application programs in OS/390 C/C++
Programming Guide and OS/390 Language Environment Programming Guide.

You compile and bind your sockets application program in the same way as for any
other C language program. The process is shown conceptually in Figure 124 on
page 448. You must make sure that the OS/390 UNIX socket application programs
have access to the files they need to compile and bind.

Chapter 30. Network Communications under UNIX System Services 447

As shown, whether an application program’s I/O request is targeted at the network
(TCP/IP) or at a file, the OS/390 UNIX logical file system (LFS) will route the
request to the appropriate physical file system (PFS).

If your C language statements contain information, such as sequence numbers,
which are not part of the input for the OS/390 C compiler, you must include the
following environmental statement in your program:
#pragma margins(1,72)

Notes:

1. These functions were first made available in the C/C++ for MVS/ESA Library V3
(5655-121) and the Language Environment for MVS & VM Library V1R5M0
(5688-198). In order to compile and bind your program, you must at least have
the C/C++ for MVS/ESA Library V3 (5655-121) and the Language Environment
for MVS & VM Library V1R5M0 (5688-198) available or a subsequent release.

2. In order to use AF_INET sockets, you must have release 3.1 or a later level of
TCP/IP installed on your system.

3. The term data set prefix is used in a later section. It refers to the high-level
qualifier of your data sets. For example, in CEE.SCEELKED, the data set prefix is
CEE.

OpenEdition Kernel

LFS

PFS PFS. . .

HFS

TCP/IP (AF_INET)

headers library
(SEDCDHDR, SFOMHDRS)

linkedit library
(SCEELKED)

dynamic runtime libraries
(SCEERUN)

compile
C Application Source

Application Object

Executable Application

Socket Runtime Library run

(AF_UNIX)

file and socket
descriptor assignments

LFS=Logical File System PFS=Physical File SystemHFS=Hierarchical File System

(or prelink and link)

bind

object library
(SCEELKEX)

Figure 124. A Conceptual Overview of the Compile, Bind, and Run Steps

448 OS/390 V2R10.0 C/C++ Programming Guide

4. If your application program uses the remote procedure call (RPC) libraries, you
must use either Berkeley Sockets or X/Open Sockets instead of Open
Sockets. Open Sockets do not work with this RPC for the latest announced
release level of TCP/IP.

Using TCP/IP APIs
If you will be using the TCP/IP socket API, also called non-Berkeley sockets, you
will need to read and understand this section.

When an OS/390 UNIX C/C++ application program you are developing needs to
communicate with another program that is running simultaneously, it needs to
exploit, from within itself, both OS/390 UNIX POSIX.1 and one or more of the
following application programming interfaces (APIs) provided with the IBM product
TCP/IP:

v Socket APIs

– C sockets

– Inter-User Communication Vehicle (IUCV) sockets

v X Window System 8 interface

v remote procedure call (RPC)

With the exception of described restrictions, you can code an OS/390 UNIX C/C++
application program to take advantage of the documented APIs available as part of
the TCP/IP for MVS program product.

An OS/390 UNIX application program can use socket API calls from the TCP/IP
product to access HFS files or MVS data sets, communicate with other systems
running TCP/IP, or establish communication with and request services from a
workstation system acting as an X Windows server.

Note: For HFS file access to TCP/IP, the TCP/IP socket API calls must be used
instead of the POSIX file access functions to preserve the uniqueness of file
descriptors in the hierarchical file system (HFS).

Before you attempt to code your application program to use TCP/IP APIs, you
should understand the X Windows protocol running on the workstations that will be
used as application clients. You will also need to know how to invoke X Windows to
create a connection to the server on the workstation or OS/390 system.

Restrictions for Using MVS TCP/IP API with OS/390 UNIX
The restrictions can be grouped into categories:

v Header Files

– TCP/IP header file sequence numbers. The OS/390 UNIX c89 utility cannot
compile OS/390 C/C++ programs in which API functions from the TCP/IP for
OS/390 product are coded, because the OS/390 C/C++ compiler interprets
the sequence numbers in TCP/IP header files as valid data.

You can circumvent this problem by copying the MVS data set members for
the header files into a new data set and editing them to strip out the sequence
numbers. To have these new header files searched, specify the c89 -I option
to identify the search path for the header files.

8. X Windows is a trademark of Massachusetts Institute of Technology.

Chapter 30. Network Communications under UNIX System Services 449

Note: You can run into maintenance problems with the TCP/IP header files
when you copy them and strip out the sequence numbers. You must
ensure that you always have the current level of the header files.

– Header file conflicts between TCP/IP and OS/390 C/C++. OS/390 C/C++ and
TCP/IP have header files with the same name and overlapping function. For
example, both have a types.h file. If you use TCP/IP API functions in your
application but the OS/390 C/C++ header file is searched for and used, the
TCP/IP function does not work as intended.

You can circumvent this problem by developing your application program with
separate compilation source files for TCP/IP function and normal OS/390
C/C++ function. You can then compile the TCP/IP source files separately from
the normal OS/390 C/C++ source files. Use the c89 -I option to point to the
MVS data sets to search for the TCP/IP header files. Finally, you can bind all
the application object files together to produce the application executable file.
For the bind step, use the c89 -l option to point to the correct TCP/IP
libraries on MVS. For example:
c89 -I "//'tcpip.sezacmac'" pgm.c -l "//'tcpip.sezarnt1'" ...

v TCP/IP Socket API. Both OS/390 UNIX POSIX.1-defined support and the
TCP/IP for OS/390 socket API use a small subset of common function calls that
cannot be resolved correctly between them:

– close()

– fcntl()

– read()

– write()

Use of these calls should be reserved for one or the other, but not both, of these
programming interfaces. For example, if an OS/390 UNIX C/C++ application
program is written to use the open(), close(), read(), and write() functions for
OS/390 TCP/IP socket communication, it cannot use them for HFS file access.
OS/390 C/C++ stream I/O functions (fopen(), fclose(), fread(), and fwrite())
must be used for HFS file access.

v Creating Child Processes. Generally speaking, an application program cannot
have a parent process open resources—in this case sockets—and then support
those resources for a child process created through a fork() function or in a
process following use of an exec function. The new child process does not inherit
sockets from the parent process if forked. If the child process needs sockets, it
must request TCP/IP for OS/390 socket support independently of the parent
process. In fact, if a child process is to be forked by an OS/390 UNIX application
program using TCP/IP sockets, all MVS resources to be opened should be
opened by the child process rather than by the parent process.

v TCP/IP Configuration File Access. An OS/390 UNIX application executable file
that uses TCP/IP APIs and was bound with the c89 utility cannot locate the
necessary TCP/IP configuration files, because they reside in MVS sequential
data sets rather than in HFS files.

To circumvent this problem, have the system programmer copy the TCP/IP
configuration data sets into the HFS root directory exactly as shown:

OPUT 'tcpip.tcpip.data' 'etc/resolv.conf' text

Copy the address of the name server, the name, and the domain name from
tcpip.HOST.LOCAL to \etc\hosts. You should not copy the entire file directly
because you only need the address and name. The entry in the \etc\hosts file
follows the BSD format. The case of the filenames and the use of the quote
characters as part of the name are significant. Use the TSO/E OPUT command to

450 OS/390 V2R10.0 C/C++ Programming Guide

copy the MVS sequential data sets to the HFS root directory. (Placing files in the
root file system requires superuser authority.)

v Program Reentrancy.The TCP/IP sockets and X Windows reentrant libraries
must have a special C370LIB-directory member created for them before an
application program using TCP/IP functions can be bound. The system
administrator must run the C370LIB DIR function against the reentrant libraries to
create it. The system administrator must do this once per library for an MVS
system.

Specify the TCP/IP libraries to search on the c89 utility when binding the
application program. For example:
c89 -I"//'tcpip.sezacmac'" pgm.c -l "//'tcpip.sezarnt1'" ...

For information on C370LIB, see OS/390 C/C++ User’s Guide.

Using OS/390 UNIX Sockets
The following list describes the files that each OS/390 UNIX socket application
program must have access to in order to compile:

v List of OS/390 C include files:
In an MVS PDS or in the HFS directory
CEE.SCEEH.H /usr/include
CEE.SCEEH.ARPA.H /usr/include/arpa
CEE.SCEEH.NET.H /usr/include/net
CEE.SCEEH.NETINET.H /usr/include/netinet
CEE.SCEEH.SYS.H /usr/include/sys

— which contains all the C include files required by the OS/390 UNIX socket API,
as well as the OS/390 C include files.

Note: The data set prefix for each of the previous files must match the name
used at your installation. CEE is the default for OS/390 Language
Environment.

v For Open Sockets using HOT1120, both EDC.V1R2M0.SEDCDHDR and
SYS1.SFOMHDRS together contain all the C include files required by this socket
API, as well as the OS/390 C include files.

v For Open Sockets using HOT1130, you need SYS1.SFOMHDRS which contains
all the C include files required by this socket API, as well as the OS/390 C
include files. You must compile your application program using both include files
in order to access the entire OS/390 UNIX socket API.

For Berkeley SOCKETS or X/OPEN SOCKETS, all you need are the OS/390 C
include files.

Note: The data set prefix for each of these files must match the name used at your
installation. CEE is the default for the OS/390 C library, and SYS1 is the default
for the Open Sockets library.

You must compile your application program using all include files in order to access
the entire OS/390 UNIX socket API. To compile a program written using a particular
API, you must include certain files specific to that API even though your program
may not require all of them.

See OS/390 C/C++ Run-Time Library Reference. It lists the header files that must
be included for each type API. They may be different for Open Sockets, Berkeley
Sockets, and X/Open Sockets.

Chapter 30. Network Communications under UNIX System Services 451

The following list describes the files that each OS/390 UNIX socket application
program must have access to in order to bind:

v CEE.SCEELKED contains stub routines in the link library that are used to resolve
external references to OS/390 C and OS/390 UNIX socket APIs.

v CEE.SCEELKEX contains LONGNAME stub routine object modules for a large
portion of the Language Environment function library, including the OS/390 C and
OS/390 UNIX socket APIs. When you IPA Link your application program, place
the SCEELKEX library ahead of the SCEELKED Load Module library in the
search order. This preserves long run-time function names in the object module
and listings generated by IPA Link. When you bind your application program,
place the SCEELKEX library ahead of the SCEELKED Load Module library in the
search order. This preserves long run-time function names in the executable
module and listings generated by the binder.

v CEE.SCEERUN contains the OS/390 C and OS/390 UNIX socket run-time
libraries.

Compiling under MVS Batch for Berkeley Sockets
You can use several methods to compile, bind, and run your sockets program. This
section describes one way to compile and bind your C source program, under MVS
batch, using then IBM-supplied EDCCB cataloged procedure.

Note: If you are planning on developing your application as a C++ application and
use sockets, you must use XOpen Sockets for your application. See section
“Compiling under MVS Batch for X/Open Sockets” on page 453 for more
information.

Sample EDCC Cataloged Procedure Additions and Changes
The following steps describe how to compile, and bind your program.

You must make the following changes to the EDCC cataloged procedure, which is
supplied with OS/390 C/C++ Compiler.

1. Change the CPARM parameters to:
CPARM='DEF(MVS,_OE_SOCKETS,_POSIX1_SOURCE=1),RENT,LO',

RENT is the reentrant option and LO is the long name option. You must specify
these options to use POSIX functions read(), write(), fcntl(), and close()
that are all included in OS/390 C.

You must specify the feature test macro, _POSIX1_SOURCE=1 to access the
read(), write(), fcntl(), and close() functions in the OS/390 C include files.
Or, if you choose to access all OS/390 UNIX POSIX functions supported by
OS/390 C, you can specify the _OPEN_SYS feature test macro. The
_OE_Sockets feature test macro exposes the socket-related definitions in all of
the include files. For information on binding C code compiled with the RENT
and LO options, see OS/390 C/C++ User’s Guide.

2. To run your program under TSO/E, type the following:
C ALL 'USER.MYPROG.LOAD(PROGRAM1)' 'POSIX(ON)/'

This loads the run-time library from CEE.SCEERUN.

To use the POSIX OS/390 C functions, you must either specify the run-time
option POSIX(ON), or include the following statement in your C source program:
#pragma runopts(POSIX(ON))

452 OS/390 V2R10.0 C/C++ Programming Guide

The OS/390 C/C++ Run-Time Library Reference identifies the POSIX OS/390 C
functions, in the standards information at the beginning of each function description.

Compiling under MVS Batch with X Windows for Berkeley
Sockets
If you are using OS/390 UNIX sockets with the latest announced release level of
TCP/IP X Windows, and compiling and binding under MVS batch, you must do the
following:

v Bind your application program with the latest announced release level of TCP/IP
X Windows libraries that are enabled for use with OS/390 UNIX sockets.

For a complete discussion of compiling and binding OS/390 UNIX sockets with
TCP/IP, see TCP/IP for MVS: Programmer’s Reference.

Compiling Using the c89 Utility for Berkeley Sockets
If you want to use the c89 utility to compile and bind your program, you must use
the following define options on the c89 command:
-D MVS
-D _OE_SOCKETS

For more information about compiling and binding, see OS/390 C/C++ User’s
Guide.

Compiling Using c89 with X Windows
For IBM TCP/IP version 3 release 1, and for MVS and subsequent releases, see
TCP/IP Version 3 for OpenEdition MVS: Applications Feature Guide for a complete
discussion of compiling and binding with X Windows.

Compiling under MVS Batch for X/Open Sockets
You can use several methods to compile, bind, and run your sockets program. This
section describes one way to compile and link-edit your C source program, under
MVS batch, using IBM-supplied EDCCB cataloged procedure.

Sample EDCC Cataloged Procedure Additions and Changes
The following steps describe how to compile, bind , and run your program.

You must make the following changes to the EDCCB cataloged procedure, which is
supplied with OS/390 C/C++ Compiler.

1. Change the CPARM parameters to:
CPARM='DEF(MVS,_XOPEN_SOURCE_EXTENDED=1,_POSIX1_SOURCE=1),
RENT,LO',

RENT is the reentrant option and LO is the long name option. You must specify
these options to use POSIX functions read(), write(), fcntl(), and close()
that are all included in OS/390 C.

You must specify the feature test macro, _POSIX1_SOURCE=1 to access the
read(), write(), fcntl(), and close() functions in the OS/390 C include files.
Or, if you choose to access all OS/390 UNIX POSIX functions supported by
OS/390 C, you can specify the _OPEN_SYS feature test macro. The
_XOPEN_SOURCE_EXTENDED feature test macro exposes the socket-related
definitions in all of the include files.

Note: Because you are now required to compile with the RENT and LONGNAME
options, you must bind your sockets application with the OS/390 binder.

2. To run your program under TSO/E, type the following:

Chapter 30. Network Communications under UNIX System Services 453

CALL 'USER.MYPROG.LOAD(PROGRAM1)' 'POSIX(ON)/'

To use the POSIX OS/390 C functions, you must either specify the run-time
option POSIX(ON), or include the following statement in your C source program:
#pragma runopts(POSIX(ON))

Using API Data Sets and Files for Open Sockets
Applications developed for Open Sockets can continue to use the link-editor but
cannot be compiled.

v CEE.SCEELKED contains stub routines in the link library that are used to resolve
external references to OS/390 C and OS/390 UNIX socket APIs.

v CEE.SCEELKEX contains LONGNAME stub routine object modules for a large
portion of the Language Environment function library, including the OS/390 C and
OS/390 UNIX socket APIs. When you IPA Link your application program, place
the SCEELKEX library ahead of the SCEELKED Load Module library in the
search order. This preserves long run-time function names in the object module
and listings generated by IPA Link. When you bind your application program,
place the SCEELKEX library ahead of the SCEELKED Load Module library in the
search order. This preserves long run-time function names in the executable
module and listings generated by the binder.

v CEE.SCEERUN contains the OS/390 C and OS/390 UNIX socket run-time
libraries.

Note: The data set prefix for each the previous files must match the name used
at your installation. CEE is the default for OS/390 Language Environment.

Understanding The X/Open Transport Interface (XTI)
The X/Open Transport Interface (XTI) specification defines an independent
transport-service interface that allows multiple users to communicate at the
transport level of the OSI reference model. Transport-layer protocols support the
following characteristics:

v connection establishment

v state change support

v event handling

v data transfer

v option manipulation

Although all transport-layer protocols support these characteristics, they vary in their
level of support and their interpretation of format.

In the next section we will discuss the TCP transport provider, since it is the only
one currently supported.

Transport endpoints
A transport endpoint specifies a communication path between a transport user
and a specific transport provider, which is identified by a local file descriptor (fd).
When a user opens a transport endpoint, a local file descriptor fd is returned which
identifies the endpoint. A transport provider is defined to be the transport protocol
that provides the services of the transport layer. All requests to the transport
provider must pass through a transport endpoint. The file descriptor fd is returned
by the function t_open() and is used as an argument to the subsequent functions to
identify the transport endpoint. A transport endpoint can support only one
established transport connection at a time.

454 OS/390 V2R10.0 C/C++ Programming Guide

To be active, a transport endpoint must have a transport address associated with it
by the t_bind() function. A transport connection is characterized by the association
of two active endpoints, made by using the transport connection establishment
functions t_listen(), t_accept(), t_connect(), and t_rcvconnect().

Transport providers for X/Open Transport Interface
The transport layer may comprise one or more transport providers at the same
time. The identifier parameter of the transport provider passed to the t_open()
function determines the required transport provider. To keep the applications
portable, the identifier parameter of the transport provider should not be hard-coded
into the application source code.

Currently, the only valid value for the identifier parameter for the t_open() function
is /dev/tcp, indicating the TCP transport provider. Even though no device with this
pathname actually exists, the library uses this value to determine which transport
provider to use.

General Restrictions for OS/390 UNIX
The following restrictions apply when you use XTI under OS/390 UNIX.

v If an endpoint is being shared among multiple processes, events such as,
T_LISTEN, T_DATA, and T_EXDATA, can be consumed by another process in the
time between calls to t_look() and t_rcv() or t_accept(). In order to avoid
processes not being aware of events occurring on endpoints, you should provide
explicit synchronization mechanisms between processes

v If an endpoint is shared:

– The process that issues the t_listen() should also issue for the pending
connection t_accept().

– If any other process accesses the endpoint in the time between the listen and
the accept, the behavior is undefined. In order to avoid this, you should
provide explicit synchronization between processes.

v If a process dies while an endpoint it was accessing is in T_INCON state, it is
impossible for any other sharing endpoints to bring it out of that state.

v If access to endpoints is shared, the participating processes are responsible for
serialization of access to the endpoints. If no synchronization is performed, the
behavior is undefined.

v Functions are thread-safed; therefore, no two threads in a process can
manipulate an endpoint at the same time. Serialization of access to endpoints
beyond this level is the responsibility of the threads sharing the endpoint.

Chapter 30. Network Communications under UNIX System Services 455

456 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 31. Interprocess Communication Using OS/390 UNIX

OS/390 UNIX offers software vendors and customers several ways for programming
processes to communicate:

v Message queues

v Semaphores

v Shared memory

v Memory mapping

v Issuing TSO commands from a shell

These forms of interprocess communication extend the possibilities provided by the
simpler forms of communication: pipes, named pipes or FIFOs, signals, and
sockets. Like these forms, message queues, semaphores, and shared memory are
used for communication between processes. (Sockets are the most common form
of interprocess communication across different systems.)

Message Queues
XPG4 provides a set of C functions that allow processes to communicate through
one or more message queues in an operating system’s kernel. A process can
create, read from, or write to a message queue. Each message is identified with a
“type” number, a length value, and data (if the length is greater than 0).

A message can be read from a queue based on its type rather than on its order of
arrival. Multiple processes can share the same queue. For example, a server
process can handle messages from a number of client processes and associate a
particular message type with a particular client process. Or the message type can
be used to assign a priority in which a message should be dequeued and handled.

A common client/server implementation on the same system uses two message
queues for communication between client and server. An inbound message queue
allows group write access and limits read access to the server. An outbound
message queue allows universal read access and limits write access to the server.
This implementation allows users to place invalid messages on the inbound queue
or remove messages belonging to another process from the outbound queue. To
solve this problem, you can use two new OS/390 message queue types,
ipc_SndTypePID and ipc_RcvTypePID to enforce source and destination process
identification.

Create the inbound queue to the server with ipc_SndTypePID and the outbound
queue from the server with ipc_RcvTypePID. This arrangement guarantees that the
server knows the process ID of the client, and that the client is the only process
that can receive the server’s returned message. The server can also issue msgrcv()
with TYPE=0 to see if any messages belong to process IDs that have gone away.
Security checks on clients are not needed, since clients are unable to receive
messages intended for another process.

The ipc_PLO constants provide possible message queue performance
improvements based on workload. For information on the ipc_PLO constants, see
the msgget() function in the OS/390 C/C++ Run-Time Library Reference.

© Copyright IBM Corp. 1996, 2000 457

Semaphores
Semaphores, unlike message queues and pipes, are not used for exchanging data,
but as a means of synchronizing operations among processes. A semaphore value
is stored in the kernel and then set, read, and reset by sharing processes according
to some defined scheme. A semaphore is created or an existing one is located with
the semget() function. Typical uses include resource counting, file locking, and the
serialization of shared memory.

A semaphore can have a single value or a set of values; each value can be binary
(0 or 1) or a larger value, depending on the implementation. For each value in a
set, the kernel keeps track of the process ID that did the last operation on that
value, the number of processes waiting for the value to increase, and the number of
processes waiting for the value to become 0.

If you define a semaphore set without any special flags, semop() processing obtains
a kernel latch to serialize the semaphore set for each semop() or semctl() call. The
more semaphores you define in the semaphore set, the higher the probability that
you will experience contention on the semaphore latch. One alternative is to define
multiple semaphore sets with fewer semaphores in each set. To get the least
amount of latch contention, define a seingle semaphore in each semaphore set.

OS/390 has added the __IPC_BINSEM option to semget(). The __IPC_BINSEM option
provides significant performance improvement on semop() processing. __IPC_BINSEM
can only be specified if you use the semaphore as a binary semaphore and do not
specify UNDO on any semop() calls. __IPC_BINSEM also allows semop() to use special
hardware instructions to further reduce contention. With __IPC_BINSEM, you can
define many semaphores in a semaphore set without impacting performance.

Shared Memory
Shared memory provides an efficient way for multiple processes to share data (for
example, control information that all processes require access to). Commonly, the
processes use semaphores to take turns getting access to the shared memory. For
example, a server process can use a semaphore to lock a shared memory area,
then update the area with new control information, use a semaphore to unlock the
shared memory area, and then notify sharing processes. Each client process
sharing the information can then use a semaphore to lock the area, read it, and
then unlock it again for access by other sharing processes.

Processes can also use shared mutexes and shared read-write locks to
communicate. For more information on mutexes and read-write locks see
“Synchronization Primitives” on page 322.

Memory Mapping
In OS/390, a programmer can arrange to transparently map into a hierarchical file
system (HFS) file process storage.

The use of memory mapping can reduce the number of disk accesses required
when randomly accessing a file.

The related mmap(), mprotect(), msync(), and munmap() functions that provide
memory mapping are part of the X/OPEN CAE Specification.

458 OS/390 V2R10.0 C/C++ Programming Guide

TSO Commands from a Shell
In OS/390 UNIX, users of the OS/390 UNIX shells can issue TSO/E commands.
The user simply enters the shell command tso, followed by a TSO command string.
The user can specify whether the TSO command is to be run through the shell (in
which case the output will be displayed on the screen) or through a TSO
environment (in which case the command output will be written to the defined
standard output).

Chapter 31. Interprocess Communication Using OS/390 UNIX 459

460 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 32. Structuring a Program That Uses C++ Templates

A template allows you to specify the construction of an individual class, function, or
static data member by providing a blueprint description of classes or functions.

Unlike an ordinary class or function definition, a template definition contains the
template keyword. It also uses a type argument, instead of a type, in one or more
of the constructs used to define the class or function template. Individual classes or
functions are generated by specifying the template name and by naming the type
for the particular class or function as the type argument of the template. You can
use templates to define a family of types or functions.

Template Terms
Following is a list of template terms and descriptions.

Template Instantiation
Compiler-generated code for a class or function using the referenced types
and the corresponding class or function template definition.

Template Definition
A blueprint the compiler uses to generate a template instantiation.

Template Declaration
A prototype of a template that can optionally include a template definition.

Linkage
Refers to the binding between a reference and a definition. A function has
internal linkage if the function is defined inline as part of the class, and is
declared with the inline keyword. It also has internal linkage if it is a
nonmember function declared with the static keyword. All other functions
have external linkage.

Generalization
Refers to a class, function, or static data member that derives its definition
from a template. An instantiation of a template function would be a
generalization.

Specialization
A user-supplied definition that replaces a corresponding template
instantiation.

Generating Template Functions
When you use class templates and function templates in your program, the
compiler instantiates function bodies for all template functions that are referenced.

The compiler follows four basic rules to determine when and where to instantiate
template functions, and applies them in the following order:

1. If a template function has internal linkage, the compiler instantiates the function
within the compilation unit. Multiple compilation units do not share it.

2. If a template function is referenced in a compilation unit and has external
linkage, the compiler looks for a template definition of the function in the same
compilation unit. If a definition appears, the function in the same compilation unit
is instantiated.

© Copyright IBM Corp. 1996, 2000 461

3. A template instantiation file is created if a template function is declared but not
defined in the same compilation unit and the TEMPINC option has been specified.
The functions required by the program are instantiated when the template
instantiation file compiles.

4. If a template function is declared but not defined in the same compilation unit,
and the NOTEMPINC option has been specified, the function is not instantiated.
This function must be instantiated in another compilation unit.

Class Template Example
The following class template Stack, illustrates the rules shown previously. The Stack
implements a stack of items.

Template Declaration
The declaration of the Stack class template is in the stack.h file. In this example,
the constructor is defined inline and has internal linkage.

�1�The function isEmpty has internal linkage because it is defined in the class
template declaration.

�2�The constructor is defined inline and has internal linkage.

Template Function Definition
The definitions of the other functions declared in the class template Stack are
contained in the stack.c file.

//stack.h
template <class Item, int size> class Stack {

public:
void push(Item item); // Push operator
Item pop(); // Pop operator
int isEmpty(){ // �1�

return (top==0); // Returns true if empty, otherwise false
}
Stack() { top = 0; } // �2� Constructor defined inline

private:
Item stack(){size} // The stack of items
int top; // Index to top of stack

};

Figure 125. stack.h File

//stack.c
template <class Item, int size>

void Stack<Item,size>::push(Item item) {
if (top >= size) throw size;
stack[top++] = item;

}
template <class Item, int size>

Item Stack<Item,size>::pop() {
if (top <= 0) throw size;
Item item = stack[--top];
return(item);

}

Figure 126. Definition of Operator Functions in stack.c

462 OS/390 V2R10.0 C/C++ Programming Guide

Use of the Stack Template
When you compile the following code, an object is created and the necessary
member functions are instantiated. This is also an example of a generalization.

Template Functions with Internal Linkage
If you define a template function with internal linkage, and the template is
instantiated, the compiler generates the function with internal linkage. The function
is not visible outside the compilation unit. If the same template function is
instantiated in multiple compilation units, the compiler generates the same function
in each of the compilation units. If you declare the function as an inline function, the
compiler may inline the function.

See isEmpty in Figure 125 on page 462 for an example of a function with internal
linkage.

Generation of Template Function Instantiations
If a compilation unit declares, defines, and references a template function, the
compiler instantiates the code for the function within the compilation unit. If multiple
compilation units declare, define, and instantiate the same template function,
multiple definitions for the same function are generated.

In the Stack class template example, any compilation units that include the file
stack.c will instantiate all Stack objects defined in that compilation unit. Consider
the following example:

#include "stack.h"
#include "stack.c"
void Swap(int i&,; Stack<int,20>&; s)
{

int j;
j=s.pop();
s.push(i);
i = j;

}

Any compilation unit that contains the preceding code fragment will automatically
instantiate the following functions that defines the class stack<int,20>:

Stack<int,20>::push(int)
int Stack<int,20>::pop()

Resolving Multiple Definitions of the Same Function
Multiple function definitions are resolved as follows:

v If a function has both a specialization and a generalization, the specialization
takes precedence.

v If there is more than one specialization, the binder issues a warning message.

Because the bind step does not remove unused instantiations from the executable
program, instantiating the same functions in multiple compilation units may generate
very large executable programs.

include "stack.h"
include "stack.c"
Stack<int,40> s; // definition of a stack of ints

Figure 127. Use of Stack Template

Chapter 32. Structuring a Program That Uses C++ Templates 463

Using TEMPINC
Instead of instantiating multiple copies of the same template functions, you can use
the compiler to instantiate the functions only once for the entire program.

Organizing Source Code for the TEMPINC option
Follow these steps to organize your source code:

1. Place the class or function template declarations in a template-declaration file,
which is a header file in which you include your source program by using the
#include directive. If the function is a member of a template class, its
declaration is part of the class template declaration. If the function is a
nonmember function, you must declare (but not define) the function using a
function template.

2. Place the class or function template definitions in a template-definition file,
which is header file that you name as follows:

a. If your source resides in the HFS, use the same name for the
template-definition file as the template-declaration header file using a .c
suffix. Place these template-definition files in the same directories as the
corresponding template-declaration files.

b. If your source resides in a PDS, use the same name for the
template-definition file as the template-declaration file, but use .C as the
low-level qualifier. An example of this would be MYUSERID.USER.C and
MYUSERID.USER.H, where the data set names are the same except for the
low-level qualifier.

3. Include the declarations of any classes that are referenced by the
template-declaration file.

Instantiating the Functions
During compilation of your program, the compiler builds a template instantiation file
for each header file that contains template functions for instantiation. The compiler
stores the instantiation files in subdirectory TEMPINC of the working directory, or in a
PDS called TEMPINC under your TSO userid. The compiler creates this TEMPINC
destination if it does not already exist.

If you use the c++ shell utility to compile your source, the compiler does the
following before linking your program:

1. Checks the contents of the TEMPINC destination

2. Compiles the template-include files that it built

3. Generates the necessary template function definitions

If you use the TSO CXX utility or JCL to compile your source, compile the
TEMPINC destination PDS explicitly before binding your code.

When you build the TEMPINC destination, repeat any compiler options that you
specified at compile time. Make sure that you compile the TEMPINC destination in
one step; do not compile the files individually. Using the same compiler options
enables the compiler to find the template-include files that it generated at compile
time. In particular, use the same path names for the SEARCH and LSEARCH options, so
that the compiler uses the same include files.

464 OS/390 V2R10.0 C/C++ Programming Guide

Examples of Source Files
The following two compilation units use the push and pop functions defined in the
Stack template. The two source files are stackadd.cpp and stackops.cpp.
stackops.h contains the prototype for a function used in both.

stackadd.cpp

stackops.cpp

The following file contains the prototype for a function used in both source files.

stackops.h

JCL to Compile Examples
Figure 131 on page 466 contains the JCL that does the following:

1. Compiles both cpp files and creates the TEMPINC destination

2. Compiles the template instantiation file in the TEMPINC destination.

#include <iostream.h>
#include "stack.h"
#include "stackops.h"

main() {
Stack<int, 50> s; // create a stack of ints
int left=10, right=20;
int sum;

s.push(left); // push 10 on the stack
s.push(right); // push 20 on the stack
add(s); // pop the 2 numbers off the stack

// and push the sum onto the stack
sum = s.pop(); // pop the sum off the stack

cout << "The sum of: " << left << " and: " << right << " is: " << sum
<< endl;

return(0);
}

Figure 128. stackadd.cpp File

#include "stack.h"
#include "stackops.h"

void add(Stack<int, 50>&; s) {
int tot = s.pop() + s.pop();
s.push(tot);
return;

}

Figure 129. stackops.cpp File

void add(Stack<int, 50>&; s);

Figure 130. stackops.h File

Chapter 32. Structuring a Program That Uses C++ Templates 465

Syntax to Compile under the OS/390 Shell

Here is the syntax you would use to compile the program within the OS/390 shell.

Regenerating the Template-Instantiation File
The compiler builds a template-instantiation file, in the HFS tempinc directory or the
TEMPINC PDS, corresponding to each template-declaration file. With each
compilation, the compiler may add information to the file but it never removes
information from the file.

As you develop your program, you may remove template function references or
reorganize your program so that the template-instantiation files become obsolete.
Because the compiler does not remove information from the template-instantiation
files, you may want to delete one or more of these files and recompile your program
periodically. Normally it is not necessary or advisable to edit these files. To
regenerate all of the template-instantiation files, delete the TEMPINC destination and
recompile your program.

Contents of Template-Instantiation Files
This section contains two examples of template-instantiation files. Figure 133 on
page 467 is the file produced for the Stack class template example; Figure 134 on
page 467 is an example showing the information that would be in a typical
template-instantiation file.

//CC EXEC CBCC,
// INFILE='MYUSERID.USER.CPP(STACKADD)',
// OUTFILE='MYUSERID.USER.OBJ(STACKADD),DISP=SHR',
// CPARM='SEARCH(USER.+)'
//*---
//CC EXEC CBCC,
// INFILE='MYUSERID.USER.CPP(STACKOPS)',
// OUTFILE='MYUSERID.USER.OBJ(STACKOPS),DISP=SHR',
// CPARM='SEARCH(USER.+)'
//*---
//CC EXEC CBCC,
// INFILE='MYUSERID.TEMPINC',
// OUTFILE='MYUSERID.USER.OBJ,DISP=SHR',
// CPARM='SEARCH(USER.+)'
//*---
//BIND EXEC CBCBG,
// INFILE='MYUSERID.USER.OBJ(STACKADD)',
// OUTFILE='MYUSERID.USER.LOAD(STACKADD),DISP=SHR'
//BIND.OBJ DD DSN=MYUSERID.USER.OBJ,DISP=SHR
//BIND.SYSIN DD *

INCLUDE OBJ(STACKOPS)
INCLUDE OBJ(STACK)

/*

Figure 131. JCL to Compile Source Files and TEMPINC Destination

c++ stackadd.C stackops.C

Figure 132. OS/390 UNIX Syntax

466 OS/390 V2R10.0 C/C++ Programming Guide

The following example shows the layout of a typical template-instantiation file
generated by the compiler:

�1� list.h is the template-declaration file.

�2� list.c is the template-definition file that corresponds to the
template-declaration file in line 1.

�3� mytype.h is another header file that the compiler needs to compile the
template-declaration file. All other header files that the compiler needs to
compile the template-include file are inserted at this point. In this example,
the type MyType is used as a template argument and is defined in the
mytype.h header file.

�4� iostream.h is an include file inserted by the compiler. It is referenced in the
function declaration in line 6.

�5� The compiler inserts #pragma define directives that trigger instantiation
when the file compiles. The class List<MyType> is defined and its member
functions are generated.

�6� The operator<< function is a nonmember function that matched a template
declaration in the list.h file. The compiler inserted this declaration to force
the generation of the function definition.

�7� #pragma undeclared is a special pragma used by the compiler in
template-instantiation files. It separates those functions that were
instantiated using a declaration, and those functions that were instantiated
using a call. All template functions that were explicitly declared in at least
one compilation unit appear before this line. All template functions that were
called, but never declared, appear after this line.

�8� count is an example of a template function that was called but not declared.
The template declaration of the function is contained in list.h, but the
instance count(List<MyType>) is never declared.

Using the NOTEMPINC Option
You can structure your program to define the template functions directly in your
compilation units. If you know the instances of a particular template function that is
required, you can define both the template functions and the necessary declarations
in one compilation unit.

/*0831327039*/#include "'MYUSERID.USER.H(STACK)'"
/*0000000000*/#include "'MYUSERID.USER.C(STACK)'"
#pragma define(Stack<int,50>)
#pragma undeclared

Figure 133. Contents of the Template-Instantiation File

/*0698421265*/ #include "/home/myapp/src/list.h" �1�
/*0000000000*/ #include "/home/myapp/src/list.c" �2�
/*0698414046*/ #include "/home/myapp/src/mytype.h" �3�
/*0698414046*/ #include "/usr/include/iostream.h" �4�
pragma define(List<MyType>) �5�

stream& operator<<(ostream&,List<MyType>); �6�
pragma undeclared �7�

int count(List<MyType>); �8�

Figure 134. A Typical Template-Instantiation File

Chapter 32. Structuring a Program That Uses C++ Templates 467

If you use NOTEMPINC, you do not have to reference compiler-generated files.
However, if you change the body of the function template, you may have to
recompile many of the files. Compile and link time may be longer, and the object file
produced may become quite large.

Specify the NOTEMPINC option so that the compiler does not generate
template-instantiation files. For more information see the OS/390 C/C++ Language
Reference.

Organizing Source Code for the NOTEMPINC Option
Follow these steps to organize your source code:

1. Place the template function definitions into one or more of your compilation
units.

2. Place a reference for each template function to be generated in a compilation
unit that also contains a definition of the function.

For a nonmember function, you can reference the function by including its
declaration.

For a member of a template class, reference the function by forcing the definition of
the template class with the #pragma define directive. This forces the definition of a
template class without having to create an object of that class. It has the following
form:
#pragma define (template-class-name)

You can insert this directive anywhere a declaration is allowed.

In the List class template example (see Figure 135), you can cause the compiler to
generate the necessary functions by including both list.h and list.c in all
compilation units that use instances of the list class. This will instantiate the
necessary functions, but may instantiate them multiple times and thus cause the
object files to be very large. Alternatively, if you know the instances of the List
class used, you can instruct the compiler to instantiate the necessary functions in a
separate compilation unit.

Example of Source Code Organized for the NOTEMPINC Option

Using TEMPINC or NOTEMPINC
To use either TEMPINC or NOTEMPINC without restructuring your code, include a
multipurpose header file in each of your source files that use templates. If you
specify TEMPINC, this file will not include the .c file. If you specify NOTEMPINC, the .c
file will be included.

Example of a Multipurpose Header File
Figure 136 on page 469 is an example of a multipurpose header file:

#include "list.h"
#include "list.c"
#include "myclass.h" // Declaration of "myClass" class
#pragma define(List<int>)
#pragma define(List<myClass>)

Figure 135. listinst.cxx File

468 OS/390 V2R10.0 C/C++ Programming Guide

Example of Source Code with Multipurpose Header File
Figure 137 is an example of a source file in which you would place the multipurpose
header file.

If NOTEMPINC is specified at compile time, list.c is included; if TEMPINC is specified
list.c is not included.

Template Considerations for Shared Libraries
In a traditional application development environment, different applications can
share both source files and compiled files. If you decide to use templates,
applications can share source files but cannot share compiled files.

If you use templates:

v Each application must have its own template directory.

v You must compile all of the files for the application, even if some of the files have
already been compiled for another application.

Under MVS, you can easily assign a separate template PDS for each application.

Under OS/390 UNIX System Services, the template directory is always ./tempinc.
To create a separate template directory, you must change the current directory. For
example:

1. In the makefile, define a .SOURCE directive for each source type. The path
must be absolute, not relative.

2. Similarly, define a .SOURCE directive for each output type. The path must be
absolute, not relative.

3. In the recipe section of the makefile:

/***/
/* Example TEMPINC/NOTEMPINC Header */
/***/

#ifndef LIST_H // This prevents processing of
#define LIST_H // a subsequent #include

/* Follow with the variable declarations */
.
.
.

#ifndef __TEMPINC__ // Handles NOTEMPINC
#include "list.c" // Brings in template function implementation

// if compiled with NOTEMPINC
#endif

Figure 136. list.h File

#include "list.h"
#include "myclass.h" // Declaration of "myClass" class
#pragma define(List<int>)
#pragma define(List<myClass>)

Figure 137. listinst.cxx File

Chapter 32. Structuring a Program That Uses C++ Templates 469

a. Use the PWD directive to obtain the absolute path for the current source
directory.

b. Store this path in a variable.

c. Use the CD directive to change to the desired object directory.

d. Invoke the compiler. (If you want to compile only the source, use the -c
option. Later, compile the templates using
export_command_STEPS="0x00000002", where command is CXX or C++,
depending on which command was used to invoke the compiler.)

e. Return to the previous directory, using the saved path.

470 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 33. Using Environment Variables

This chapter describes environment variables that affect the OS/390 C/C++
environment. You can use environment variables to define the characteristics of a
specific environment. They may be set, retrieved, and used during the execution of
a OS/390 C/C++ program.

The following environment variables affect the OS/390 C/C++ environment if they
are on when an application program runs. The variables that begin with _EDC_ and
CEE are described in detail in “Environment Variables Specific to the OS/390
C/C++ Library” on page 476. See “Locale Source Files” on page 673 for more
information on the locale-related environment variables.

Note: The settings of these variables affect your environment even if you are using
the I/O Streams Class Library for C++ I/O. For information about this library,
see OS/390 C/C++ IBM Open Class Library User’s Guide and OS/390
C/C++ IBM Open Class Library Reference.

_CEE_DMPTARG
Used to specify the directory in which Language Environment dumps
(CEEDUMPs) are written for applications that are running as the result of a
fork, exec, or spawn. This environment variable is ignored if the application
is not run as a result of a fork, exec, or spawn.

_CEE_ENVFILE
Used to specify a file from which to read environment variables.

_CEE_RUNOPTS
Used to specify Language Environment run-time options to a program
invoked by using one of the exec functions, such as a program which is
invoked from one of the OS/390 UNIX shells.

_EDC_ADD_ERRNO2
Appends errno2 information to the output of perror() and strerror().

_EDC_ANSI_OPEN_DEFAULT
Affects the characteristics of MVS text files opened with the default
attributes.

_EDC_BYTE_SEEK
Specifies that fseek() and ftell() should use relative byte offsets.

_EDC_CLEAR_SCREEN
Affects the behavior of output text-terminal files.

_EDC_COMPAT
Specifies that C/C++ should use specific functional behavior from previous
releases of C/370.

_EDC_GLOBAL_STREAMS
Allows the C standard streams stdin, stdout and stderr to have global
behavior.

_EDC_IP_CACHE_ENTRIES
Sets the size of the cache used for host names and IP addresses returned
by gethostbyaddr() and gethostbyname() calls that are resolved by a
domain name server.

_EDC_RRDS_HIDE_KEY
Relevant for VSAM RRDS files opened in record mode. Enables calls to

© Copyright IBM Corp. 1996, 2000 471

fread() that specify a pointer to a character string and do not append the
Relative Record Number to the beginning of the string.

_EDC_STOR_INCREMENT
Sets the size of increments to the internal library storage subpool.

_EDC_STOR_INITIAL
Sets the initial size of the internal library storage subpool.

_EDC_UMASK_DFLT
Allows the user to control how the C library sets the default umask used
when the program runs. If OS/390 UNIX services are available, the possible
values of the _EDC_UMASK_DFLT environment variable are:

v NO - the library will not change the value

v a valid octal value - the library sets this as the default

v any other value - the library uses 022 octal as the value.

_EDC_ZERO_RECLEN
Enables processing of zero-length records in an MVS data set opened in
variable format.

LANG Determines the locale to use for the locale categories when neither the
LC_ALL environment variable nor the individual locale environment variables
specify locale information. This environment variable does not interact with
the language setting for messages.

LC_ALL
Determine the locale to be used to override any values for locale categories
specified by the settings of the LANG environment variable or any individual
locale environment variables.

LC_COLLATE
Determines the behavior of ranges, equivalence classes, and multicharacter
collating elements.

LC_CTYPE
Determines the locale for the interpretation of byte sequences of text data
as characters (for example, single-byte versus multibyte characters in
arguments and input files).

LC_MESSAGES
Determines the language in which messages are to be written.

LC_MONETARY
Determines the locale category for monetary-related numeric formatting
information.

LC_NUMERIC
Determines the locale category for numeric formatting (for example,
thousands separator and radix character) information.

LC_TIME
Determines the locale category for date and time formatting information.

LC_TOD
Determines the locale category for time of day and Daylight Savings Time
formatting information.

LIBPATH
Allows an absolute or relative pathname to be searched when loading a
DLL. If the input filename contains a slash (/), it is used as is to locate the
DLL. If the input filename does not contain a slash, then LIBPATH is used

472 OS/390 V2R10.0 C/C++ Programming Guide

to determine the pathname to load. LIBPATH specifies a list of directories
separated by colons. If the LIBPATH begins or ends with a colon, then the
working directory is also searched first or last, depending on the position of
the stand-alone colon. The ″::″ specification can only occur at the beginning
or end of the list of directories. If you are running POSIX(ON), then HFS is
searched first followed by MVS. If you are running POSIX(OFF), then MVS
is searched first followed by HFS. This double search can be avoided by
using unambiguous DLL names.

LOCPATH
Tells the setlocale() function the name of the directory in the HFS from
which to load the locale object files. It specifies a colon separated list of
HFS directories.

If LOCPATH is defined, setlocale() searches HFS directories in the order
specified by LOCPATH for locale object files it requires. Locale object files
in the HFS are produced by the localedef utility running under OS/390
UNIX.

If LOCPATH is not defined and setlocale() is called by a POSIX program,
setlocale() looks in the default HFS locale directory, /usr/lib/nls/locale, for
locale object files it requires. If setlocale() does not find a locale object it
requires in the HFS, it converts the locale name to a PDS member name
and searches locale PDS load libraries associated with the program calling
setlocale().

Note: XPLINK locales have an .xplink suffix added to the end of the
locale name. For more information about XPLINK locale names, see
“Locale Naming Conventions” on page 698

PATH The set of HFS directories that some OS/390 C/C++ functions, such as
EXECVP, use in trying to locate an executable. The directories are
separated by a colon (:) delimiter. If the pathname contains a slash, the
PATH environment variable will not be used.

STEPLIB
Determines the STEPLIB environment that is created for an executable file. It
can be a sequence of MVS data set names separated by a colon (:), or can
contain the value CURRENT or NONE. If you do not want a STEPLIB
environment propagated to the environment of the executable file, specify
NONE. The STEPLIB environment variable defaults to the value CURRENT,
which will propagate your current environment to that of the executable file.

See OS/390 UNIX System Services Command Referencefor more
information on the use of the STEPLIB variable and changing the search
order for OS/390 programs.

TZ or _TZ
Time zone information. The TZ and _TZ environment variables are typically
set when you start a shell session, either through /etc/profile or .profile
in your home directory.For more information on TZ and _TZ see “Chapter 49.
Customizing a Time Zone” on page 711.

__POSIX_SYSTEM
Determines the behavior of the system() function when the POSIX(ON)
run-time option has been specified. If __POSIX_SYSTEM==NO, then system()
behaves as in Language Environment/370 1.2: it creates a nested enclave
within the same process as the invoker (allowing such things as sharing of

Chapter 33. Using Environment Variables 473

|

|
|
|

|

memory files). Otherwise, system() performs a fork() and exec(), and the
target program runs in a separate process (preventing such things as
sharing of memory files).

Working with Environment Variables
The following library functions affect environment variables:

v setenv()

v clearenv()

v getenv()

v __getenv()

v putenv()

The setenv() function adds, changes, and deletes environment variables in the
Environment Variable Table. The getenv() function retrieves the values from the
table. If it does not find an environment variable, getenv() returns NULL. The
clearenv() function clears the environment variable table, and resets to default
behavior the actions affected by OS/390 C/C++-specific environment variables.

The __getenv() function behaves almost the same as getenv() except getenv()
returns the address of the environment variable value string that has been copied
into a buffer, whereas __getenv() returns the address of the actual value string in
the environment variable array. Because the value is not buffered, __getenv()
cannot be used in a multithreaded application or in a single threaded application
where the function setenv() changes the value of the variables.

The putenv() function provides a subset of the function of setenv() and is provided
for convenience in porting UNIX applications. putenv(env_var) is the same as
setenv(var_name, var_value, i) where env_var represents the string
var_name=var_value.

For a complete description of these functions, refer to OS/390 C/C++ Run-Time
Library Reference .

Environment variables may be set any time in an application program or user exit.
You can use the exit routine CEEBINT to set environment variables through calls to
setenv(). For more information on the OS/390 Language Environment user exit
CEEBINT, refer to “Using Run-Time User Exits in OS/390 Language Environment” on
page 537. You can also set environment variables by using the ENVAR run-time
option. The syntax for this option is
ENVAR("1st_var=1st_value", "2nd_var=2nd_value")

For more information on this run-time option, refer to OS/390 Language
Environment Programming Reference.

Specifying the _CEE_ENVFILE environment variable with a filename on the ENVAR
option enables you to read more environment variables from that file. See
“Environment Variables Specific to the OS/390 C/C++ Library” on page 476 for more
information about _CEE_ENVFILE.

Environment variables set with the setenv() function exist only for the life of the
program, and are not saved before program termination. Child programs are

474 OS/390 V2R10.0 C/C++ Programming Guide

initialized with the environment variables of the parent. However, environment
variables set by a child program are not propagated back to the parent upon
termination of the child program.

Note: If you are running with POSIX(ON), environment variables are copied from a
parent process to a child process when a fork() function is called, and are
inherited by the new process image when an EXEC function is called.

When a parent process invokes a child process by using system(), using the ANSI
form of the system function, the child receives its environment variables from the
value of the ENVAR run-time option specified on the invocation of system(). For
example:

system("PGM=CHILD,PARM='ENVAR(ABC=5)/'");)

Naming Conventions
Avoid the following when creating names for environment variables:

= This is invalid and will generate an error message.

EDC
This is reserved for OS/390 C/C++ specific environment variables.

CEE
This is reserved for OS/390 C/C++ specific environment variables used with
OS/390 Language Environment. See “Environment Variables Specific to the
OS/390 C/C++ Library” on page 476 for more information.

BPX
This is reserved for OS/390 C/C++ specific environment variables used in
the kernel. See the spawn callable service in OS/390 UNIX System
Services Programming: Assembler Callable Services Reference for more
information.

DBCS Characters
Multibyte and DBCS characters should not be used in environment variable
names. Their use can result in unpredictable behavior.

Multibyte and DBCS characters are allowed in environment variable values;
however, the values are not validated, and redundant shifts are not
removed.

white space
Blank spaces are valid characters and should be used carefully in
environment variable names and values.

For example, setenv(" my name"," David ",1) sets the environment
variable <space>my<space>name to <space><space>David. A call to
getenv("my name"); returns NULL indicating that the variable was not found.
You must specifically query getenv(" my name") to retrieve the value of "
David".

The environment variable names are case-sensitive.

The empty string is a valid environment variable name.

Note: In general, it is a good idea to avoid special characters, and to use portable
names containing just upper and lower case alphabetics, numerics, and
underscore characters. Environment variable names containing certain
special characters, such as slash (/), are not propagated by the OS/390

Chapter 33. Using Environment Variables 475

UNIX shells. Therefore, these variable names are not available to a program
called using the POSIX system() function.

Environment Variables Specific to the OS/390 C/C++ Library
The following OS/390 C/C++ specific environment variables are supported to
provide various functions. OS/390 C/C++ variables have the prefix _CEE_ or _EDC_.
You should not use these prefixes to name your own variables.

v _EDC_ADD_ERRNO2

v _EDC_ANSI_OPEN_DEFAULT

v _EDC_BYTE_SEEK

v _EDC_CLEAR_SCREEN

v _EDC_GLOBAL_STREAMS

v _EDC_IP_CACHE_ENTRIES

v _EDC_COMPAT

v _EDC_RRDS_HIDE_KEY

v _EDC_STOR_INCREMENT

v _EDC_STOR_INITIAL

v _EDC_ZERO_RECLEN

v _CEE_DMPTARG

v _CEE_ENVFILE

There are no default settings for the environment variables that begin with _EDC_.
There are, however, default actions that occur if these environment variables are
undefined or are set to invalid values. See the descriptions of each variable below.

The OS/390 C/C++ specific environment variables may be set with the setenv()
function.

_EDC_ADD_ERRNO2
Appends errno2 information to the output of perror() and strerror(). For
example, for perror() if errno was 121, then the output would be ″EDC5121I Invalid
argument.″ If _EDC_ADD_ERRNO2 was defined, the ouput would be ″EDC5121I Invalid
argument. (errno2=0x0C0F8402)″.

_EDC_ADD_ERRNO2 is set with the command:
setenv("_EDC_ADD_ERRNO2","1",1);

Note: errno2 is a residual error field. It contains the errno2 from the last kernel
failure. This errno2 value may or may not be related to the errno error
message.

_EDC_ANSI_OPEN_DEFAULT
Affects the characteristics of MVS text files opened with the default attributes.

Issuing the following command causes text files opened with the default
characteristics to be opened with a record format of FIXED and a logical record
length of 254 in accordance with the ANSI standard for C.

setenv("_EDC_ANSI_OPEN_DEFAULT","Y",1);

476 OS/390 V2R10.0 C/C++ Programming Guide

When this environment variable is not specified and a text file is created without its
record format or LRECL defined, then the default is a variable record format.

_EDC_BYTE_SEEK
Indicates to OS/390 C/C++ that, for all binary files, ftell() should return relative
byte offsets, and fseek() should use relative byte offsets as input. The default
behavior is for only binary files with a fixed record format to support relative byte
offsets.

_EDC_BYTE_SEEK is set with the command:
setenv("_EDC_BYTE_SEEK","Y",1);

_EDC_CLEAR_SCREEN
Applies to output text terminal files.

_EDC_CLEAR_SCREEN is set with the command:
setenv("_EDC_CLEAR_SCREEN","Y",1);

When _EDC_CLEAR_SCREEN is set, writing a \f (form feed) character to a text terminal
sends all preceding unwritten data in the terminal buffer to the screen, and then
clears the screen.

When _EDC_CLEAR_SCREEN in not set, writing a \f (form feed) character to a text
terminal results in the character being treated as a non-control character. The
character is written to the terminal buffer as \f.

_EDC_COMPAT
Indicates to OS/390 C/C++ that it should use old functional behavior for various
items in code ported from old releases of C/370. These functional items are
specified by the value of the environment variable. _EDC_COMPAT is set with the
command
setenv("_EDC_COMPAT","x",1);

where x is an integer. OS/390 C/C++ converts the string "x" into its decimal integer
equivalent, and treats this value as a bit mask to determine which functions to use
in compatibility mode. The following table interprets the least significant bit as bit
zero.

Bit Function Affected

0 ungetc()

1 ftell()

2 fclose()

3 through 31 Unused

For this release, calls to fseek() with an offset of SEEK_CUR, fgetpos(), and
fflush() take into account characters pushed back with the ungetc() library
function. You must set the _EDC_COMPAT environment variable for ungetc() if you
want these functions to ignore ungetc() characters as they did in old C/370 code.

Chapter 33. Using Environment Variables 477

For ftell(), OS/390 C/C++ uses an encoding scheme that varies according to the
attributes of the underlying data set. You must set the _EDC_COMPAT environment
variable for ftell() if you want to use encoded ftell() values generated in old
C/370 code.

You can set _EDC_COMPAT to indicate that fclose() should not unallocate the
SYSOUT=* data set when it is closing "*" data sets created under batch. This is to
ensure that such data sets can be concatenated with the Job Log, if their attributes
are compatible.

Here are some examples of how you can set _EDC_COMPAT:
setenv("_EDC_COMPAT","1",1);

invokes old ungetc() behavior.
setenv("_EDC_COMPAT","2",1);

invokes old ftell() behavior.
setenv("_EDC_COMPAT","3",1);

invokes both old ungetc() behavior and old ftell() behavior.
setenv("_EDC_COMPAT","4",1);

invokes old behavior for spool data sets created by opening "*" in MVS or IMS
batch.

_EDC_GLOBAL_STREAMS
Is used during initialization of the first C main in the environment to allow the C
standard streams stdin, stdout, and stderr to have global behavior. The
environment variable settings and standard streams using the global behavior, are
as follows:

Setting Standard Streams Using Global Behavior

0 none

1 stderr

2 stdout

3 stderr,stdout

4 stdin

5 stderr,stdin

6 stdout,stdin

7 stderr,stdout,stdin

Note: The first C main would include any Pre-Init Compatibility Interface
initialization.

You can use one of the following methods to set the environment variable
_EDC_GLOBAL_STREAMS:

v CEEBXITA assembler user exit

You can modify the sample CSECT and assemble and link with the application.
The run-time options specified in the CEEBXITA assembler user exit override all

478 OS/390 V2R10.0 C/C++ Programming Guide

other sources of run-time options except those that are specified as NONOVR in
the installation default run-time options. These options are honored only during
initialization of the first enclave.

v ENVAR(_EDC_GLOBAL_STREAMS=<setting>)

You can call your program with the ENVAR run-time option. This overrides the
application defaults specified using CEEUOPT or the #pragma runopts directive.

v #pragma runopts(ENVAR(_EDC_GLOBAL_STREAMS=<setting>))

Use the #pragma runopts directive in your application source code.

v CEEUOPT application defaults

Modify the sample CSECT and assemble and link with the application. This
overrides corresponding overrideable CEEDOPT options.

v CEEDOPT installation defaults

This is not recommended. Do not use this method.

Notes:

1. Attempts to set this environment variable in the file specified by the
_CEE_ENVFILE environment variable are ignored. The standard streams are
initialized before that file is read.

2. You cannot use the CEEBINT user exit to set this environment variable. The
CEEBINT user exit gets control after the standard streams have been initialized.

_EDC_IP_CACHE_ENTRIES
Sets the size of the cache used for host names and IP addresses returned by
gethostbyaddr() and gethostbyname() calls that are resolved by a domain name
server. This cache is searched first before sending the next gethostbyaddr() or
gethostbyname() request to a domain name server. The size of the cache is set only
once. The first call to either gethostbyaddr() or gethostbyname() uses the value of
the _EDC_IP_CACHE_ENTRIES environment variable to set the size of the cache.
Setting the size to 0 disables the cache. If you do not specify a value for this
environment variable, the default size is 20.

_EDC_IP_CACHE_ENTRIES is set with the command:
setenv("_EDC_IP_CACHE_ENTRIES", "50", 1);

_EDC_RRDS_HIDE_KEY
Applies to VSAM RRDS files opened in record mode. When this environment
variable is set, you can call fread() with a pointer to a character string, and the
Relative Record Number is not appended to the beginning of the record.

The _EDC_RRDS_HIDE_KEY environment variable is set with the command
setenv("_EDC_RRDS_HIDE_KEY","Y",1);

By default, when you open a VSAM record in record mode, the fread() function is
called with the RRDS record structure, and the record is preceded by the Relative
Record Number.

_EDC_STOR_INCREMENT
Sets the size of increments to the internal library storage subpool. By default, when
the storage subpool is filled, its size is incremented by 8K. When
_EDC_STOR_INCREMENT is set, its value string is translated to its decimal integer
equivalent. This integer is then the new setting of the subpool storage increment
size.

Chapter 33. Using Environment Variables 479

The _EDC_STOR_INCREMENT value must be greater than zero, and must be a multiple
of 4K. If the value is less than zero, the default setting of 8K is used. If the value is
not a multiple of 4K, then it is rounded up to the next 4K interval. If
_EDC_STOR_INCREMENT is set to an invalid value that must be modified internally to be
divisible by 4K, this modification is not reflected in the character string that appears
in the environment variable table.

Consider the case where setenv() is called as follows:
setenv("_EDC_STOR_INCREMENT","9000",1);

Internally, the storage subpool increment value is set to 12288 (that is, 12K).
However, the subsequent call

getenv("_EDC_STOR_INCREMENT");

returns "9000", as set by the call to setenv().

_EDC_STOR_INITIAL
Sets the initial size of the internal library storage subpool. The default subpool
storage size is 12K. When _EDC_STORE_INITIAL is set, its value string is translated
to its decimal integer equivalent. This integer is then the new setting of the subpool
storage increment size.

The _EDC_STORE_INITIAL value must be greater than zero, and must be a multiple
of 4K. If the value is less than zero, the default setting of 12K is used. If the value
is not a multiple of 4K, then it is rounded up to the next 4K interval. If
_EDC_STORE_INITIAL is set to an invalid value that must be modified internally to be
divisible by 4K, this modification is not reflected in the character string that appears
in the environment variable table.

Consider the case where setenv() is called from CEEBINT as follows:
setenv("_EDC_STORE_INITIAL","16000",1);

with the CEEBINT user exit linked to the application.

Internally, the storage subpool is initialized to 16384 (that is, 16K). However, the
subsequent call

getenv("_EDC_STORE_INITIAL");

returns "16000" as set by the setenv() call.

_EDC_ZERO_RECLEN
Allows processing of zero-length records in an MVS Variable file opened in either
record or text mode.

Note: This environment variable has no effect on streams based on HFS files. You
can always read and write zero-byte records in HFS files.

_EDC_ZERO_RECLEN is set with the command:
setenv("_EDC_ZERO_RECLEN","Y",1);

For details on the behavior of this environment variable, refer to “Chapter 11.
Performing OS I/O Operations” on page 103.

480 OS/390 V2R10.0 C/C++ Programming Guide

_CEE_DMPTARG
Specifies the directory in which Language Environment dumps (CEEDUMPs) are
written for applications that are running as the result of a fork, exec, or spawn. This
environment variable is ignored if the application is not run as a result of a fork,
exec, or spawn. When _CEE_DMPTARG is set in one of these environments, its value
is used as the directory name in which to place CEEDUMPs. For example, if in an
OS/390 UNIX shell, you set the environment variable as follows:
export _CEE_DMPTARG=/u/userid/dmpdir

Language Environment dumps will be written to directory /u/userid/dmpdir. If in an
OS/390 UNIX shell, you set the environment variable as follows:
export _CEE_DMPTARG=dmpdir

Language Environment dumps will be written to directory "cwd"/dmpdir where "cwd"
is the current working directory

_CEE_ENVFILE
Enables a list of environment variables to be set from a specified file. This
environment variable only takes effect when it is set through the run-time option
ENVAR on initialization of a parent program.

When _CEE_ENVFILE is defined under these conditions, its value is taken as the
name of the file to be used. For example, to read the DDfile MYVARS, you would call
your program with the ENVAR run-time option as follows:

ENVVAR("_CEE_ENVFILE=DD:MYVARS")

The specified file is opened as a variable length record file. For an MVS data set,
the data set must be allocated with RECFM=V. RECFM=F is not recommended, since
RECFM=F enables padding with blanks, and the blanks are counted when calculating
the size of the line. Each record consists of NAME=VALUE. For example, a file with the
following two records:

_EDC_RRDS_HIDE_KEY=Y
World_Champions=New_York_Yankees

would set the environment variable _EDC_RRDS_HIDE_KEY to the value Y, and the
environment variable World_Champions to the value New_York_Yankees.

Notes:

1. Using _CEE_ENVFILE to set environment variables through a file is not supported
under CICS.

2. OS/390 Language Environment searches for an equal sign to delimit the
environment variable from its value. If an equal sign is not found, the
environment variable is skipped and the rest of the text is treated as comments.

Example
The following example sets the environment variable _EDC_ANSI_OPEN_DEFAULT. A
child program is then initiated by a system call. This example illustrates that
environment variables are propagated forward, but not backward.

Chapter 33. Using Environment Variables 481

CBC3GEV1

/* this example shows how environment variables are propagated */
/* part 1 of 2-other file is CBC3GEV2 */

#include <stdio.h>
#include <stdlib.h>

int main(void) {

char *x;

/* set the environment variable _EDC_ANSI_OPEN_DEFAULT */
setenv("_EDC_ANSI_OPEN_DEFAULT","Y",1);

/* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */
x = getenv("_EDC_ANSI_OPEN_DEFAULT");

printf("cbc3gev1 _EDC_ANSI_OPEN_DEFAULT = %s\n",
(x != NULL) ? x : "undefined");

/* call the child program */
system("cbc3gev2");

/* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */
x = getenv("_EDC_ANSI_OPEN_DEFAULT");

printf("cbcgev1 _EDC_ANSI_OPEN_DEFAULT = %s\n",
(x != NULL) ? x : "undefined");

return(0);
}

Figure 138. Environment Variables Example-Part 1

482 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GEV2

The preceding program produces the following output:
cbcgev1 _EDC_ANSI_OPEN_DEFAULT = Y
cbcgev2 _EDC_ANSI_OPEN_DEFAULT = Y
cbcgev2 _EDC_ANSI_OPEN_DEFAULT = undefined
cbcgev1 _EDC_ANSI_OPEN_DEFAULT = Y

/* this example shows how environment variables are propagated */
/* part 2 of 2-other file is CBC3GEV1 */

#include <stdio.h>
#include <stdlib.h>

int main(void) {

char *x;

/* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */
x = getenv("_EDC_ANSI_OPEN_DEFAULT");

printf("cbcgev2 _EDC_ANSI_OPEN_DEFAULT = %s\n",
(x != NULL) ? x : "undefined");

/* clear the Environment Variables Table */
clearenv();

/* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */
x = getenv("_EDC_ANSI_OPEN_DEFAULT");
printf("cbcgev2 _EDC_ANSI_OPEN_DEFAULT = %s\n",

(x != NULL) ? x : "undefined");

return(0);
}

Figure 139. Environment Variables Example-Part 2

Chapter 33. Using Environment Variables 483

484 OS/390 V2R10.0 C/C++ Programming Guide

Part 5. OS/390 C/C++ Environments

This part describes the different OS/390 C/C++ environments. Note that the
MultiTasking Facility and the System Programming C Facilities are not available for
OS/390 C++. If you attempt to run an SPC application under OS/390 C++, it will
abend.

v “Chapter 34. Using the System Programming C Facilities” on page 487

v “Chapter 35. Library Functions for System Programming C” on page 531

v “Chapter 36. Using Run-Time User Exits” on page 537

v “Chapter 37. Using The OS/390 C MultiTasking Facility” on page 555

© Copyright IBM Corp. 1996, 2000 485

486 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 34. Using the System Programming C Facilities

This chapter explains how to use the system programming C (SPC) facilities with
OS/390 C.

Notes:

1. Using the system programming C facilities, by programs which have been
compiled with OS/390 C++ is not supported.

2. IPA is not supported in an SPC environment unless there is a main() function
present.

3. XPLINK is not supported by the SPC facilities.

When OS/390 C applications are compiled, many routines are needed to support
the OS/390 C environment that are not included in your executable. These routines,
which are in OS/390 Language Environment, are dynamically loaded at run time.
This reduces the size of the program to its practical minimum and provides for the
sharing of OS/390 C library code by allowing its placement in Extended Link Pack
Areas.

OS/390 Language Environment provides facilities to set up the environment, handle
termination, provide storage management, error handling, interlanguage calls and
debugging support. Also, the C library functions are provided with OS/390
Language Environment. In situations where not all of these services are needed or
available, or more control over the executive environment is required, the system
programming C facilities can provide a reduced customizable environment for your
application.

System programming facilities enable you to run applications without OS/390
Language Environment or with just the OS/390 C library functions available. You
can:

v Use a subset of the C language to develop specialized applications that do not
require OS/390 Language Environment on the machines where the application
will run.

You can write freestanding applications that:

– Do not use the dynamic run-time library.

– Use only the C-specific library functions without any OS/390 Language
Environment facilities to manage the execution environment.

For example, a system programming application could use the C-specific library
function printf() but not have the common run time initialize the environment.
The system programming facilities would handle initialization.

For more information on this type of application, see “Creating Freestanding
Applications” on page 490.

v Use OS/390 C as an assembler language alternative, such as for writing exit
routines for MVS, TSO, or JES.

For more information on this type of application, see “Creating System Exit
Routines” on page 496.

v Develop applications featuring a persistent C environment, where a OS/390 C
environment is created once and used repeatedly for C function execution.

For more information on this type of application, see “Creating and Using
Persistent C Environments” on page 500.

© Copyright IBM Corp. 1996, 2000 487

|

v Develop co-routines using a two-stack model, as used in client-server style
applications. In this style, the user application calls upon the applications server
to perform services independently of the user and then returns to the user.

For more information on this type of application, see “Developing Services in the
Service Routine Environment” on page 505.

Note: Using the decimal data type and its related functions (decabs(), decchk(),
and decfix()) without OS/390 Language Environment is not supported.

Using Functions in the System Programming C Environment
If you do not want to use the OS/390 Language Environment run-time library and
the OS/390 C run-time component within OS/390 Language Environment the
following functions are available in the SPC environment:

v The following built-in functions provided by the OS/390 C compiler:

Mathematical
abs(), fabs()

Memory manipulation
memchr(), memcmp(), memcpy(), memset(), cds(), cs()

String operations
strcat(), strchr(), strcmp(), strcpy(), strlen(), strrchr()

The built-in versions of these functions are available only if the appropriate
header file (string.h, math.h, or stdlib.h) is included in the source file. The use
of these functions is described in OS/390 C/C++ Run-Time Library Reference.

v The memory management functions, including complete support for:

– The malloc() function

– The calloc() function

– The realloc() function

– The free() function

– The HEAP run-time option

v The exit() function

v The sprintf() function.

Additional memory management functions are available in the system programming
C environment, as follows:

__4kmalc()
to allocate page-aligned storage

__24malc()
to allocate storage below the 16MB (where MB is 1048576 bytes) line in
ESA systems even when HEAP(ANYWHERE) is specified.

Storage allocated by these functions is not part of the heap, so freeing it is your
responsibility. You can use the free() function to free the storage before the
environment is terminated. Storage allocated using these functions is not
automatically freed when the environment is terminated.

In this environment, low-level memory management functions and contents
supervision (loading and deleting executable code) are supported by low-level
routines that you can replace to support non-standard environments. This is
described in “Tailoring the System Programming C Environment” on page 523.

488 OS/390 V2R10.0 C/C++ Programming Guide

System Programming C Facility Considerations and Restrictions
When using any system programming C environment, consider the following:

v The fetch() function is not supported when you are running in a system
programming C environment. You can use the EDCXLOAD routine, as described in
“EDCXLOAD” on page 527, to simulate some of the functionality of the fetch()
function.

v The IMS parameter list established by the #pragma runopts(PLIST(IMS)) directive
is not supported in any of the system programming environments. However, this
does not preclude the use of IMS within these environments, because the
registers upon entry are available using the __xregs() function and ctdli() is
bound statically. For more information on __xregs(), refer to “__xregs() — Get
Registers on Entry” on page 533.

v Interlanguage calls to COBOL and PL/I are not supported. However, an SPC
program can use the system() function to call modules written in other
languages.

v SPC is not supported under CICS or MTF.

v Library functions for use with HFS I/O are not supported under SPC. Calling
them causes unpredictable results.

v All run-time options are ignored except for:

– STACK

– HEAP

– TRAP.

v Redirection of standard streams is not supported.

v The default initial stack size is the minimum size required to start the C program.
(This default is different from the non-systems programming C environments.) If a
size is specified, that actual value is used, provided it is large enough. If the
value specified is smaller than the requirements for the program, the required
value is used.

v The default value for the HEAP run-time option is HEAP(12K,4K,ANY,FREE).

v When you are running a service routine, you should with #pragma
runopts(TRAP(OFF)).

v Exception handling is not supported in a persistent environment.

v Invoking the system() function from an atexit() function results in undefined
behavior.

v When using the atexit() function from a persistent environment, the atexit list w
ill not be run until the persistent environment has been terminated by the
__xhott() library function. For more information about this function, see
“__xhott() — Terminate a Persistent C Environment” on page 532.

v Calls to math library functions can be made in a system programming C
environment using the dynamic library. For the most efficient use of calls to math
library functions, you should enclose the function name in parentheses (). For
example, if you make a call to sin(), use:

z = (sin)(x);

v You cannot call ctrace(), csnap(), cdump(), or ctest() because they rely on
OS/390 Language Environment callable services.

v System programming C environments are disjointed from each other; that is,
memory files cannot be passed and file control is not maintained across
environments. Thus, memory files cannot be passed between a C program and a
callee that is written as an assembler exit.

Chapter 34. Using the System Programming C Facilities 489

An exception is between environments where the target environment is built with
EDCXSTRL or EDCXSTRX but does not represent a server. For example, if a C
program invokes a freestanding SPC application that is not a server by using
system(), a memory file can be passed successfully between the programs.

v When developing an application with an interface with assembler, you can use
the DSECT Conversion Utility to build structures mapping to the data types of
your DSECTs.

v The POSIX locale features and coded character set conversion routines are
supported only for system programming applications that use OS/390 Language
Environment. They are not available for freestanding applications.

Creating Freestanding Applications
Freestanding applications are C modules that run either:

v Without OS/390 Language Environment and the OS/390 C library (using
EDCXSTRT)

v Without OS/390 Language Environment but with the OS/390 C library functions
(using EDCXSTRL)

Three initialization routines are provided by SPC for building freestanding
applications:

EDCXSTRT
For building completely freestanding applications. The applications can use
no OS/390 C run-time library functions and can have no OS/390 Language
Environment attachment.

EDCXSTRL
For building applications that use OS/390 C run-time library functions but
have no OS/390 Language Environment attachment.

EDCXSTRX
This routine accepts a parameter to choose whether your application should
behave as if it was initialized with either EDCXSTRT or EDCXSTRL. This
parameter is described further in “Setting up a C Environment with
Preallocated Stack and Heap” on page 492.

Certain restrictions apply to freestanding applications initialized by the routines
EDCXSTRT, EDCXSTRL, and EDCXSTRX. These restrictions are as follows:

v They cannot perform interlanguage calls, except with assembler language
routines that preserve register 12 and use the IBM-supplied macros for entry and
exit.

v The parameters received by the main() function (normally argc and argv) are
undefined. __xregs() (described in “__xregs() — Get Registers on Entry” on
page 533) can be used to examine the parameters passed by the calling
environment.

v They cannot do arithmetic using long double variables on pre-XA machines (that
is, on machines that do not support the DXR instruction).

Creating Modules without CEESTART
In many of the environments described in this chapter, the initialization normally
performed by OS/390 Language Environment is replaced by special-purpose
routines that are tailored to the specific requirements of the type of application. This
requires replacing the initialization routine (CEESTART) normally used by OS/390 C.

490 OS/390 V2R10.0 C/C++ Programming Guide

When you do not use the System Programming C Facilities, the compiler generates
a CEESTART CSECT (control section) whenever a main() or fetchable function is
encountered in the source file. With the NOSTART compiler option, described in the
OS/390 C/C++ User’s Guide, you can suppress the generation of CEESTART for
source files that contain a main() function where this is required. In a system
programming C environment, you must compile using the NOSTART option. The
object modules created will then be suitable for inclusion in applications that use the
alternative initialization routines described in this chapter.

Including an Alternative Initialization Routine under OS/390
When NOSTART is used to suppress the generation of CEESTART, an alternative
initialization routine must be explicitly included in the executable by the user at Link
Edit. Use the Linkage Editor INCLUDE and ENTRY control statements. To include the
alternative initialization routines described in this chapter, allocate CEE.SCEESPC to
the SYSLIB DD. For example, you can use the following linkage editor statements to
specify EDCXSTRT as an alternative initialization routine:

Another example of specifying alternative initialization under OS/390 is shown in
Figure 142 on page 493.

Initializing a Freestanding Application without Language Environment.

EDCXSTRT
This routine is for C applications that do not use any OS/390 Language
Environment facilities or OS/390 C facilities or library functions. It must be explicitly
included in the program and specified as the program entry point if it is to be used.

Under this environment, only the following library routines are supported:

v Built-in compiler functions. For a list of these functions, refer to the table on page
on page 488.

v Memory management routines, including malloc(), calloc(), realloc(), and
free().

v The exit() and sprintf() functions.

v The __4kmalc() and __24malc() functions.

The value returned to the host system will be the return value from main().

The RENT compiler option is supported in this environment.

Initializing a Freestanding Application Using C Functions

EDCXSTRL
This routine is the analog of CEESTART for C applications that use the OS/390 C
library functions only. EDCXSTRL supports the full library of C functions except for
functions such as cdump(), csnap(), ctest(), or ctrace(). EDCXSTRL must be
explicitly included in the program and specified as the program entry point if it is to
be used.

//SYSLIN DD *
INCLUDE SYSLIB(EDCXSTRT)
ENTRY EDCXSTRT
INCLUDE OBJECT(main-function)

/*

Figure 140. Specifying Alternative Initialization at Link Edit

Chapter 34. Using the System Programming C Facilities 491

The value returned to the host system will be the return value from main().

The RENT compiler option is supported in this environment.

Service routines (described in “Developing Services in the Service Routine
Environment” on page 505) require this routine (or EDCXSTRT if they do not require
OS/390 Language Environment) for their initialization.

Applications initialized with this routine will run in any environment supported by
OS/390 Language Environment.

Setting up a C Environment with Preallocated Stack and Heap

EDCXSTRX
This routine is the analog of CEESTART for an application where you want to have
more control over contents supervision and storage management. Unlike EDCXSTRT,
EDCXSTRL, and CEESTART, this routine cannot be entered directly from the operating
system (that is, from JCL, REXX EXECs, CLISTs, or the TSO command line). It
requires a structured parameter list (OS linkage) containing:

Parameters

1. The parameter list to be passed to main(). __xregs() can be used to examine
the parameters passed by the calling environment. This list cannot be accessed
by argc or argv.

2. The address of the initial storage area. This area must be doubleword aligned
with its first word containing its total length. It must be large enough to
accommodate the entire stack requirements of the application.

3. The address of the complete heap allocation (or NULL if no malloc() family
storage is required by the called routines). This area must be doubleword
aligned with its first word containing its total length. This area must include
sufficient space for the control structures required to manage the heap (currently
a minimum of 40 bytes). Applications that use the OS/390 C library functions will
always require heap space; the amount required depends on the structure of
the application and may vary from run to run if external characteristics (file block
sizes, for example) change.

Any heap increments that occur because the size of the initial heap is not large
enough will not be freed at termination by the system programming
environment. If no initial heap allocation is specified, and a heap is required
(because the OS/390 C library functions are required, for example), it will not be
freed by the System Programming C Environment. If this behavior is detected,
the program will run to completion, but will abend during EDCXSTRX termination
with abend code 2108 and reason code 7207.

Heap increments will be freed if you explicitly free the memory (using the free()
function) and the run-time option HEAP(FREE) has been specified. You should
specify a heap value of at least 4K if you are running with the OS/390 C library
functions.

4. The address of the OS/390 C run-time library or NULL. Use CEEEV003 (or EDCZV, if
you want to maintain compatibility with previous releases of OS/390 Language
Environment).

The parameters (argc and argv) passed to the main() function are undefined. There
is no argument parsing (argc and argv) or redirection of standard streams.

492 OS/390 V2R10.0 C/C++ Programming Guide

If the OS/390 C library functions are required, the routine EDCXABRT must be
explicitly included during the link edit. This routine enables exception handling for
EDCXSTRX. If it is not explicitly included, abend code 2107 with reason code 7206
will terminate the program.

The RENT compiler option is supported in this environment only if the OS/390 C
library functions are used.

Determining ISA requirements

EDCXISA
This entry point is available to the caller of EDCXSTRX to determine the stack space
overhead for the environment being created. Add stack space required by the
application to the value returned by this routine to determine the size of the area to
be passed as the second parameter to EDCXSTRX. If the routine is called from
assembler, the value should be expected in Register 15. The routine should be
declared as:
#pragma linkage(__xisa,OS)

int __xisa(void);

Building Freestanding Applications to Run under OS/390
When you are building freestanding applications under OS/390, CEE.SCEESPC must
be included in the binder SYSLIB concatenation before CEE.SCEELKED.

The routines to support this function (EDCXSTRT, EDCXSTRL, and EDCXSTRX) are
CEESTART replacements (described in “Creating Modules without CEESTART” on
page 490) in your module. Therefore, the appropriate EDCXSTRn routine must be
explicitly included ahead of the module at link edit.

A simple freestanding routine that requires the library is shown in Figure 141.

CBC3GSP1

This routine is compiled normally and link edited using control statements shown in
Figure 142. The CEE.SCEERUN load library must be available at run time because it
contains the C library function puts().

/* this is an example of a freestanding OS/390 routine */

#include <stdio.h>

int main(void) {
puts("Hello, World");
return 3999;

}

Figure 141. Sample Freestanding OS/390 Routine

INCLUDE SYSLIB(EDCXSTRL)
INCLUDE OBJECT
ENTRY EDCXSTRL

Figure 142. Link Edit Control Statements Used to Build a Freestanding OS/390 Routine

Chapter 34. Using the System Programming C Facilities 493

Figure 143 shows how to compile and link a freestanding program using the
cataloged procedure EDCCL.

Special Considerations for Reentrant Modules
A simple freestanding routine that does not require the library is shown in
Figure 144. To develop a reentrant module, this routine must be compiled with both
the RENT (because the module contains writable static at �2�) and NOSTART (because
this is a system programming environment) compiler options. This routine uses the
exit() function, which is normally part of the OS/390 Language Environment
library. Like sprintf(), it is available to freestanding routines without requiring the
dynamic library.

CBC3GSP2

JCL Required
The JCL required to build and execute this routine is shown in Figure 145 on
page 495.

//JOBC JOBCARD STATEMENTS
//*---
//***
//*** COMPILE AND LINK FOR STRL ENTRY POINT
//***
//C106001 EXEC EDCCL,
// INFILE='USERID.SPC.SOURCE(C106000)',
// OUTFILE='USERID.SPC.LOAD(C106000),DISP=SHR',
// CPARM='OPT,NOSEQ,NOMAR,NOSTART',
// LPARM='RMODE=ANY,AMODE=31'
//COMPILE.USERLIB DD DSN=userid.HDR.FILES,DISP=SHR
//LKED.SYSLIB DD DSN=CEE.SCEESPC,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
//LKED.SYSIN DD *

INCLUDE SYSLIB(EDCXSTRL)
ENTRY EDCXSTRL

/*

Figure 143. Compile and Link Using EDCCL

/* this is an example of a reentrant freestanding OS/390 routine */
#include <stdlib.h> �1�
int main() {

static int i[5]={0,1,2,3,4}; �2�
exit(320+i[1]);

}

Figure 144. Sample Reentrant Freestanding OS/390 Routine

494 OS/390 V2R10.0 C/C++ Programming Guide

�1� The OS/390 Language Environment prelinker must be used for modules
compiled with the RENT compiler option.

�2� This is the object module created by compiling the sample module with the
RENT and NOSTART compiler options.

�3� The output from the prelinker is made available to the linkage editor.

�4� The alternative initialization routine (EDCXSTRT in this example) must be
included explicitly in the module. If this is not the first CSECT in the module, it
must be explicitly named as the module entry point.

�5� The prelinked output is included in the load module.

�6� EDCXEXIT must be explicitly included if the exit() function is used in the
application.

�7� The routine EDCRCINT must be explicitly included in the module if the RENT
compiler option is used. No error will be detected at load time if this routine
is not explicitly included. At execution time, abend 2106, reason code 7205,
will result if EDCRCINT is required but not included.

Parts Used for Freestanding Applications
Table 59 on page 496 lists the parts used for freestanding applications and their
function and location. The SYSLIB specified is CEE.SCEESPC.

//PLKED EXEC PGM=EDCPRLK,PARM='MAP,NCAL' �1�
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//SYSMSGS DD DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DUMMY
//SYSMOD DD DSNAME=&&PLKSET,SPACE=(32000,(30,30)),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),
// DISP=(MOD,PASS)
//SYSIN DD DSNAME=userid.TEST.OBJECT(PROG1),DISP=SHR �2�
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
//*
//LKED EXEC PGM=HEWL,PARM='MAP,XREF,LIST' �3�
//SYSLIB DD DSNAME=CEE.SCEESPC,DISP=SHR
// DD DSNAME=CEE.SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=&&GOSET(GO),SPACE=(512,(50,20,1)),
// DISP=(NEW,PASS),UNIT=SYSDA
//SYSUT1 DD SPACE=(32000,(30,30)),UNIT=SYSDA
//PRELINK DD DSNAME=&&PLKSET,DISP=(OLD,DELETE)
//SYSLIN DD *
INCLUDE SYSLIB(EDCXSTRT) �4�
INCLUDE PRELINK �5�
INCLUDE SYSLIB(EDCXEXIT) �6�
INCLUDE SYSLIB(EDCRCINT) �7�
/*
//*
//*--
//* Go Step
//*--
//GO EXEC PGM=*.LKED.SYSLMOD
//SYSPRINT DD SYSOUT=*

Figure 145. Building and Running a Reentrant Freestanding OS/390 Routine

Chapter 34. Using the System Programming C Facilities 495

Table 59. Parts Used for Freestanding Applications

Part Name Function

Inclusion in Program

LocationNotes

EDCXSTRT This module is the mainline for
applications that do not require
the OS/390 Language
Environment or OS/390 C
run-time library.

1 This CSECT must be
the module entry
point.

Member of SCEESPC

EDCXSTRL This module is the mainline for
applications that require only the
C-specific library functions.

1 This CSECT must be
the module entry
point.

Member of SCEESPC

EDCXSTRX This module is the mainline for
applications that receive a
structured parameter list that
includes preallocated storage
management areas.

2 Member of SCEESPC

EDCXISA Get ISA requirements for
EDCXSTRX.

2 Member of SCEESPC

EDCXSPRT System programming version of
sprintf().

3 Member of SCEESPC

EDCXEXIT System programming version of
exit().

3 Member of SCEESPC

EDCXMEM System programming version of
malloc(), calloc(), realloc(),
free(), __4kmalc() and
__24malc().

3 Member of SCEESPC

EDCRCINT This must be included if the
compiler option RENT is to be
used.

3 Member of SCEESPC

EDCXABRT System programming version of
exception handling.

3 Member of SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming version of the function.

Creating System Exit Routines
OS/390 C allows the creation of routines that have no environmental requirements
on entry except:

v Register 13 must point to a 72-byte save area

v Register 14 must contain the return address

v Register 15 must contain the entry address

There is no requirement on the name of the entry point (that is, it does not have to
be main()), so several different entry points, with names specified by the calling
environment, can be combined in the same program.

Routines that do not require the OS/390 C environment should specify one of these
two pragma forms:

496 OS/390 V2R10.0 C/C++ Programming Guide

v #pragma environment(function-name), if the library is required, or

v #pragma environment(function-name,nolib), if no library is required.

This pragma causes the compiler to generate a different prolog for the specified
function. The prolog contains the instructions at the beginning of the routine that
perform the housekeeping necessary for the function to run, including allocation of
the function’s automatic storage. This prolog will set up a C environment sufficient
for both the function in which it is specified and any function that may be called.
Called functions should not specify this pragma, unless they are called elsewhere
without a C environment present. This new prolog will load and initialize the module
containing the C library functions if this choice is specified.

For more information on the #pragma environment, see OS/390 C/C++ Run-Time
Library Reference.

The RENT compiler option is not supported in this environment; if you require
reentrant system exit routines, the routine must be naturally reentrant. See OS/390
Language Environment Programming Guide for more information about reentrancy.

System exit routines can be linked with their callers or dynamically loaded and
invoked.

Building System Exit Routines under OS/390
The CEE.SCEESPC object library must be available at link-edit time. If the C library is
required by the exit routines, CEE.SCEELKED must also be made available after
CEE.SCEESPC. You should explicitly name the entry point with an ENTRY statement.

An Example of a System Exit
Table 60 on page 500 lists the parts used by exit The following C program is a
system exit that gains control from the system when an unknown CLIST subroutine
is encountered. It checks if the name is recognized as a user-specific subroutine
before returning control to the system. For more information on this system exit, see
OS/390 TSO/E Customization.

Chapter 34. Using the System Programming C Facilities 497

CBC3GSP3

/* this is an example of a system exit */
#pragma environment(IKJCT44B,nolib) �1�
/* */
/* IKJCT44B CLIST EXIT */
/* */
#include <stdio.h>
#include <stdlib.h>
#include <spc.h>

struct parmentry { int key;
int len;
char *pt; };

typedef struct parmentry P_ENT;

#define REVERSE 0
#define FLIPCHR 1
/* Valid commands */
static char *cmds[] =
{

"SYSXTREV", "SYSXTFLIP" �2�
};
void revstring(P_ENT *p11, P_ENT *p12);
void flipstring(P_ENT *p11, P_ENT *p12);
int IKJCT44B() {

int **parme;
struct parmentry *e7, *e10, *e11, *e12, *e13;

/* Get registers on entry */
parme = (void *)__xregs(1);
/* Get the parameter entry values for those relevant for CLISTs */
e7 = (struct parmentry *)parme[6]; /* exit return */
e10 = (struct parmentry *)parme[9];
e11 = (struct parmentry *)parme[10];
e12 = (struct parmentry *)parme[11];
e13 = (struct parmentry *)parme[12];

Figure 146. System Exit Example (Part 1 of 2)

498 OS/390 V2R10.0 C/C++ Programming Guide

�1� The #pragma environment directive sets up an entry point IKJCT44B other
than main().

�2� This is the list of user-specific subroutines that are available in this system
exit.

/* Is the command supported? */
switch(cmdchk(e10)) { case REVERSE: /* Reverse string */

revstring(e11, e12);
break;

case FLIPCHR: /* Exchange the first and last chars only */
flipstring(e11, e12);
break;

default: /* Unknown command type. Return with an error. */
e12->pt[0] = 0x00;
e12->len = 0;
/* Set the return code */
e7->key = 0x01;
e7->len = 0x04;
*(int *)(&e7->pt) = 0x06;
return 12;

}

/* Return to caller - CLIST is supported. */
e7->key = 0x01;
e7->len = 0x04;
*(int *)(&e7->pt) = 0x00;
return 0;

}

/* cmdchk(P_ENT *pt) */
/* - is the command in the list of user-specific cmds? */
int cmdchk(P_ENT *pt) {

int i;
for(i=0; i<(sizeof(cmds)/sizeof(char *)); i++) {

if(memcmp(pt->pt, cmds[i], pt->len) == 0)
return i;

}
/* Not found */
return -1;

}
/* revstring().... */
/* - reverse the string */
void revstring(P_ENT *p11, P_ENT *p12) {

int i;

for(i=0; i<p11->len; i++)
p12->pt[i] = p11->pt[p11->len-i-1];

p12->len = p11->len;
}

/* flipstring() ... */
/* - flip the first and last characters in the string */
void flipstring(P_ENT *p11, P_ENT *p12) {

char t;
t = p11->pt[p11->len-1];
memcpy(p12->pt, p11->pt, p11->len);
p12->pt[p11->len-1] = p12->pt[0];
p12->pt[0] = t;
p12->len = p11->len;

}

Figure 146. System Exit Example (Part 2 of 2)

Chapter 34. Using the System Programming C Facilities 499

�3� The function __xregs() is used to retrieve the parameters available to the
system exit in R1 from the operating system.

�4� The parameters are parameter entries passed from TSO to this system exit
and are used for the following reasons:

e7 Exit reason code

e10 Name of subroutine

e11 Arguments

e12 Result

�5� The list of user-specific subroutines is checked and if the unknown CLIST
subroutine is recognized, the subroutine is called. Otherwise, the function
returns in error.

Table 60 lists the parts used by the routines, and their function and location in MVS.
The SYSLIB specified is CEE.SCEESPC.

Table 60. Parts Used by Exit Routines

Part Name Function

Inclusion in Program

LocationNotes

EDCXENV Extended prolog code for
exits that do not require
the library.

2 Member of
SCEESPC

EDCXENVL Extended prolog code for
exits that require the
library.

2 Member of
SCEESPC

EDCXSPRT System programming
version of sprintf().

3 Member of
SCEESPC

EDCXEXIT System programming
version of exit().

3 Member of
SCEESPC

EDCXMEM System programming
version of malloc(),
calloc(), realloc(),
free(), __4kmalc() and
__24malc().

3 Member of
SCEESPC

EDCXABRT System programming
version of exception
handling.

3 Member of
SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE
control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming
version of the function.

Creating and Using Persistent C Environments
Four routines are available to create and use a persistent C environment. These
routines are used by an assembler language application that needs a C
environment available to support the C functions (not including main()) that it calls.

500 OS/390 V2R10.0 C/C++ Programming Guide

An initialization routine, EDCXHOTC or EDCXHOTL (depending upon whether the called C
subroutines will need the OS/390 C library functions), is called to create a C
environment. This call returns a handle that can be used (through EDCXHOTU) to call
C subroutines. The environment persists until it is explicitly terminated by calling
EDCXHOTT.

The four routines are:

EDCXHOTC
Sets up a persistent C environment (no library)

EDCXHOTL
Sets up a persistent C environment (with library)

EDCXHOTU
Runs a function in a persistent C environment

EDCXHOTT
Terminates a persistent C environment

The functions that act as entry points for these routines are __xhotc(), __xhotl(),
__xhotu(), and __xhott(), respectively. For more information on these four
functions, refer to “Chapter 35. Library Functions for System Programming C” on
page 531.

The RENT compiler option is not supported in the persistent environment described
in this chapter.

Exception handling is not supported in persistent C environments.

As an alternative to the persistent environments, you can also create and retain a C
environment using the preinitialized programming interface. This interface supports
the RENT compiler option, but is less versatile in other respects. OS/390 Language
Environment provides a callable service for preinitialization called CEEPIPI. This is
described in OS/390 Language Environment Programming Guide. You may also
find information in “Retaining the C Environment Using Preinitialization” on page 256
helpful.

Building Applications That Use Persistent C Environments
There are no special restrictions for building applications that use persistent C
environments. The automatic call facility will cause the correct routines from the
SYSLIB to be included.

If any C library function is required by any routine called in this environment, the
stub routines library CEE.SCEELKED should be made available at link time after
CEE.SCEESPC.

An Example of Persistent C Environments
The assembler routine shown in Figure 148 on page 503 illustrates the use of this
feature to call a C function shown in Figure 147 on page 502.

Chapter 34. Using the System Programming C Facilities 501

CBC3GSP4

This C function accepts two parameters: an integer and a printf()-style formatting
string. The formatting string has a maximum length of 300 bytes; it is terminated by
an @ if shorter. This routine must use OS linkage (�1� The routine scans the
formatting string for the terminator, copies it to a local work area, adds a trailing
newline and NULL character, and prints the integer according to the formatting string.

The structure of the assembler caller is shown in Figure 148 on page 503.

/* this example uses a persistent C environment */
/* part 1 of 2-other file is CBC3GSP5 */

#pragma linkage(crtn,OS) �1�
#include <string.h>
#include <stdio.h>
#define INSIZE 300 /* the maximum length we'll tolerate */

void crtn(int p1,char *p2) {
char hold[2+INSIZE];
char *endptr;
int i;

endptr=memchr(p2,'@',INSIZE);
if (NULL==endptr)

i=INSIZE; /* no ender? use max */
else

i=endptr-p2; /* length of stuff before it */

memcpy(hold,p2,i); /* copy formatting string */
hold[i++]='\n'; /* add a new-line.. */
hold[i]='\0'; /* ..and a null terminator */

printf(hold,p1); /* print it out */

return; /* and return */
}

Figure 147. Example of Function Used in a Persistent C Environment

502 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GSP5

* this example demonstrates a persistent C environment
* part 2 of 2-other file is CBC3GSP4
ENVA CSECT
ENVA AMODE ANY
ENVA RMODE ANY

STM R14,R12,12(R13) �1�
LR R3,R15
USING ENVA,R3
GETMAIN R,LV=DSALEN
ST R13,4(,R1)
LR R13,R1
USING DSA,R13
LA R4,HANDLE �2�
LA R5,STKSIZE
LA R6,STKLOC
STM R4,R6,PARMLIST
OI PARMLIST+8,X'80'
LA R1,PARMLIST
L R15,=V(EDCXHOTL)
BALR R14,R15
LA R8,10 �3�

LOOP DS 0H
ST R8,LOOPCTR �4�
LA R4,HANDLE
LA R5,USEFN
LA R6,LOOPCTR
LA R7,FMTSTR1
STM R4,R7,PARMLIST
OI PARMLIST+12,X'80'
LA R1,PARMLIST
L R15,=V(EDCXHOTU)
BALR R14,R15
LA R7,FMTSTR2 �5�
STM R4,R7,PARMLIST
OI PARMLIST+12,X'80'
L R15,=V(EDCXHOTU)
BALR R14,R15
BCT R8,LOOP

Figure 148. Using a Persistent C Environment (Part 1 of 2)

Chapter 34. Using the System Programming C Facilities 503

�1� This routine is entered with standard linkage conventions. It saves the
registers in the save area pointed to by register 13, acquires a dynamic
storage area for its own use, and chains the save areas together.

�2� A C environment that includes support for the OS/390 C library is created
by calling EDCXHOTL. The parameter list for this call is the address of the
handle (for the persistent C environment created), the address of a word
containing the initial stack size, and the address of a word containing the
initial stack location (0 for below the 16MB line and 1 for above). This
parameter list uses the normal OS linkage format.

�3� The routine loops 10 times calling the C function crtn twice each time
through the loop.

�4� The parameter list for the first call is the address of the handle, the address
of a word pointing to the function, and the parameters to be received by the
function. EDCXHOTU is called. This causes the specified C function, crtn() to
be given control with register 1 pointing to the remaining parameters,
LOOPCTR and FMTSTR1.

�5� The C function is called again, this time with FMTSTR2 as the second
parameter.

ST R4,PARMLIST �6�
OI 0(R1),X'80'
LA R1,PARMLIST
L R15,=V(EDCXHOTT)
BALR R14,R15
LR R1,R13 �7�
L R13,4(0,R13)
FREEMAIN R,A=(1),LV=DSALEN
LM R14,R12,12(R13)
SR R15,R15
BR R14

USEFN DC V(CRTN)
STKSIZE DC A(4096)
STKLOC DC A(1)
FMTSTR1 DC C'1st value of loopctr is %i@'
FMTSTR2 DC C'value on 2nd call is %i@'

LTORG
DSA DSECT , The dynamic storage area
SAVEAREA DS 18A The save area
PARMLIST DS 4A
HANDLE DC A(0)
LOOPCTR DC A(1)
DSALEN EQU *-DSA
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END ENVA

Figure 148. Using a Persistent C Environment (Part 2 of 2)

504 OS/390 V2R10.0 C/C++ Programming Guide

�6� When the loop ends, EDCXHOTT is called to terminate the environment
created at �2�

�7� The routine terminates by freeing its dynamic storage area and returning to
its caller.

Table 61 lists the parts used by persistent environments and their function and
location. The SYSLIB is CEE.SCEESPC.

Table 61. Parts Used by Persistent Environments

Part Name Function

Inclusion in Program

LocationNotes

EDCXHOTC This module is called to
set up a C environment
without OS/390
Language Environment.

2 Member of
SCEESPC

EDCXHOTL This module is called to
set up a C environment
with the OS/390 C library
functions available.

2 Member of
SCEESPC

EDCXHOTT This module is called to
terminate a C
environment set up by
EDCXHOTC or
EDCXHOTL.

2 Member of
SCEESPC

EDCXHOTU This module is called to
use a C environment set
up by EDCXHOTC or
EDCXHOTL.

2 Member of
SCEESPC

EDCXSPRT System programming
version of sprintf().

3 Member of
SCEESPC

EDCXEXIT System programming
version of exit().

3 Member of
SCEESPC

EDCXMEM System programming
version of malloc(),
calloc(), realloc(),
free(), __4kmalc() and
__24malc().

3 Member of
SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE
control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming
version of the function.

Developing Services in the Service Routine Environment
The purpose of an application service routine environment is to allow the
development, using OS/390 C, of services that can be developed, tested, and
packaged independently of their intended users. You can:

v Isolate the service code from its user

v Specify and enforce a clearly defined Application Programming Interface (API)
between the user (another application program) and the service routine

Chapter 34. Using the System Programming C Facilities 505

v Share server code among more than one (perhaps different) user applications
simultaneously

v Enhance or maintain the service routine code with no disruption to its various
user applications

In this environment, a service application is developed as a C main() function
together with any functions it may call, and packaged as a complete program. This
program, if it is reentrant, can be freely installed in the ELPA and shared by all of its
users.

To provide the service to a user application, the developer of the service must offer
small assembler language stub routines that are link-edited with the user code.
These stub routines use services provided by the System Programming Facilities to
load or locate the server code and pass messages to it for execution. Examples of
these stub routines are shown in “Constructing User-Server Stub Routines” on
page 522.

Using Application Service Routine Control Flow
In this section examples are based on a service routine that manages a storage
queue. This server might be used by languages that do not support dynamic
memory allocation, or by applications that do not want to concern themselves with
the management of such data structures. The operations supported by this service
routine are:

v Initialize

v Terminate

v Add an element to the head of the queue (last in, first out)

v Add an element to the tail of the queue (first in, first out)

v Get the element at the head of the queue

Service Routine User Perspective
A conversation is initiated when a user routine calls a startup routine supplied by
the author of the service to establish a connection between the user and the server.
This routine returns a handle to the user that represents the server environment.
User routines may establish connections with many different services or many times
with the same server as long as the needed resources, principally memory, are
available in the system. Each connection has a different handle, and it is the user
routine’s responsibility to keep track of them.

Note: Memory files cannot be shared between the user routines and the server.

Once the user has initialized the server, it uses other server-supplied stub routines
to send requests (messages) to the server for action. One of the parameters to this
routine will be the handle returned by the initialize call. These request stubs would
typically return a feedback code to indicate success or failure as well as any other
information requested. The server defines the parameter list to be passed and the
feedback codes to be given to the user.

When the user is finished with the server, it calls yet another stub routine to
terminate the server.

This structure is illustrated in a sample user routine shown in Figure 149 on
page 507:

506 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GSP6:

�1� The user routine sets up a variable that will be used to hold the handle
returned by the server. The form taken by this handle is up to the supplier
of the service, but a fullword (4 bytes) should be regarded as typical.

�2� The user routine calls the initialize routine to set up the connection between
the user routine and the server.

�3� The user routine adds three strings to the queue. In this example, the first
character of the string indicates the order in which the user expects to
retrieve the strings.

�4� The user enters a loop in which the strings are retrieved from the queue.

�5� The user routine prints out the strings passed back by the call to the server.
If there is no string remaining in the queue a null string (zero length) is
returned.

�6� Before ending, the user routine closes down the server.

This routine is linked normally with the server-supplied stub routines (described in
“Constructing User-Server Stub Routines” on page 522).

PROGRAM MAIN

C Example User-Service Routine application

C Define the variable that will hold the 'handle' for the server
INTEGER*4 HANDLE �1�

C Define the variable that will hold feedback codes
INTEGER*4 FEEDBACK

C Define the variable that we'll use to get the strings back
CHARACTER*100 CH
INTEGER*4 CHLEN

C initialize the server
CALL QMGINIT(HANDLE) �2�

C Feed some strings to the server �3�
CALL QMGLIFO(HANDLE,FEEDBACK,17,'2 Sample string 1')
CALL QMGLIFO(HANDLE,FEEDBACK,23,'1 Another sample string')
CALL QMGFIFO(HANDLE,FEEDBACK,20,'3 Yet another string')

C Get the strings back, print out length and value
DO 1 I=1,3 �4�
CALL QMGGET(HANDLE,FEEDBACK,CHLEN,CH)
PRINT *,CHLEN,CH(1:CHLEN) �5�

1 CONTINUE

C Terminate the server

CALL QMGTERM(HANDLE) �6�

C Go home
STOP
END

Figure 149. Example of User Routine

Chapter 34. Using the System Programming C Facilities 507

Service Routine Perspective
A service routine is a complete, stand alone module that runs in its own C
environment. Its environment is created on demand by user application routines that
call it using stub routines supplied by the server. When this happens, the server
code enters at its main() entry point and, typically, goes into a loop that contains a
function call to get the next to-do. One possible to-do is terminate; when this
command is received the server should exit() or return from its main() function.
The environment created when the server was started terminates and all resources
held by the server are freed (except storage acquired by __24malc() or __4kmalc(),
as described in “__24malc() — Allocate Storage below 16MB Line” on page 535
and “__4kmalc() — Allocate Page-Aligned Storage” on page 535.

This structure is illustrated in a sample user routine shown in Figure 150:

CBC3GSP7:

/* this is an example of an application service routine */

#include <spc.h> �1�
#include <stdlib.h>
#include <string.h>

#define LIFO 1 �2�
#define FIFO 2
#define GET 3
#define TERM -1

int main(void) { �3�

int retcode=0;

/* data structures to manage the queue */
struct queue_entry { �4�

struct queue_entry *next;
int length;
char val[1];

};

struct queue_entry *head;
struct queue_entry *tail;

Figure 150. Example of application service routine (Part 1 of 3)

508 OS/390 V2R10.0 C/C++ Programming Guide

struct { �5�
int code;
union info *plist;

} *req;

union info { �6�
struct {

int *length;
char *string;

} lifo;
struct {

int *length;
char *string;

} fifo;
struct {

int *length;
char *string;

} get;
};
/* initialize the queue pointers */
head = NULL; �7�
tail = NULL;

/* the main processing loop goes on until a termination signal
is sent */

for(;;) { �8�
union info *info;
int length;
char *string;
struct queue_entry *ent;

/* get a message from the user routine */
req=__xsrvc(retcode); �9� �18� .
info = req->plist; �10�

switch(req->code) { �11�

case LIFO: { �12�
length=*(*info).lifo.length;
string= (*info).lifo.string;
ent = malloc(sizeof *ent - 1 + length); �13�
memcpy((*ent).val,string,length);
__xsacc(0); �14�
(*ent).length=length;
(*ent).next=head;
head=ent;
if (NULL==tail) tail=ent;
break;

}

Figure 150. Example of application service routine (Part 2 of 3)

Chapter 34. Using the System Programming C Facilities 509

�1� The server routine should include the appropriate header files. spc.h
contains the function prototypes for the routines that are used to maintain
the conversation between the server routine and the user routine. string.h
is required if string or memory functions are used in the code and OS/390
Language Environment will not be available at run time; this header file
contains the directives necessary to use these built-in functions.

�2� These are the command codes of the requests that can be sent to this
server.

�3� The server begins with a main() function. This function gets control when
the user calls QMGINIT.

�4� This server manages an in-storage queue of unstructured elements. It does
this by maintaining a linked list of elements. The structure queue_entry
contains an individual entry; head and tail point to the first and last entries
in the queue.

�5� Requests come to the server in the form of a pointer to a structure
containing a command code (in this case, one of LIFO, FIFO, GET, or TERM)
and a pointer to a parameter list associated with the command code. The
parameter list is what follows HANDLE and FEEDBACK in the calls to QMGLIFO,

case FIFO: { �15�
length=*(*info).fifo.length;
string= (*info).fifo.string;
ent = malloc(sizeof *ent - 1 + length);
memcpy((*ent).val,string,length);
__xsacc(0);
(*ent).length=length;
(*ent).next=NULL;
if (NULL==head) head=ent;
else (*tail).next=ent;
tail=ent;
break;

}

case GET: { �15�
if (NULL==head) {

*(*info).get.length=0;
break;

}
length = (*head).length;
string = (*info).get.string;
memcpy(string,(*head).val,length);
*(*info).get.length=length;
__xsacc(0);
ent=head;
head=(*ent).next;
free(ent);
if (NULL==head) tail=NULL;
break;

}
case TERM: �16�

return 0;
default:

__xsacc(666); �17�

}
} �18�
return(0);

}

Figure 150. Example of application service routine (Part 3 of 3)

510 OS/390 V2R10.0 C/C++ Programming Guide

QMGFIFO, and QMGGET. Like the command codes, the structure of this
parameter list is established in concert with the stub routines.

�6� In this example, all the commands have exactly the same format. This may
not generally be the case, so a union of the various parameter list formats
is appropriate. Then the interface can be expanded without disrupting
existing code.

�7� Before accepting commands, required initialization is performed.

�8� This server is structured as an endless loop. This loop terminates when a
terminate message sends control to a return statement at �17�.

�9� At this point, the server is ready for work. The call to __xsrvc() causes the
user routine to resume execution at the place it left off when it last called
the server. The value passed as the parameter is made available to the
stub routines for use as a feedback code. This function will not return until
the user application sends a request (using one of the stub routines, in this
example QMGLIFO, QMGFIFO, QMGGET, or QMGTERM).

�10� Extract the parameters from the structure pointed to by the call to
__xsrvc().

�11� Examine the request code sent by the user application.

�12� The LIFO request code is handled here.

�13� These library functions (and many others, the complete list is given in
“Using Functions in the System Programming C Environment” on page 488)
are normally available in this environment even though OS/390 Language
Environment is not available at run time.

The amount of storage allocated is the size of the queue entry (defined at
�4�) minus 1 (because the definition of the entry allowed for 1 character of
value) plus the length actually required for the value.

�14� This function should be used to indicate that the server has completed its
use of any data structures (parameters and data areas pointed to by the
parameters) belonging to the user application. The value passed to this
function or the value passed by the next call to __xsrvc()(which ever is
greater in magnitude) will be passed to the stub routine for use as a
feedback code.

�15� The handling of FIFO and GET is similar.

�16� When a terminate request is received, the server returns. This terminates
the loop (at �8�) and the environment set up when the server was first
called.

�17� If the command code is not recognized the server acknowledges the
request and sets a return code that can be analyzed by the stub routine or
the user application.

�18� The server returns to the request for another to-do. The value passed as a
parameter here or the last value passed to __xsacc(), whichever has the
greater magnitude, is passed to the stub routine for use as a feedback
code.

The server is built as a freestanding C application as described in “Creating
Freestanding Applications” on page 490.

You must specify EDCXSTRT, QMGSERV, EDCXMEM and EDCXEXIT when you
link edit.

Chapter 34. Using the System Programming C Facilities 511

Understanding the Stub Perspective
The stub routines provide the link between the user application and the application
service module. They are responsible for:

v Locating or loading the server code

v Providing the Application Programming Interface (API) seen by the user.

Many choices are available in the design of the API and how single calls in the user
are mapped. For example, the initialize call could accept parameters governing the
behavior of the session being established and pass them to the server as
commands once the server has been initialized. In the example the interactions are
straight forward, the initialize only starts up the server, and the message calls send
single messages, untouched and unexamined, to the server.

There are two kinds of stubs: the initialization stub and the message stubs.
Termination is a special case of a message stub. These stubs are most
appropriately written in assembler so that they can run in any language environment
with minimal performance cost.

The initialization stub is responsible for loading and calling the server. It can use the
low-level storage management and contents supervision routines supplied in
SCEESPC. These routines are described in “Tailoring the System Programming C
Environment” on page 523. The structure of an initialization stub is shown in
Figure 151 on page 513:

512 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GSP8

�1� Stub routines are presumed to have a save area available at the location
pointed to by register 13.

�2� The parameter list passed to stub routines is OS linkage; that is, register 1
points to a list of addresses. In this example, the initialization stub receives
only one parameter, the handle, that gets the address of a control block
representing the environment.

�3� For efficiency, this routine gets a work area that will be used by all the stub
routines. The low level storage management routine EDCXGET, (described in
“EDCXGET” on page 524) is available for this purpose. This area will be the
DSA for this and all other stub routines. It begins with an 18-word save area
for use by routines called by this stub. It will be freed by the “terminate”
stub.

�4� When a save area is available, EDCXLOAD (described in “EDCXLOAD” on
page 527) is called to load the server.

* this is an example of a server initialization stub
QMGINIT TITLE 'SERVER supplied stub to initialize'
QMGINIT CSECT ,

STM R14,R12,12(R13) �1�
LR R3,R15
USING QMGINIT,R3
USING INPARMS,R1 �2�
L R6,HANDLE@
DROP R1
LA R0,WALEN length of work area, below the line �3�
L R15,=V(EDCXGET) GETMAIN some storage
BALR R14,R15
USING WA,R1
ST R13,SA+4
LR R13,R1
USING WA,R13 This is now our DSA
LA R1,NAME �4�
L R15,=V(EDCXLOAD)
BALR R14,R15 Load the server
ST R1,PLIST �5�
MVC PLIST+4(12),PLISTINI
L R15,=V(EDCXSRVI)
LA R1,PLIST
BALR R14,R15
MVC 0(4,R15),=CL4'QMqm' eye-catcher �6�
ST R13,4(,R15) �7�
ST R15,0(,R6) Save handle in users parameter �8�
L R13,4(,R13) �9�
LM R14,R12,12(R13)
SR R15,R15
BR R14

PLISTINI DS 0D
DC A(0),V(EDCXGET,EDCXFREE)

NAME DC CL8'QMGSERV'
INPARMS DSECT
HANDLE@ DS F
WA DSECT
SA DS 18F
PLIST DS 4F
WALEN EQU *-WA

YREGS
END

Figure 151. Example of Server Initialization Stub

Chapter 34. Using the System Programming C Facilities 513

�5� EDCXSRVI is called to initialize the server. When control is returned from this
call, the server has built a complete environment and has asked for
something to do.

�6� The value returned by EDCXSRVI is the address of a control block that is
used to manage the interface between the user application and the service
application module. The first 3 words (12 bytes) of this control block are
reserved for the exclusive use of the stub routines. The fields following the
first 3 words may not be used by either the stub routines or the user, nor
may their values be altered. In this example, an eye-catcher (often useful
for debugging) is moved into the first word.

�7� The address of the work area acquired for dynamic storage requirements is
moved into the second word. The address of this control block is stored in
the user’s handle.

�8� The address of the control block from EDCXSRVI is placed in the user
routine’s handle. The user routine has no knowledge of the contents or
format of this field; it is simply a token that is passed to other stub routines
to manage the conversation between the user and the service routine.

�9� Having initialized the server, the stub returns to the user at �2� in
Figure 149 on page 507.

Message stubs are responsible for passing requests from the user application to the
service application. Like the initialization stub, they are free to use the low-level
storage management and contents supervision routines supplied with the system
programming facilities. Example message stubs are shown in Figure 152 on
page 515, Figure 153 on page 516, Figure 154 on page 518, and Figure 155 on
page 520.

514 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GSP9

�1� Like the initialize stub, the QMGLIFO message stub expects a standard
save area pointed to by register 13. The parameters are passed with
standard OS linkage (register 1 pointing to a list of addresses).

�2� The handle contains the value that was placed there by the initialization
stub at �8� in Figure 151 on page 513. This is the address of the control
block that is used to manage the interface between the user application and
the server.

�3� Recover the address of the stub work area for use as a Dynamic Storage
Area (DSA). This value was saved here by the initialization stub at The
save area back chain field is set according to usual conventions.

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5� in
Figure 151 on page 513 in the initialization stub), code for LIFO, and the
address of the remaining parameters.

* this is an example of a server message stub
QMGLIFO TITLE 'SERVER supplied stub for feeding strings LIFO'
QMGLIFO CSECT

STM R14,R12,12(R13) �1�
LR R3,R15
USING QMGLIFO,R3
LR R5,R1
USING INPARMS,R5
L R6,HANDLE@
L R6,0(,R6) Point to the handle �2�
L R1,4(,R6) Point to work area got by QMGINIT �3�
USING WA,R1
ST R13,SA+4 Keep savearea passed into us
LR R13,R1 WA is new savearea
USING WA,R13
LA R7,LIFO �4�
LA R8,INPARMS+8 User parms start at 3rd
STM R6,R8,PLIST handle, LIFO, Other parms
LA R1,PLIST
L R15,=V(EDCXSRVN) �5�
BALR R14,R15
L R1,FEEDBK@ �6�
ST R15,0(,R1)
L R13,4(,R13) �7�
L R14,12(R13)
LM R0,R12,20(R13)
BR R14

INPARMS DSECT
HANDLE@ DS F
FEEDBK@ DS F
LENGTH@ DS F
STRING@ DS F
WA DSECT
SA DS 18F
PLIST DS 4F
WALEN EQU *-WA
LIFO EQU 1
FIFO EQU 2
GET EQU 3
TERM EQU -1

YREGS
END

Figure 152. Example of Server Message Stub-LIFO

Chapter 34. Using the System Programming C Facilities 515

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume
control at �9� in Figure 150 on page 508 in the server. The server has
control until it asks for the next to-do, in this example at �9�.

�6� The value passed to __xsrvc() appears as the return code from EDCXSRVN.
This value is passed back to the user application in the second parameter.
This is part of the API defined by this particular server, not something
inherent in the user-server relationship.

�7� Control is returned to the user in the usual way.

This routine uses functions supplied in SCEESPC to load or locate the server code
and initialize its environment.

CBC3GSPD

�1� Like the initialize stub, the QMGFIFO message stub expects a standard

* this is an example of a server message stub
QMGFIFO TITLE 'SERVER supplied stub for feeding strings FIFO'
QMGFIFO CSECT
QMGFIFO AMODE ANY
QMGFIFO RMODE ANY

STM R14,R12,12(R13) �1�
LR R3,R15
USING QMGFIF0,R3
LR R5,R1
USING INPARMS,R5
L R6,HANDLE@
L R6,0(,R6) Point to the handle �2�
L R1,4(,R6) Point to work area got by QMGINIT �3�
USING WA,R1
ST R13,SA+4 Keep savearea passed into us
LR R13,R1 WA is new savearea
USING WA,R13
LA R7,FIFO �4�
LA R8,INPARMS+8 User parms start at 3rd
STM R6,R8,PLIST handle, FIFO, Other parms
LA R1,PLIST
L R15,=V(EDCXSRVN) �5�
BALR R14,R15
L R1,FEEDBK@ �6�
ST R15,0(,R1)
L R13,4(,R13) �7�
L R14,12(R13)
LM R0,R12,20(R13)
BR R14

INPARMS DSECT
HANDLE@ DS F
FEEDBK@ DS F
LENGTH@ DS F
STRING@ DS F
WA DSECT
SA DS 18F
PLIST DS 4F
WALEN EQU *-WA
LIFO EQU 1
FIFO EQU 2
GET EQU 3
TERM EQU -1

YREGS
END

Figure 153. Example of Server Message Stub-FIFO

516 OS/390 V2R10.0 C/C++ Programming Guide

save area pointed to by register 13. The parameters are passed with
standard OS linkage (register 1 pointing to a list of addresses).

�2� The handle contains the value that was placed there by the initialization
stub at �8� in Figure 151 on page 513. This is the address of the control
block that is used to manage the interface between the user application and
the server.

�3� Recover the address of the stub work area for use as a Dynamic Storage
Area (DSA). This value was saved here by the initialization stub at �7� in
Figure 151 on page 513. The save area back chain field is set according to
usual conventions.

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5� in
Figure 151 on page 513), code for FIFO, and the address of the remaining
parameters.

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume
control at �9� Figure 150 on page 508 in the server. The server has control
until it asks for the next to-do, in this example at �9� in Figure 150 on
page 508, again.

�6� The value passed to __xsrvc() appears as the return code from EDCXSRVN.
This value is passed back to the user application in the second parameter.
This is part of the API defined by this particular server, not something
inherent in the user-server relationship.

�7� Control is returned to the user in the usual way.

This routine uses functions supplied in SCEESPC to load or locate the server code
and initialize its environment.

Chapter 34. Using the System Programming C Facilities 517

CBC3GSPE

�1� Like the initialize stub, the QMGGET message stub expects a standard
save area pointed to by register 13. The parameters are passed with
standard OS linkage (register 1 pointing to a list of addresses).

�2� The handle contains the value that was placed there by the initialization
stub at �8� Figure 151 on page 513. This is the address of the control block
that is used to manage the interface between the user application and the
server.

�3� Recover the address of the stub work area for use as a Dynamic Storage
Area (DSA). This value was saved here by the initialization stub at �7�
Figure 151 on page 513. The save area back chain field is set according to
usual conventions.

* this is an example of a server message stub
QMGGET TITLE 'SERVER supplied stub for feeding strings GET'
QMGGET CSECT
QMGGET AMODE ANY
QMGGET RMODE ANY

STM R14,R12,12(R13) �1�
LR R3,R15
USING QMGGET,R3
LR R5,R1
USING INPARMS,R5
L R6,HANDLE@
L R6,0(,R6) Point to the handle �2�
L R1,4(,R6) Point to work area got by QMGINIT �3�
USING WA,R1
ST R13,SA+4 Keep savearea passed into us
LR R13,R1 WA is new savearea
USING WA,R13
LA R7,GET �4�
LA R8,INPARMS+8 User parms start at 3rd
STM R6,R8,PLIST handle, GET, Other parms
LA R1,PLIST
L R15,=V(EDCXSRVN) �5�
BALR R14,R15
L R1,FEEDBK@ �6�
ST R15,0(,R1)
L R13,4(,R13) �7�
L R14,12(R13)
LM R0,R12,20(R13)
BR R14

INPARMS DSECT
HANDLE@ DS F
FEEDBK@ DS F
LENGTH@ DS F
STRING@ DS F
WA DSECT
SA DS 18F
PLIST DS 4F
WALEN EQU *-WA
LIFO EQU 1
FIFO EQU 2
GET EQU 3
TERM EQU -1

YREGS
END

Figure 154. Example of Server Message Stub-GET

518 OS/390 V2R10.0 C/C++ Programming Guide

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5�
Figure 151 on page 513. in the initialization stub), code for GET, and the
address of the remaining parameters.

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume
control at �9� in Figure 150 on page 508 in the server. The server has
control until it asks for the next to-do, in this example at �9� in Figure 150
on page 508, again.

�6� The value passed to __xsrvc() appears as the return code from EDCXSRVN.
This value is passed back to the user application in the second parameter.
This is part of the API defined by this particular server, not something
inherent in the user-server relationship.

�7� Control is returned to the user in the usual way.

This routine uses functions supplied in SCEESPC to load or locate the server code
and initialize its environment.

Chapter 34. Using the System Programming C Facilities 519

CBC3GSPF

�1� Like the initialize stub, the QMGTERM message stub expects a standard
save area pointed to by register 13. The parameters are passed with
standard OS linkage (register 1 pointing to a list of addresses).

�2� The handle contains the value that was placed there by the initialization
stub at �8� in Figure 151 on page 513. This is the address of the control
block that is used to manage the interface between the user application and
the server.

�3� Recover the address of the stub work area for use as a Dynamic Storage
Area (DSA). This value was saved here by the initialization stub at �7� in
Figure 151 on page 513. The save area back chain field is set according to
usual conventions.

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5� in
Figure 151 on page 513), code for TERM, and the address of the remaining
parameters.

* this is an example of a server message stub
QMGTERM TITLE 'SERVER supplied stub for feeding strings TERM'
QMGTERM CSECT
QMGTERM AMODE ANY
QMGTERM RMODE ANY

STM R14,R12,12(R13) �1�
LR R3,R15
USING QMGTERM,R3
LR R5,R1
USING INPARMS,R5
L R6,HANDLE@
L R6,0(,R6) Point to the handle �2�
L R1,4(,R6) Point to work area got by QMGINIT �3�
USING WA,R1
ST R13,SA+4 Keep savearea passed into us
LR R13,R1 WA is new savearea
USING WA,R13
ST R6,PLIST Store handle as first parameter
MVC PLIST+4,=A(TERM) Code for termination
LA R1,PLIST
L R15,=V(EDCXSRVN) �5�
BALR R14,R15
L R13,4(,R13) �6�
L R14,12(R13)
LM R0,R12,20(R13)
BR R14

INPARMS DSECT
HANDLE@ DS F
FEEDBK@ DS F
LENGTH@ DS F
STRING@ DS F
WA DSECT
SA DS 18F
PLIST DS 4F
WALEN EQU *-WA
LIFO EQU 1
FIFO EQU 2
GET EQU 3
TERM EQU -1

YREGS
END

Figure 155. Example of Server Message Stub-TERM

520 OS/390 V2R10.0 C/C++ Programming Guide

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume
control at �9� in Figure 150 on page 508 in the server. The server has
control until it asks for the next to-do, in this example at �9� in Figure 150
on page 508, again.

�6� Control is returned to the user in the usual way.

The routines in the following section are used to create and use a persistent C
environment for a server co-routine, written using OS/390 C and EDCXSTRT, or
EDCXSTRL and callable by a user application written in any language.

An initialization routine, EDCXSRVI, is called to start up a server. Control returns from
the initialization call with the server code started and waiting for work.

As with the persistent C environment, the initialization call returns a handle that is
used by EDCXSRVN for further communication with the created environment. EDCXSRVN
suspends the execution of the calling routine and sends a message to the waiting
server. When the server completes the function called for by the message its
execution is suspended and the caller of EDCXSRVN resumes.

The server environment is terminated when a Terminate message is sent to the
server.

Establishing a Server Environment

EDCXSRVI
This routine creates a OS/390 C environment for the server part of user-server
application. It is intended that this routine be called by a stub routine supplied by
the server and statically bound with the user application. The stub routine is
responsible for loading the server application code.

Parameters

1. The address of the entry point of the server code. This must be the address of
the EDCXSTRT or EDCXSTRL entry point.

2. The value to be in R1 when the server entry point is called. This can be used
for communication between the initialization stub and the server mainline; its
value can be retrieved in the server code. __xregs(1) will return a pointer to this
list of parameters.

3. The address of a low-level get-storage routine (meeting the same interface as
EDCXGET, but not necessarily EDCXGET).

4. The address of a low-level free-storage routine (meeting the same interface as
EDCXFREE, but not necessarily EDCXFREE).

Return

When this routine returns the server environment is fully established and waiting for
a message from the user. R15 points to a handle that is used in subsequent calls to
EDCXSRVN to send messages to the server.

Initiating a Server Request

EDCXSRVN
This routine is used by the stub routines that are linked with user application
routines to send a message to an active server in a user-server application.

Chapter 34. Using the System Programming C Facilities 521

Parameters

1. The address of the handle returned by EDCXSRVI.

2. The function code for the function to be performed. The value -1 is used to
indicate that the server should terminate. This value should not be used for any
other purpose.

3. Other parameters, which are passed to the server code.

Return

R15 will contain the return code supplied by the server (as the parameter to
EDCXSACC) for this service.

Accepting a Request for Service

EDCXSACC
This routine operates in the server part of a user-server application. It is used to
indicate acceptance or rejection of the last-requested service.

Parameters

1. The return code of the last-requested service 0 indicating that the request was
accepted and will be processed.

For more information on EDCXSACC, see “__xsacc() — Accept Request for Service”
on page 534.

Returning Control from Service

EDCXSRVC
This routine operates in the server part of a user-server application. It is used to
indicate completion of the last-requested service and to get information required for
the next service to be performed.

Parameters

1. The return code for the last-requested service.

For more information on EDCXSRVC, see “__xsrvc() — Return Control from Service”
on page 534.

Constructing User-Server Stub Routines
Part of building a server for use in a user-server environment is the construction of
stub routines that load and initialize the server, pass messages to the server, and
terminate the server. These stub routines are typically written in assembler
language to allow them to be freely called from other environments without regard
to the characteristics of the calling environment.

Building User-Server Environments
To build your server application, follow the rules for building a freestanding
application as described in “Building Freestanding Applications to Run under
OS/390” on page 493.

There are no special considerations for building user applications. The automatic
call facility will cause the correct routines from CEE.SCEESPC to be included.

522 OS/390 V2R10.0 C/C++ Programming Guide

Table 62. Parts used by or with Application Server Routines

Part Name Function

Inclusion in Program

LocationNotes

EDCXSRVI This module is used by a
server-supplied stub
routine to start up a
server.

2 in the user
module

Member of
SCEESPC

EDCXSRVN This module is used by a
server-supplied stub
routine to send a
service-request message
to a server.

2 in the user
module

Member of
SCEESPC

EDCXSRVC This module is used by a
server to wait for the next
message to process.

2 in the user
module

Member of
SCEESPC

EDCXSACC This module is used by a
server to accept the last
message received.

2 in the user
module

Member of
SCEESPC

EDCXSPRT System programming
version of sprintf().

3 Member of
SCEESPC

EDCXEXIT System programming
version of exit().

3 Member of
SCEESPC

EDCXMEM System programming
version of malloc(),
calloc(), realloc(),
free(), __4kmalc() and
__24malc().

3 Member of
SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE
control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming
version of the function.

Tailoring the System Programming C Environment
Depending on the environment under which you want to run your OS/390 C
routines, you might want to replace some of the following routines for
system-specific routines. To work correctly, your routines should match the interface
as documented in this section.

The routines as supplied by IBM with OS/390 C meet the interface as documented.

Generating Abends

EDCXABND
This routine is called to generate an abend if there is an internal error during
initialization or termination of a system programming C environment.

Parameter

R1 The address of the abend code and reason code

Chapter 34. Using the System Programming C Facilities 523

This routine is not provided with a save area. In addition to the linkage registers,
this routine may freely alter registers 2 and 4.

This module must have the entry point name of @@XABND.

CBC3GSPA:

Getting Storage

EDCXGET
This routine is called to get storage from the operating system.

Parameter

R0 The requested length, in bytes. If the high-order bit is zero or if the request
was made in 24-bit addressing mode, the storage will be allocated below
the 16M line. If the high-order bit is on and the request is made in 31-bit
addressing mode, storage will be allocated anywhere with a preference for
storage above the 16M line if available.

Return

R0 The length of the storage block acquired, in bytes.

R1 The address of the acquired area or NULL.

R15 A system dependent return code, which must be zero on success and
non-zero otherwise.

This routine is not provided with a save area. In addition to the linkage registers,
this routine may freely alter registers 2 and 4.

* this is an example of a routine to generate an abend
@@XABEND TITLE 'Generate an Abend'
EDCXABND CSECT
EDCXABND AMODE ANY
EDCXABND RMODE ANY
@@XABND DS 0H

ENTRY @@XABND
BALR R2,0
USING *,R2
SPACE 1

*
USING PARMS,R1
L R4,REAS_RC get reason code
L R2,ERROR_RC get error code
DROP R1,R2

ABEND ABEND (R2),REASON=(R4)
*

LTORG
EJECT

PARMS DSECT
ERROR_RC DS F
REAS_RC DS F
*
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4

END

Figure 156. Example of Routine to Generate Abend

524 OS/390 V2R10.0 C/C++ Programming Guide

The entry point name for this routine must be @@XGET.

If you provide your own EDCXGET routine, it will be used when C library functions
explicitly get storage. Whenever the library functions invoke operating system
services, there may be implicit requests for storage that cannot be tailored.

CBC3GSPB

Getting Page-Aligned Storage

EDCX4KGT
This routine is called to get page-aligned storage from the operating system.

Parameter

R0 The requested length, in bytes. If the high-order bit of this register is zero or
if the request was made in 24-bit addressing mode, the storage is allocated
below the 16M line. If the high-order bit is on and the request is made in

* this is an example of a routine to get storage
@@XGET TITLE 'Obtain memory as specified in R0'
EDCXGET CSECT
EDCXGET AMODE ANY
EDCXGET RMODE ANY
@@XGET DS 0H

ENTRY @@XGET
SPACE 1
BALR R2,R0
USING *,R2
LTR R0,R0 Memory above or below?
BNL BELOW
SLL R0,1 Want memory anywhere
SRL R0,1
LTR R2,R2 are we running above the line?
BNL BELOW no, so ignore above request
GETMAIN RC,SP=0,LV=(R0),LOC=ANY
LTR R15,R15 Was it successful?
BZR R14 Yes...
SR R1,R1 No, indicate failure
BR R14

Figure 157. Example of routine to get storage (Part 1 of 2)

BELOW DS 0H Get memory below the line
GETMAIN RC,SP=0,LV=(R0),LOC=BELOW
LTR R15,R15 Was it successful?
BZR R14 Yes...
SR R1,R1 no, indicate failure in R1
BR R14

*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R4 EQU 4
R13 EQU 13
R14 EQU 14
R15 EQU 15

Figure 157. Example of routine to get storage (Part 2 of 2)

Chapter 34. Using the System Programming C Facilities 525

31-bit addressing mode, storage is allocated above the 16M line. If this
space is not available, storage is allocated elsewhere.

Return

R0 The length of the storage block acquired, in bytes. This length may be
greater than the size requested.

R1 The address of the acquired area or NULL.

R15 A system-dependent return code, which must be zero on success and
nonzero otherwise.

This routine is not provided with a save area. In addition to the linkage registers,
this routine may freely alter registers 2 and 4.

Its entry point must be @@X4KGET.

Freeing Storage

EDCXFREE
This routine is called to return storage to the operating system.

Parameters

R0 The length of storage to be freed, in bytes

R1 The address of the area to be freed

526 OS/390 V2R10.0 C/C++ Programming Guide

Return

R15 A system-dependent return code, which must be zero on success and
nonzero otherwise

This routine is not provided with a save area. In addition to the linkage registers,
this routine may freely alter registers 2 and 4.

Its entry point must be @@XFREE.

If you provide your own EDCXFREE routine, it will be used when C library functions
explicitly free storage. Whenever the library functions invoke operating-system
services, there may be implicit requests to free storage that cannot be tailored.

CBC3GSPC

Loading a Module

EDCXLOAD
This routine is called to load a named module into storage.

Parameter

R1 Points to the name of the routine to be loaded

Return

R1 the address and amode of the routine or 0

R15 A system-dependent return code, which must be zero on success and
nonzero otherwise

This routine is provided with a save area. Apart from the linkage registers, it must
save and restore all registers used.

Its entry point must be @@XLOAD.

* this is an example of a routine to free storage
EDCXFREE CSECT
EDCXFREE AMODE ANY
EDCXFREE RMODE ANY
@@XFREE DS 0H

ENTRY @@XFREE
BALR R2,0
USING *,R2

*
FREEMAIN RC,SP=0,LV=(0),A=(1)
BR R14 return

*
R2 EQU 2
R14 EQU 14

END

Figure 158. Example of Routine to Free Storage

Chapter 34. Using the System Programming C Facilities 527

Deleting a Module

EDCXUNLD
This routine is called to delete a named module from storage.

Parameter

R1 Points to the name of the routine to be deleted

Return

R15 A system-dependent return code, which must be zero on success and
nonzero otherwise

This routine is provided with a save area. Apart from the linkage registers, it must
save and restore all registers used.

Its entry point must be @@XUNLD.

Including a Run-Time Message File
When you are running a freestanding environment and run-time messages are
required, you must explicitly include a message file at link-edit time. One of the
three following modules can be included to produce these messages:

EDCXLANE
Creates run-time error messages in uppercase and lowercase English

EDCXLANU
Creates run-time error messages in uppercase English

EDCXLANK
Creates run-time error messages in Kanji

If one of these message routines is not included and an exception occurs, the
program could terminate without displaying a message. These error messages are
directed to stderr. Refer to OS/390 Language Environment Debugging Guide and
Run-Time Messages for more information.

The following tables contain the abend codes and reason codes specific to the
system programming facilities.

Table 63. Abend Codes Specific to System Programming Environments

Abend Code Description

2100 No storage abend code

2101 Error freeing storage

2102 Error finding stack seg home

2103 Error loading library

2104 Error with heap allocation

2105 Error with system level command

2106 Error initializing statics

2107 Error establishing error handler for EDCXSTRX

2108 Error cleaning up heap for EDCXSTRX

4000 Error when handling abend

528 OS/390 V2R10.0 C/C++ Programming Guide

Table 64. Reason Codes Specific to System Programming Environments

Reason Code Description

7201 Error in initialization.

7202 Error in termination.

7203 Error when extending stack.

7204 Error during longjmp/setjmp.

7205 Can not locate static init. The routine EDCRCINT must be included in
your module if you use the RENT compiler option.

7206 Module EDCXABRT was not explicitly included at link edit time.

7207 No initial heap allocation is specified and a heap is required.

Additional Library Routines
The following routines provide additional support that is unique to applications
running in a system programming C environment. These routines are packaged as
part of the link library.

__xregs()
Get registers on entry

__xusr()
Get address of User Word

__xusr2()
Get address of User Word

__4kmalc()
Allocate page-aligned storage

__24malc()
Allocate storage below 16mb line

For more information on these routines refer to “Chapter 35. Library Functions for
System Programming C” on page 531.

Summary of Application Types
Table 65 shows the summary of application types, how they are called, and the
module entry points.

Table 65. Summary of Types

Type of
Application

How It Is
Called

Module
Entry
Point

Data Sets
Required at
Execution Time

Run-Time Options (1) and
Other Considerations

A mainline
function that
requires no
dynamic library
facilities

From the
command
line, JCL,
or an
EXEC or
CLIST.

EDCXSTRT,
which must
be explicitly
included at
bind time

None. Run-Time options are
specified by #pragma
runopts in compilation unit
for the main() function. The
heap and stack options are
honored. The stack defaults
to be above the line.

Chapter 34. Using the System Programming C Facilities 529

Table 65. Summary of Types (continued)

Type of
Application

How It Is
Called

Module
Entry
Point

Data Sets
Required at
Execution Time

Run-Time Options (1) and
Other Considerations

A mainline
function that
requires the
OS/390 C
library
functions

From the
command
line, JCL,
or an
EXEC or
CLIST.

EDCXSTRL,
which must
be explicitly
included at
bind time

CEE.SCEERUN is
required

Run-Time options are
specified by #pragma
runopts in the compile unit
for the entry point. The
heap and stack options are
honored, except that the
stack will default to be
above the line. The SPIE
option is honored if a library
is called for.

A C subroutine
called from
assembler
language
using a
pre-
established
persistent
environment

A handle,
the address
of the
subroutine
and a
parameter
list are
passed to
EDCXHOTU.

CEE.SCEERUN is
optional,
depending upon
the way the handle
was set up.

Run-Time options are
specified by #pragma
runopts in any compile unit.
The heap and stack options
are honored, except that
the stack will default to be
above the line. The SPIE
option is honored if a library
is called for. The runopts in
the first object module in
the link edit that contains
runopts will prevail, even if
this compilation unit is part
of the calling application.

The environment is
established by calling
EDCXHOTC (or
EDCXHOTL if library
facilities are required).
These functions return a
value (the handle) which is
used to call functions that
use the environment.

A Server User code
includes a
stub routine
that calls
EDCXSRVI.
This
causes the
server to
be loaded
and control
to be
passed to
its entry
point.

EDCXSTRT,
or
EDCXSTRL,
depending
upon
whether the
server
needs the
C run-time
library or
not

CEE.SCEERUN if
required by the
server code.

Run-Time options are the
same as for EDCXSTRL or
EDCXSTRT.

The author of the server
must supply stub routines
which call EDCXSRVI and
EDCXSRVN to initialize and
communicate with the
server. These are bound
with the user application.

A User of an
Application
Server

The server and
CEE.SCEERUN if
required by the
server.

The author of the server
must supply stub routines
which call EDCXSRVI and
EDCXSRVN to initialize and
communicate with the
server.

530 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 35. Library Functions for System Programming C

This chapter describes the library functions specific to the System Programming C
environment:

v __xhotc()

v __xhotl()

v __xhott()

v __xhotu()

v __xregs()

v __xsacc()

v __xsrvc()

v __xusr()

v __xusr2()

v __24malc()

v __4kmalc()

__xhotc() — Set Up a Persistent C Environment (No Library)

Format
#include <spc.h>

void *__xhotc(void *handle, int stack, int location);

Description
The function creates a persistent C environment that does not require the dynamic
library facilities of OS/390 Language Environment at run time. The parameters are
fullwords (four bytes).

1. handle is the field for the token (or handle) which is returned.

2. stack is the initial stack allocation required for the environment.

3. location is the location of the stack:

0 Below the line

1 Above the line

__xhotc() is specific to SP C. It is part of the group serving the persistent C
environment.

The function is also available under the name EDCXHOTC.

Returned Value
__xhotc() returns a token (or handle) which is used in subsequent calls to
__xhotu() and __xhott() to use or terminate a persistent C environment. This
handle is found in both the first parameter passed and R15.

The RENT compiler option is not supported for routines called using this
environment.

© Copyright IBM Corp. 1996, 2000 531

Example
For an extensive example of the use of __xhotc() see “Creating and Using
Persistent C Environments” on page 500.

__xhotl() — Set Up a Persistent C Environment (With Library)

Format
#include <spc.h>

void *__xhotl(void *handle, int stack, int location);

Description
The function creates a persistent C environment that will use the dynamic OS/390
C/C++ library functions. All library facilities are available in this environment except:

v The RENT compiler option is not supported in the persistent environment
described in this chapter.

v Exception handling is not supported in persistent C environments.

The following parameters are fullwords (four bytes):

1. handle is the field for the token (or handle) which is returned.

2. stack is the initial stack allocation required for the environment.

3. location is the location of the stack:

0 Below the line

1 Anywhere

__xhotl() is specific to SP C. It is part of the group serving the persistent C
environment.

The function is also available under the name EDCXHOTL.

Returned Value
This routine returns a token (or handle) which is used in subsequent calls to
__xhotu() and __xhott() to use or terminate a persistent C environment. This
handle is found in both the first parameter passed and R15.

Example
For an extensive example of the use of __xhotl() see “Creating and Using
Persistent C Environments” on page 500.

__xhott() — Terminate a Persistent C Environment

Format
#include <spc.h>

void __xhott(void *handle);

Description
This function terminates a persistent C environment created by __xhotc() or
__xhotl().

The parameter of __xhott() is a handle returned by __xhotc() or __xhotl().

__xhott() is specific to SP C. It is part of the group serving the persistent C
environment.

532 OS/390 V2R10.0 C/C++ Programming Guide

The function is also available under the name EDCXHOTT.

Example
For an extensive example of the use of __xhott() see “Creating and Using
Persistent C Environments” on page 500.

__xhotu() — Run a Function in a Persistent C Environment

Format
#include <spc.h>

void *__xhotu(void *handle, void *function, ...);

Description
This function is used to run a function in a persistent C environment. The
parameters are fullwords (four bytes):

1. handle is a handle—returned by __xhotc() or __xhotl()

2. function is a function pointer, which points to the desired C function

3. First parameter to pass to the function

4. Second parameter to pass to the function

...

This routine, and the C function being called, must use OS linkage. As a result, you
cannot make direct use of OS/390 C/C++ Library functions with this function. C
functions being invoked using __xhotu() must be compiled with #pragma
linkage(func_name,OS).

__xhotu() is specific to SP C. It is part of the group serving the persistent C
environment.

The function is also available under the name EDCXHOTU.

Returned Value
The returned value from __xhotu() is the returned value from the function run in the
persistent C environment.

Example
For an extensive example of the use of __xhotu() see “Creating and Using
Persistent C Environments” on page 500.

__xregs() — Get Registers on Entry

Format
#include <spc.h>

int __xregs(int register);

Description
This routine finds the value a specified register had on entry to EDCXSTRT,
EDCXSTRL, EDCXSTRX, or the main routine of an exit routine compiled with
#pragma environment(...).

__xregs() is available in these environments only. For more information about
EDCXSTRT, EDXSTRL, or EDCXSTRX, see “Creating Freestanding Applications” on
page 490.

Chapter 35. Library Functions for System Programming C 533

__xregs() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXREGS.

Returned Value
__xregs() returned the value found.

__xsacc() — Accept Request for Service

Format
#include <spc.h>

void __xsacc(int message);

Description
This routine operates in the server part of a user-server application. It is used to
indicate acceptance or rejection of the last-requested service.

Calls to __xsacc are optional but, if made, should be when the request is validated
and all server references to user-owned storage are complete. __xsacc does not
cause a return of control to the user; its sole purpose is to indicate that user-owned
storage is no longer required by the application server.

In the case of a request that cannot be processed, possibly because the user’s
command is not recognized by the server or the parameter format is invalid, the call
to __xsacc should be omitted.

__xsacc() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXSACC.

Returned Value
The return code for the last-requested service, zero indicating that the request was
accepted and will be processed.

__xsrvc() — Return Control from Service

Format
#include <spc.h>

void *__xsrvc(int message);

Description
This routine operates in the server part of a user-server application. It is used to
indicate completion of the last-requested service and to get the information required
for the next service to be performed.

message is the return code for the last-requested service.

__xsrvc() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXSRVC.

534 OS/390 V2R10.0 C/C++ Programming Guide

__xusr() - __xusr2() — Get Address of User Word

Format
#include <spc.h>

void *__xusr(void);
void *__xusr2(void);

Description
Two words in an internal control block are available for customer use. These words
have an initial value of zero (that is, all bits are 0), but are otherwise ignored by
compiled code, and by the OS/390 C/C++-specific Library. The values in these
words may be freely queried or set by application code using the pointers returned
by these functions.

__xusr() and __xusr2() are specific to SP C.

The __xusr() and __xusr2() functions are also available under the names EDCXUSR
and EDCXUSR2, respectively.

Returned Value
__xusr() and __xusr2() return the addresses of these user words. The words, and
indeed __xusr() and __xusr2() themselves, are available in any environment, not
only the system programming environments.

__24malc() — Allocate Storage below 16MB Line

Format
#include <spc.h>

void *_24malc(size_t size);

Compiler Option: LANGLVL(EXTENDED)

Description
This function performs in the same manner as malloc except that it allocates
storage below the 16MB line in XA or ESA systems even when the run-time option
HEAP(ANYWHERE) is specified.

Storage allocated by this function is not part of the heap, so you must free this
storage explicitly using the free() function before this environment is terminated.
Storage allocated using __24malc() is not automatically freed when the environment
is terminated.

The function is available under the System Programming Environment.

__4kmalc() — Allocate Page-Aligned Storage

Format
#include <spc.h>

void *_4kmalc(size_t size);

Compiler Option: LANGLVL(EXTENDED)

Chapter 35. Library Functions for System Programming C 535

Description
This function performs in the same manner as malloc() except that it allocates
page-aligned storage.

Storage allocated by this function is not part of the heap, so you must free this
storage explicitly using the free() function before this environment is terminated.
Storage allocated using __4kmalc() is not automatically freed when the environment
is terminated.

The function is available under the System Programming Environment.

536 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 36. Using Run-Time User Exits

This chapter shows how to use run-time user exits with the OS/390 Language
Environment run-time library. This is general-use programming interface information
and associated guidance information for using the library.

This section is provided here for your convenience. For further information on using
run-time user exits in the OS/390 Language Environment environment, refer to
OS/390 Language Environment Programming Guide.

Using Run-Time User Exits in OS/390 Language Environment
OS/390 Language Environment provides user exits that you can use for functions at
your installation. You can use the assembler user exit (CEEBXITA) or the HLL user
exit (CEEBINT). This section provides information about using these run-time user
exits.

Note: You cannot code either the CEEBXITA user exit or the CEEBINT user exit as an
XPLINK application.

Understanding the Basics
User exits are invoked under OS/390 Language Environment to perform enclave
initialization functions and both normal and abnormal termination functions. User
exits offer you a chance to perform certain functions at a point where you would not
otherwise have a chance to do so. In an assembler initialization user exit, for
example, you can specify a list of run-time options that establish characteristics of
the environment. This is done before the actual execution of any of your application
code. Another example is using an assembler termination user exit to request a
dump after your application has terminated with an abend.

In most cases, you do not need to modify any user exit to run your application.
Instead, you can accept the IBM-supplied default versions of the exits, or the
defaults as defined by your installation. To do so, run your application normally and
the default versions of the exits are invoked. You may also want to read the
sections “User Exits Supported under OS/390 Language Environment” on page 538
and “Order of Processing of User Exits” on page 538, which provide an overview of
the user exits and describe when they are invoked.

If you plan to modify either of the user exits to perform some specific function, you
must link the modified exit to your application before running, as described in “Using
Installation-Wide or Application-Specific User Exits” on page 539. In addition, the
sections “Using the Assembler User Exit” on page 540 and “High Level Language
User Exit Interface” on page 551 describe the respective user exit interfaces to
which you must adhere to change an assembler or HLL user exit.

PL/I and C/370 Compatibility
For more information on compatibility support for the IBMBXITA and IBMFXITA
assembler user exits, see “PL/I and C/370 Compatibility” on page 551. Refer to IBM
C/370 Library Version 2 Release 2 Programming Guide or to PL/I for MVS & VM
Compiler and Run-Time Migration Guide for information about the IBMBINT HLL user
exit. IBMBINT is not available under C++.

© Copyright IBM Corp. 1996, 2000 537

|

|
|

|

User Exits Supported under OS/390 Language Environment
OS/390 Language Environment provides two user exit routines, one written in
assembler and the other in an OS/390 Language Environment-conforming HLL. You
can find sample jobs containing these user exits in the SCEESAMP sample library.

The user exits supported by OS/390 Language Environment are shown in Table 66.

Table 66. User Exits Supported under OS/390 Language Environment

Name Type of User Exit When Invoked

CEEBXITA Assembler user exit Enclave initialization
Enclave termination
Process termination

CEEBINT HLL user exit. CEEBINT can be written in
OS/390 C, PL/I, OS/390 Language
Environment-conforming assembler, or in
C++ (see restrictions in “Order of
Processing of User Exits”).

Enclave initialization

Order of Processing of User Exits
The location and order in which user exits are driven for your application are
summarized in Figure 159.

In Figure 159, run-time user exits are invoked in the following sequence:

1. Assembler user exit is invoked for enclave initialization.

The assembler user exit (CEEBXITA) is invoked very early during the initialization
process, before the enclave initialization is complete. Early invocation of the
assembler exit allows the enclave initialization code to benefit from any changes
that might be contained in the exit. If run-time options are provided in the
assembler exit, the enclave initialization code is aware of the new options.

User Application Code

(Main routine plus subroutines)

INITIALIZATION

PROCESSING

TERMINATION

PROCESSING

Assembler User Exit
(CEEBXITA)

Assembler User Exit
(CEEBINT)

Assembler User Exit
(CEEBXITA)

Assembler User Exit
(CEEBXITA)

(invoked for
enclave initialization)

(invoked for
enclave termination)

(invoked for
enclave termination)

Figure 159. Location of User Exits

538 OS/390 V2R10.0 C/C++ Programming Guide

2. Environment is established.

3. HLL user exit is invoked.

The HLL initialization exit (CEEBINT) is invoked just before the invocation of the
application code. In OS/390 Language Environment, this exit can be written in
OS/390 C, PL/I, OS/390 Language Environment-conforming assembler, or
OS/390 C++. However, you can only write CEEBINT in OS/390 C++ if the
following conditions are met:

v CEEBINT must be declared with C linkage, i.e., it must be declared with
extern "C". If you are using C, you must compile your application code with
the RENT compile-time option.

v You must bind your application code with the OS/390 binder.

v CEEBINT must be used as an application-specific user exit, rather than as an
installation-wide user exit (refer to “Using Installation-Wide or
Application-Specific User Exits” for more information).

The HLL initialization exit cannot be written in COBOL, although COBOL
applications can use this HLL user exit. At the time when CEEBINT is invoked,
the run-time environment is fully operational and all OS/390 Language
Environment-conforming HLLs are supported.

4. Main routine is invoked.

5. Main routine returns control to caller.

6. Environment is terminated.

7. Assembler user exit is invoked for termination of the enclave.

CEEBXITA is invoked for enclave termination processing after all application code
in the enclave has completed, but before any enclave termination activity.

8. Assembler user exit is invoked for termination of the process.

CEEBXITA is invoked again when the OS/390 Language Environment process
terminates.

Although both the assembler and HLL exits are invoked for initialization, they do not
perform exactly the same functions. See “CEEBXITA Behavior during Enclave
Initialization” on page 540 and “High Level Language User Exit Interface” on
page 551 for a detailed description of each exit.

OS/390 Language Environment provides the CEEBXITA assembler user exit for
termination but does not provide a corresponding HLL termination user exit.

Using Installation-Wide or Application-Specific User Exits
IBM offers default versions of CEEBXITA and CEEBINT. You can use the IBM-supplied
default version of either exit, or you can customize CEEBXITA or CEEBINT for use on
an installation-wide basis. When CEEBXITA or CEEBINT is linked with the OS/390
Language Environment initialization/termination library routines during installation, it
functions as an installation-wide user exit.

Finally, you can customize CEEBXITA or CEEBINT yourself for use on your application.
When CEEBXITA or CEEBINT is linked in your program, it functions as an
application-specific user exit. The application-specific exit is used only when you run
that application. The installation-wide assembler user exit is not executed.

To obtain an application-specific user exit, you must explicitly include it at bind time
in the application using a binder INCLUDE control statement. Any time that the
application-specific exit is modified, it must be relinked with the application.

Chapter 36. Using Run-Time User Exits 539

The assembler user exit interface is described in “Assembler User Exit Interface” on
page 542 . The HLL user exit interface is described in “High Level Language User
Exit Interface” on page 551.

Using the Assembler User Exit
The assembler user exit CEEBXITA tailors the characteristics of the enclave before it
is established. CEEBXITA must be written in assembler language because an HLL
environment may not yet be established when the exit is invoked. CEEBXITA is
driven for enclave initialization and enclave termination regardless of whether the
enclave is the first enclave in the process or a nested enclave. CEEBXITA can
differentiate easily between first and nested enclaves. For more information about
nested enclaves, see OS/390 Language Environment Programming Guide.

CEEBXITA behaves differently depending on when it is invoked, as described in the
following sections.

Using Sample Assembler User Exits
Sample assembler user exit programs are distributed with OS/390 Language
Environment. You can use them and modify the code for the requirements of your
own application. Choose a sample program appropriate for your application. The
following assembler exit user programs are delivered with OS/390 Language
Environment.

Table 67. Sample Assembler User Exits for OS/390 Language Environment

Example User Exit Operating System Language (if Language Specific)

CEEBXITA MVS (default)

CEEBXITC TSO

CEECXITA CICS (default)

CEEBX05A MVS COBOL

Note:

1. CEEBXITA and CEECXITA are the defaults on your system for MVS and CICS, if OS/390
Language Environment is installed at your site without modification.

2. The source code for CEEBXITA, CEEBXITC, CEEDXITA, and CEEBX05A can be found on MVS
in the sample library SCEESAMP.

3. CEEBX05A is an example user exit program for COBOL applications on OS/390.

CEEBXITA Behavior during Enclave Initialization
The CEEBXITA assembler user exit is invoked before enclave initialization is
performed. You can use it to help guide the establishment of the environment in
which your application runs. For example, you can allocate data sets in the
assembler user exit. The user exit can interrogate program parameters supplied in
the JCL and change them if desired. In addition, you can specify run-time options in
the user exit using the CEEAUE_OPTIONS field of the assembler interface (see
“Assembler User Exit Interface” on page 542 for information about how to do this).

CEEBXITA performs no special tasks other than to return control to OS/390
Language Environment initialization.

CEEBXITA Behavior during Enclave Termination
The CEEBXITA assembler exit is invoked after the user code for the enclave has
completed, but before the occurrence of any enclave termination activity. For
example, CEEBXITA is invoked before the storage report is produced (if one was

540 OS/390 V2R10.0 C/C++ Programming Guide

requested), before data sets are closed, and before HLLs are invoked for enclave
termination. In other words, the assembler user exit for termination is invoked when
the environment is still active.

The assembler user exits allow you to request an abend. Under OS/390 (as well as
TSO and CICS), you can also request a dump to assist in problem diagnosis. Note
that termination activities have not yet begun when the user exit is invoked. Thus,
the majority of storage has not been modified when the dump is produced.

It is possible to request an abend and dump in the enclave termination user exit for
all enclave-terminating events.

Example code that shows how to request an abend and dump when there is an
unhandled condition of severity 2 or greater can be found in the member CEEBX05A
in the sample library.

CEEBXITA Behavior during Process Termination
The CEEBXITA assembler exit is invoked after:

v All enclaves have terminated.

v The enclave resources have been relinquished.

v Any OS/390 Language Environment-managed files have been closed.

v Debug Tool has terminated.

This allows you to free files at this time, and it presents another opportunity to
request an abend.

During termination, CEEBXITA can interrogate the OS/390 Language Environment
reason and return codes and, if necessary, request an abend with or without a
dump. This can be done at either enclave or process termination.

The IBM-supplied CEEBXITA performs no special tasks other than to return control to
OS/390 Language Environment termination.

Specifying Abend Codes to Be Percolated by OS/390 Language
Environment
The assembler user exit, when invoked for initialization, can return a list of abend
codes that are to be percolated by OS/390 Language Environment. On non-CICS
systems, this list is contained in the CEEAUE_A_AB_CODES field of the assembler user
exit interface. (See “Assembler User Exit Interface” on page 542.) Both system
abends and user abends can be specified in this list.

When TRAP(ON) is in effect, and the abend code is in the CEEAUE_A_AB_CODES list,
OS/390 Language Environment percolates the abend. Normal OS/390 Language
Environment condition handling is never invoked to handle these abends. This
feature is useful when you do not want OS/390 Language Environment condition
handling to intervene for some abends, for example, when IMS issues abend code
777.

When TRAP(OFF) is specified, the condition handler is not invoked for any abends or
program interrupts. The use of TRAP(OFF) is not recommended; refer to OS/390
Language Environment Programming Reference for more information.

Chapter 36. Using Run-Time User Exits 541

Actions Taken for Errors that Occur within the Assembler User
Exit
If any errors occur during the enclave initialization user exit, the standard system
action occurs because OS/390 Language Environment condition handling has not
yet been established.

Any errors occurring during the enclave termination user exit lead to abnormal
termination (through an abend) of the OS/390 Language Environment environment.

If a program check occurs during the enclave termination user exit and TRAP(ON) is
in effect, the application ends abnormally with ABEND code 4044 and reason code
2. If a program check occurs during the enclave termination exit and ″TRAP(OFF)″
has been specified, the application ends abnormally without additional error
checking support. OS/390 Language Environment provides no condition handling;
error handling is performed by the operating system. The use of TRAP(OFF) is not
recommended; refer to OS/390 Language Environment Programming Guide for
more information.

OS/390 Language Environment takes the same actions as described above for
program checks during the process termination user exit.

Assembler User Exit Interface
You can modify CEEBXITA to perform any function desired, although the exit must
have the following attributes after you modify it:

v The user-supplied exit must be named CEEBXITA.

v The exit must be reentrant.

v The exit must be capable of executing in AMODE(ANY) and RMODE(ANY).

v The exit must be relinked with the application after modification (if you want an
application-specific user exit), or relinked with OS/390 Language Environment
initialization/termination routines after modification (if you want an
installation-wide user exit).

If a user exit is modified, you are responsible for conforming to the interface shown
in Figure 160 on page 543. This user exit must be written in assembler.

542 OS/390 V2R10.0 C/C++ Programming Guide

When the user exit is called, register 1 (R1) points to a word that contains the
address of the CXIT control block. The high order bit is on.

The CXIT control block contains the following fullwords:

CEEAUE_LEN (input parameter)
A fullword integer that specifies the total length of this control block. For OS/390
Language Environment, the length is 48 bytes.

CEEAUE_FUNC (input parameter)
A fullword integer that specifies the function code. In OS/390 Language
Environment, the following function codes are supported:

1 - initialization of the first enclave within a process

2 - termination of the first enclave within a process

3 - nested enclave initialization

4 - nested enclave termination

5 - process termination

The user exit should ignore function codes other than those numbered from 1
through 5.

CEEAUE_RETC (input/output parameter)
A fullword integer that specifies the return or abend code. CEEAUE_RETC has
different meanings depending on the flag CEEAUE_ABND:

v As an input parameter, this fullword is the enclave return code.

Figure 160. Interface for Assembler User Exits

Chapter 36. Using Run-Time User Exits 543

v As an output parameter, if the flag CEEAUE_ABND is on, this fullword is
interpreted as an abend code that is used when an abend is issued. (This
could be either an EXEC CICS ABEND or an SVC 13.)

v If the flag CEEAUE_ABND is off, this fullword is interpreted as the enclave return
code that might have been modified by the exit.

See OS/390 Language Environment Programming Guide for more information
about how OS/390 Language Environment computes return and reason codes.

CEEAUE_RSNC (input/output parameter)
A fullword integer that specifies the reason code for CEEAUE_RETC.

v As an input parameter, this fullword is the OS/390 Language Environment
return code modifier.

v As an output parameter, if the flag CEEAUE_ABND is on, CEEAUE_RETC is
interpreted as an abend reason code that is used when an abend is issued.
(This field is ignored when an EXEC CICS ABEND is issued.)

v If the flag CEEAUE_ABND is off, this fullword is the OS/390 Language
Environment return code modifier that might have been modified by the exit.

See OS/390 Language Environment Programming Guide for more information
about how OS/390 Language Environment computes return and reason codes.

CEEAUE_FLAGS (input/output parameter)
Contains four flag bytes. CEEBXITA uses only the first byte but reserves the
remaining bytes. All unspecified bits and bytes must be zero. The layout of
these flags is shown in Figure 161.

Byte 0 (CEEAUE_FLAG1) has the following meaning:

CEEAUE_ABTERM (input parameter)
When OFF, the enclave terminates normally (severity 0 or 1 condition).

Figure 161. CEEAUE_FLAGS Format

544 OS/390 V2R10.0 C/C++ Programming Guide

When ON, the enclave terminates with an OS/390 Language
Environment return code modifier of 2 or greater. This could, for
example, indicate that a condition of severity 2 or greater was raised
that was unhandled.

CEEAUE_ABND (output parameter)
When OFF, the enclave terminates without an abend. CEEAUE_RETC and
CEEAUE_RSNC are placed in register 15 and register 0 and returned to the
enclave creator.

When ON, the enclave terminates with an abend. Thus, CEEAUE_RETC
and CEEAUE_RSNC are used by OS/390 Language Environment in the
invocation of the abend. While executing in CICS, an EXEC CICS ABEND
command is issued.

CEEAUE_RSNC is ignored under CICS. The TRAP option does not affect
the setting of CEEAUE_ABND.

CEEAUE_DUMP (output parameter)
When OFF and you request an abend, an abend is issued without
requesting a system dump.

When ON and you request an abend, an abend is issued requesting a
system dump.

CEEAUE_STEPS (output parameter)
When OFF and you request an abend, one is issued to abend the entire
task.

When ON and you request an abend, one is issued to abend the step.

Note: This fullword is ignored under CICS.

CEEAUE-A-CC-PLIST (input/output parameter)
A fullword pointer to the parameter address list of the application program.

As an input parameter, this fullword contains the register 1 value passed to the
main routine. The exit can modify this value, and the value is then passed to
the main routine. If run-time options are present in the invocation command
string, they are stripped off before the exit is called.

If the parameter inbound to the main routine is a character string,
CEEAUE-A-CC-PLIST contains the address of a fullword address that points to a
halfword prefixed string. If this string is altered by the user exit, the string must
not be extended in place.

CEEAUE_WORK (input parameter)
Contains a fullword pointer to a 256-byte work area that the exit can use. On
entry, it contains binary zeros and is doubleword-aligned.

This area does not persist across exits.

CEEAUE_OPTIONS (output parameter)
On return, this field contains a fullword pointer to the address of a halfword
length prefixed character string that contains run-time options. These options
are only processed for enclave initialization. When invoked for enclave
termination, this field is ignored.

These run-time options override all other sources of run-time options except
those that are specified as non-overrideable in the installation default run-time
options.

Chapter 36. Using Run-Time User Exits 545

Under CICS, the STACK run-time option cannot be modified using the assembler
user exit.

CEEAUE_USERWD (input/output parameter)
Contains a fullword whose value is maintained without alteration and passed to
every user exit. On entry to the enclave initialization user exit, it is zero.
Thereafter, the value of the user word is not altered by OS/390 Language
Environment or any member libraries. The user exit can change the value of
this field and OS/390 Language Environment maintains this value. This allows a
user exit to initialize the fullword and pass it to subsequent user exits.

CEEAUE_A_AB_CODES (output parameter)
During the initialization exit, this field contains the fullword address of a table of
abend codes that the OS/390 Language Environment condition handler
percolates while in the (E)STAE exit. Therefore, the application is not given the
opportunity to field the abend. The table consists of:

v A fullword count of the number of abend codes that are to be percolated

v A fullword for each of the particular abend codes that are to be percolated

The abend codes can be user abend codes or system abend codes. User
abend codes are specified by F'uuu'. For example, if you wanted user abend
777 to be percolated, an F'777' would be coded. System abend codes are
specified by X'00sss000'. Avoid specifying the values 0C0 through 0CF as 'sss'.
Language Environment ignores values between OCO and OCF. No abend is
percolated, and OS/390 Language Environment condition handling semantics
are in effect.

This function is not enabled under CICS.

CEEAUE_FBCODE (input parameter)
Contains the fullword address of the condition token with which the enclave
terminated. If the enclave terminates normally (that is, not because of a
condition), the condition token is zero.

CEEAUE_PAGE (input/output parameter)
Usage of this field is related to PL/I BASED variables that are allocated storage
outside of AREAs. You can indicate whether storage should be allocated on a
4K-page boundary. You can specify the minimum number of bytes of storage
that you want allocated. Your allocation request must be an exact multiple of
4K. The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32K).

If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on other than
4K-page boundaries.

CEEAUE_PAGE is honored only during enclave initialization (that is, when
CEEAUE_FUNC is 1 or 3).

The offset of CEEAUE_PAGE under OS/390 Language Environment is different
from the offset of IBMBXITA under OS PL/I Version 2 Release 3.

Parameter Values in the Assembler User Exit
The parameters described in the following sections contain different values
depending on how the user exit is used. Possible values are shown for the
parameters based on how the assembler user exit is invoked.

First Enclave within Process Initialization—Entry
CEEAUE_LEN 48

546 OS/390 V2R10.0 C/C++ Programming Guide

CEEAUE_FUNC 1 (first enclave within process initialization function
code).

CEEAUE_RETC 0

CEEAUE_RSNC 0

CEEAUE_FLAGS 0

CEEAUE-A-CC-PLIST The register 1 value from the operating system.

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD 0

CEEAUE_FBCODE 0

CEEAUE_PAGE Minimum number of storage bytes to be allocated
for PL/I BASED variables (default = 32768).

First Enclave within Process Initialization—Return
CEEAUE_RETC 0, or if CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC 0, or if CEEAUE_ABND = 1, the reason code for
CEEAUE_RETC.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE-A-CC-PLIST Register 1, used as the new parameter list.

CEEAUE_OPTIONS Pointer to the address of a halfword prefixed
character string containing run-time options, or 0.

CEEAUE_USERWD Value of CEEAUE_USERWD for all subsequent exits.

CEEAUE_A_AB_CODES Pointer to the abend code table, or 0.

CEEAUE_PAGE User-specified PAGE value. Minimum number of
storage bytes to be allocated for PL/I BASED
variables (default = 32768).

First Enclave within Process Termination—Entry
CEEAUE_LEN 48

CEEAUE_FUNC 2 (first enclave within process termination function
code).

CEEAUE_RETC Return code issued by the application that is
terminating.

CEEAUE_RSNC Reason code that accompanies CEEAUE_RETC.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the application is terminating
with a OS/390 Language Environment return code
modifier of 2 or greater, or 0 otherwise.

CEEAUE_ABND = 0

CEEAUE_DUMP = 0

Chapter 36. Using Run-Time User Exits 547

CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD Return value from the previous exit.

CEEAUE_FBCODE Feedback code causing termination.

First Enclave within Process Termination—Return
CEEAUE_RETC If CEEAUE_ABND = 0, the return code placed in

register 15 when the enclave terminates.

If CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC If CEEAUE_ABND = 0, the enclave reason code.

If CEEAUE_ABND = 1, the abend reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE_USERWD The value of CEEAUE_USERWD for all subsequent
exits.

Nested Enclave Initialization—Entry
CEEAUE_LEN 48

CEEAUE_FUNC 3 (nested enclave initialization function).

CEEAUE_RETC 0

CEEAUE_RSNC 0

CEEAUE_FLAGS 0

CEEAUE-A-CC-PLIST The register 1 value discovered in a nested enclave
creation.

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD The return value from previous exit.

CEEAUE_FBCODE 0

CEEAUE_PAGE Minimum number of storage bytes to be allocated
for PL/I BASED variables (default = 32768).

Nested Enclave Initialization—Return
CEEAUE_RETC 0, or if CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC 0, or if CEEAUE_ABND = 1, the reason code for
CEEAUE_RETC.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

548 OS/390 V2R10.0 C/C++ Programming Guide

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE-A-CC-PLIST Register 1 used as the new parameter list.

CEEAUE_OPTIONS Pointer to a fullword address that points to a
halfword prefixed string containing run-time options,
or 0.

CEEAUE_USERWD The value of CEEAUE_USERWD for all subsequent
exits.

CEEAUE_A_AB_CODES Pointer to the abend code table, or 0.

CEEAUE_PAGE User-specified PAGE value. Minimum number of
storage bytes to be allocated for PL/I BASED
variables (default = 32768).

Nested Enclave Termination—Entry
CEEAUE_LEN 48

CEEAUE_FUNC 4 (termination function).

CEEAUE_RETC Return code issued by the enclave that is
terminating.

CEEAUE_RSNC Reason code that accompanies CEEAUE_RETC.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the application is terminating
with an OS/390 Language Environment return code
modifier of 2 or greater, or 0 otherwise.

CEEAUE_ABND = 0

CEEAUE_DUMP = 0

CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD Return value from previous exit.

CEEAUE_FBCODE Feedback code causing termination.

Nested Enclave Termination—Return
CEEAUE_RETC If CEEAUE_ABND = 0, the return code from the

enclave.

If CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC If CEEAUE_ABND = 0, the enclave reason code.

If CEEAUE_ABND = 1, the enclave reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE_USERWD Value of CEEAUE_USERWD for all subsequent exits.

Chapter 36. Using Run-Time User Exits 549

Process Termination—Entry
CEEAUE_LEN 48

CEEAUE_FUNC 5 (process termination function).

CEEAUE_RETC Return code presented to the invoking system in
register 15 that reflects the value returned from the
first enclave within process termination.

CEEAUE_RSNC Reason code accompanying CEEAUE_RETC that is
presented to the invoking system in register 0 and
reflects the value returned from the first enclave
within process termination.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the last enclave is terminating
abnormally (that is, an OS/390 Language
Environment return code modifier is 2 or greater).
This reflects the value returned from the first
enclave within process termination (function code
2).

CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing first enclave within process termination
(function code 2).

CEEAUE_DUMP = 0

CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD The return value from previous exit.

CEEAUE_FBCODE The feedback code causing termination.

Process Termination—Return
CEEAUE_RETC If CEEAUE_ABND = 0, the return code from the

process.

If CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC If CEEAUE_ABND = 0, the reason code for CEEAUE_RETC
from the process.

If CEEAUE_ABND = 1, reason code for the
CEEAUE_RETC abend reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE_USERWD The value of CEEAUE_USERWD for all subsequent
exits.

550 OS/390 V2R10.0 C/C++ Programming Guide

PL/I and C/370 Compatibility
The following OS PL/I Version 2 Release 3 assembler user exits are supported for
compatibility under OS/390 Language Environment:

IBMBXITA (MVS Batch version)

IBMFXITA (CICS version)

For more information about IBMBXITA see PL/I for MVS & VM Compiler and
Run-Time Migration Guide. These user exits are available only under C, not C++.

Default versions of the above exits are not supplied under OS/390 Language
Environment; instead, OS/390 Language Environment supplies a default version of
CEEBXITA. Table 68 describes the order of precedence if the IBMBXITA and IBMFXITA
user exits are found in the same root program with CEEBXITA.

Table 68. Interaction of Assembler User Exits

CEEBXITA
Present

IBMBXITA Present under MVS Batch,
IBMFXITA Present under CICS

Exit Driven

No No Default version of CEEBXITA

Yes No CEEBXITA

No Yes IBMBXITA under MVS Batch;
IBMFXITA under CICS

Yes Yes CEEBXITA

CXIT_FUNC in IBMBXITA will map to CEEBXITA as follows:

v CXIT_FUNC = 1 when IBMBXITA is invoked for initial enclave initialization or nested
enclave initialization

v CXIT_FUNC = 2 when IBMBXITA is invoked for initial enclave termination or nested
enclave termination

CXIT_USERWD in IBMBXITA will persist across enclaves (for example, in system()
calls).

High Level Language User Exit Interface
OS/390 Language Environment provides CEEBINT, an HLL user exit, for enclave
initialization. You can code CEEBINT in OS/390 C, PL/I, or OS/390 C++ (subject to
the restrictions in “Order of Processing of User Exits” on page 538), or OS/390
Language Environment-conforming assembler. The HLL user exit cannot be written
in COBOL. COBOL programmers can use an HLL exit written in OS/390 C, PL/I,
OS/390 Language Environment-conforming assembler, OS/390 C++ (again, subject
to the restrictions in “Order of Processing of User Exits” on page 538), or default to
the IBM-supplied default HLL user exit.

The HLL enclave initialization exit is invoked after the enclave has been
established, after the Debug Tool initial command string has been processed, and
prior to the invocation of compiled code. When invoked, it is passed a parameter list
that conforms to the OS/390 Language Environment definition. The parameters are
all fullwords and are defined as follows:

Number of arguments in parameter list (input)
A fullword binary integer.

v On entry: Contains 7.

v On exit: Not applicable.

Chapter 36. Using Run-Time User Exits 551

Return code (output)
A fullword binary integer.

v On entry: 0.

v On exit: Able to be set by the exit, but not interrogated by OS/390 Language
Environment.

Reason code (output)
A fullword binary integer.

v On entry: 0

v On exit: Able to be set by the exit, but not interrogated by OS/390 Language
Environment.

Function code (input)
A fullword binary integer.

v On entry: 1, indicating the exit is being driven for initialization.

v On exit: Not applicable.

Address of the main program entry point (input)
A fullword binary address.

v On entry: The address of the routine that gains control first.

v On exit: Not applicable.

User word (input/output)
A fullword binary integer.

v On entry: Value of the user word (CEEAUE_USERWD) as set by the assembler
user exit.

v On exit: The value set by the user exit, maintained by OS/390 Language
Environment and passed to subsequent user exits.

Exit List Address (output)
A fullword binary integer reserved for future use.

This allows the establishment of one or more user exits when the enclave user
exit sets this field to a list of user exits. Currently, only one user exit is
supported in OS/390 Language Environment.

A_Exits
The address of the exit list control block, Exit_list.

v On entry: 0.

v On exit: 0, unless you establish a hook exit, in which case you would set this
pointer and fill in relevant control blocks. The control blocks for Exit_list
and Hook_exit are shown in the following figure.

As supplied, CEEBINT has only one exit defined that you can establish: the hook exit
described by the Hook_exit control block. This exit gains control when hooks
generated by the PL/I compile-time TEST option are executed. You can establish
this exit by setting appropriate pointers (A_Exits to Exit_list to Hook_exit).
Figure 162 on page 553 illustrates the Exit_list and Hook_exit control blocks.

552 OS/390 V2R10.0 C/C++ Programming Guide

The control block Exit_list exit contains the following fields:

Exit_list_len
The length of the control block. It must be 1.

Exit_list_hooks
The address of the Hook_exit control block.

The control block for the hook exit must contain the following fields:

Hook_exit_len
The length of the control block.

Hook_exit_rtn
The address of a routine you want invoked for the exit. When the routine is
invoked, it is passed the address of this control block. Because this routine is
invoked only if the address you specify is nonzero, you can turn the exit on and
off.

Hook_exit_fnccode
The function code with which the exit is invoked. This is always 1.

Hook_exit_retcode
The return code set by the exit. You must ensure it conforms to the following
specifications:

0 Requests that Debug Tool be invoked next

4 Requests that the program resume immediately

0(0)

0(0)

4(4)

4(4)

12(C)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

Exit_list

Hook_exit

Exit_list_len

Exit_list_hooks

Hook_exit_len

Hook_exit_rtn

Hook_exit_fnccode

Hook_exit_retcode

Hook_exit_rsncode

Hook_exit_userwd

Hook_exit_ptr

Hook_exit_reserved

Hook_exit_dsa

Hook_exit_addr

8(8)

Figure 162. Exit_list and Hook_exit Control Blocks

Chapter 36. Using Run-Time User Exits 553

16 Requests that the program be terminated

Hook_exit_rsncode
The reason code set by the exit. This is always zero.

Hook_exit_userwd
The user word passed to the user exits.

Hook_exit_ptr
An exit-specific user word.

Hook_exit_reserved
Reserved.

Hook_exit_dsa
The contents of register 13 when the hook was executed.

Hook_exit_addr
The address of the hook instruction executed.

Usage Requirements
1. The user exit must not be a main-designated routine. For example, it cannot be

a OS/390 C or a OS/390 C++ main() function.

2. The HLL exit routines must be linked with compiled code. If you do not provide
an initialization user exit, an IBM-supplied default, which returns control to your
application, is linked with the compiled code.

3. The exit cannot be written in COBOL/370.

4. The exit should be coded so that it returns for all unknown function codes.

5. OS/390 C constructs such as the exit(), abort(), raise(SIGTERM), and
raise(SIGABRT) functions terminate the enclave.

6. A PL/I EXIT or STOP statement terminates the enclave.

7. Use the callable service IBMHKS to turn hooks on and off. For more information
about IBMHKS, see PL/I for MVS & VM Compiler and Run-Time Migration Guide.

554 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 37. Using The OS/390 C MultiTasking Facility

This chapter describes how to use the MultiTasking Facility (MTF) with OS/390 C. It
explains how to organize, code, compile, link, and run a program using MTF. It also
lists restrictions while using MTF.

MTF is a facility available under OS/390 that can be used by application programs
to improve turnaround time on System/370 multiprocessor and attached-processor
configurations (for example, the 3090*-400 or 3090-600). When a program uses
MTF on such a system, the elapsed time required to run the program can be
reduced. You can run tasks, which can run independently of each other,
simultaneously.

MTF is easy to use and requires very little knowledge of the multitasking
capabilities upon which it depends. From the programmer’s perspective,
multitasking facilities are available through the library functions of OS/390 C.
Because of this simplicity, it is easy to introduce MTF to existing applications and
code new MTF applications to gain the benefits of multitasking.

Notes:

1. Except for a few differences, the MTF support for OS/390 C is the same as for
the equivalent FORTRAN multitasking facilities. MTF is not supported under
CICS, IMS, DB2, C++, or OS/390 UNIX. In addition, IPA is not supported in an
MTF environment.

2. XPLINK is not supported in an MTF environment.

Organizing a Program with MTF
MTF takes advantage of the multitasking capabilities of the operating system to
enable a single OS/390 C application program to use more than one processor of a
multiprocessing configuration simultaneously. The OS/390 operating system
organizes all work into units called tasks. These tasks are used by the operating
system to assign work to the processors of the multiprocessor configuration.

MTF’s facilities allow a single OS/390 C application to be organized so it can be run
in a main task and in one or more subtasks. As a result of this organization, the
system can schedule these individual tasks to run simultaneously. This can
significantly reduce the elapsed time needed to run the program.

When a program is organized in this manner, the main task runs the part of the
program that controls the overall processing. This part is referred to as the main
task program throughout this manual.

The subtasks run the portions of the program that can run independently of the
main task program and of each other. These portions of the program are referred to
as parallel functions. The library functions provided by MTF allow the main task
program to schedule parallel functions and allow them to run independently. Parallel
functions are queued for execution on the next available subtask. Scheduling a
parallel function does not require that there be a free subtask at the time of the
scheduling. MTF allows the main task program to schedule more parallel functions
than there are actual MVS subtasks.

The parallel functions are coded the same way as normal C functions, with the
exception of a few rules discussed in “Designing and Coding Applications for MTF”
on page 563. In particular, parallel functions cannot issue MTF calls.

© Copyright IBM Corp. 1996, 2000 555

|

MTF applications are link-edited as two separate load modules: a main task load
module (containing the main task program) and a parallel load module (containing
all parallel functions).

OS/390 C provides the following MTF functions:

v tinit() to initialize the MTF environment

v tsched() to schedule parallel functions to run

v tsyncro() to synchronize the completion of parallel functions

v tterm() to terminate all executing parallel functions.

For details on the library functions, refer to the OS/390 C/C++ Run-Time Library
Reference.

OS/390 C also provides the header file mtf.h, which must be included in your main
task program if you are going to use the MTF facilities. The mtf.h header file
contains the macros MTF_ANY and MTF_ALL, as well as the error-return codes and
prototypes for library functions.

Ensuring Computational Independence
To use multitasking successfully, the parallel functions must have computational
independence. This means that no data modified by either the main task program
or a parallel function is examined or modified by a parallel function that might be
running simultaneously.

In the following figure, you see a graphic example of hypothetical data in an array
subscripted by I, J, and K. Each of the three divisions of the box represents a
section of the array that can be operated on independently of the other sections.
The same parallel function could be scheduled three times, with each instance of
the function processing one of the three sections of the array.

Your application may not have computational independence along the same
subscript axis of K, as in this picture. The divisions might have been along one of
the other subscript axes, I or J. Also, the computational independence in your
application may not fall into neat, box-like divisions.

It is also possible to have computational independence that is not based on
sections of the same array, but rather on separate arrays (perhaps with completely

J

I

K

Figure 163. Computational Independence

556 OS/390 V2R10.0 C/C++ Programming Guide

different types of data), the values of which do not depend on each other. In this
case, separate parallel functions could be scheduled, with each function processing
its own unique data.

Computational independence also applies to input/output files. One parallel function
should not use a file while another is updating it. However, different functions can
successfully read the same file. No single file pointer should be used concurrently
by multiple parallel functions, because the behavior is undefined in such a case.

Running a C Program without MTF
The following diagrams illustrate the way a OS/390 C program runs without
multitasking. The program and its functions must run in a strictly sequential manner,
function following function, using one processor at a time. Consequently, your
program takes more elapsed time to complete than it would if it could use several
processors at the same time.

In the following example, without multitasking, the OS/390 C program and all its
functions can only use one processor.

Processor 1 Processor 2

Your OS/390 C
program

Function suba()

Function subb()

. . .

Function subn()

Chapter 37. Using The OS/390 C MultiTasking Facility 557

While running, your program may be switched back and forth between the
processors, but it can only run on one processor at a time.

Running a C Program with MTF
To illustrate the concept of multitasking, this section shows three examples of
running a OS/390 C program with MTF. These examples show programs using:

v One parallel function

v Two different functions

v Two or more instances of the same function

Each example provides an illustration of how the processors are used and how the
program is organized to accomplish the particular use of the processors.

Running a C Program with One Parallel Function
If your C program uses MTF, the main task program and a computationally-
independent parallel function can run concurrently.

Processor 1 Processor 2

Your OS/390 C
program

Function suba()

Function subb()

. . .

Function subn()

558 OS/390 V2R10.0 C/C++ Programming Guide

Processor Use

In the previous illustration, only the function suba has computations that can be
done independently of the main task program, which includes the C main program
plus its functions.

With the appropriate MTF request, the parallel function, suba, is scheduled to run in
a subtask.

The arrows to Processor 1 and Processor 2 are for illustration only. The main task
program could have run on Processor 2 and the parallel function, suba, on
Processor 1; in fact, while they run, they may be switched between the processors.

Processor 1 Processor 2

OS/390 C main
task program

Function subb()

. . .

Function subn()

Function suba()

Main Task Program

Parallel Function

Chapter 37. Using The OS/390 C MultiTasking Facility 559

Sample Program

What the MTF functions do:

�1� tinit() names the parallel load module plmod and specifies one subtask.

�2� tsched() schedules the parallel function suba to run. suba is
computationally-independent of the main task.

�3� At this point, tsyncro() makes the main task program wait until suba is
finished before the main task program continues.

Running a C Program with Two Different Parallel Functions
If your C program uses MTF, the main task program and several different
computationally-independent parallel functions can run concurrently.

Processor Use

#include <mtf.h>
. . .
tinit("plmod",1);
. . .
tsched(MTF_ANY, "suba", arglist);
. . .
subb();
. . .
subn();
tsyncro(MTF_ALL);
. . .

Function subb()

. . .

Function subn()

Main Task Program

Function suba()

1

2

3

Processor 1 Processor 2 Processor 3

OS/390 C main
task program

Function subb()

. . .

Main Task Program

Parallel Functions
(One Parallel Module)

Function subc()Function suba()

560 OS/390 V2R10.0 C/C++ Programming Guide

In the previous illustration, functions suba and subc are independent of each other
and of the main task program.

The arrows to Processors 1, 2, and 3 are for illustration only. The main task
program and the parallel functions could run on any of the processors.

Sample Program

What the MTF functions do:

The logic is similar to that for only one parallel function and can be extended to as
many parallel functions as necessary to complete the logic of the program.

�1� tinit() names the parallel load module plmod and specifies two subtasks.

�2� Each call to tsched() schedules one of the parallel functions, passing
different data to each for processing. suba and subc are
computationally-independent parallel functions.

�3� At this point, tsyncro() makes the main task program wait until both suba
and subc are finished before the main task program continues its
processing.

OS/390 C with Multiple Instances of the Same Parallel Function
If your C program uses MTF, the main task program and multiple instances of the
same parallel function can run concurrently.

Function subc()

#include <mtf.h>

. . .

tinit("plmod",2);

. . .

tsched(MTF_ANY, "suba", arglist1);

. . .

tsched(MTF_ANY, "subc", arglist2);

. . .

subb();

. . .

tsyncro(MTF_ALL);

. . .

Function subb()

. . .

Main Task Program

Function suba()

1

2

2

3

Chapter 37. Using The OS/390 C MultiTasking Facility 561

Processor Use

In this illustration, parallel function suba has data you can divide, so two instances
of suba run independently of the main task program and of each other.

Sample Program

What the MTF functions do:

�1� tinit() names the parallel load module plmod and specifies two subtasks.

�2� Each call to tsched() schedules one instance of the parallel function to run
and supplies separate data to be processed by that instance of suba. The
data to be processed by each instance of the parallel function could be two
different sections of the same array. Both instances of suba are
computationally-independent of the main task program and each other,
because each instance of suba processes different data.

Processor 1 Processor 2 Processor 3

OS/390 C main
task program

Function subb()

. . .

Main Task Program

Parallel Functions
(One Parallel Module)

Function suba()Function suba()

Function suba()

#include <mtf.h>

. . .

tinit("plmod",2);

. . .

tsched(MTF_ANY, "suba", arglist1);

. . .

tsched(MTF_ANY, "suba", arglist2);

. . .

subb();

. . .

tsyncro(MTF_ALL);

. . .

Function subb()

. . .

Main Task Program

Function suba()

1

2

2

3

562 OS/390 V2R10.0 C/C++ Programming Guide

�3� At this point, tsyncro() makes the main task program wait until all
instances of suba finish before the main task program continues.

Designing and Coding Applications for MTF
You can use the following steps when preparing a OS/390 C application to work
with MTF:

1. Identify computationally-independent code

2. Create parallel functions

3. Insert calls to parallel functions in main task program

New programs can be designed to use MTF, and existing programs can be
reconstructed.

Step 1: Identifying Computationally-Independent Code
The first step in adapting an application program for MTF is to identify groups of
computations that can be performed in parallel. To produce correct results, the
computations that are done in parallel must be computationally-independent. This is
further explained under “Ensuring Computational Independence” on page 556.

Step 2: Creating Parallel Functions
After the segments of code that are computationally-independent are identified, they
are separated from the main task program and placed in parallel functions. A
parallel function is coded as a normal C function that follows several rules required
for correct operation with MTF. Besides to data independence, there are rules for:

v Parallel functions

v Calling other functions

v Separate storage for separate modules

v Passing data

v Input and output

v Exception/signal handling

v Function termination

Parallel Functions
v A parallel function must be written only in C.

v The return value of a parallel function must be void. If a parallel function
attempts to return a value, the behavior will be undefined.

v External parallel function names must be 8 characters or shorter in length and
will be uppercased.

Calling Other Functions
v A parallel function may actually be coded as a series of functions that call one

another. All of these functions operate in the parallel function’s subtask
environment and must follow the rules of a parallel function except that they can
be written in assembler as well as C, and they can have return values.

v A parallel function cannot call the MTF library functions tinit(), tsched(),
tsyncro(), or tterm(). Such calls can only be used in the main task.

Separate Storage for Separate Modules
v Every MTF application consists of two modules: the main task module which runs

on the main task, and the parallel module that runs on the subtask(s). Each task

Chapter 37. Using The OS/390 C MultiTasking Facility 563

(main or sub) has its own unique run-time storage structure consisting of ISA,
heap, and residual storage. Each task has:

– Separate writable static (whether reentrant or not)

– Separate library-internal storage (for example, file and storage management
control blocks)

– Separate exception and signal-handling environment (for example, errno,
__amrc)

v Usually, functions must abide by the restrictions inherent in this arrangement. The
remaining rules in this section mostly arise from this arrangement.

564 OS/390 V2R10.0 C/C++ Programming Guide

Passing Data
v A parallel function is always invoked in its last-used state. If, for example, a

parallel function has defined a static variable with an initializer, then the variable
has that value the first time the parallel function executes on a given task. Should
the value be modified, the modification is available the next time that parallel
function is run only if the function is scheduled to the same task. If you don’t

User_main()

user_funcA()

user_funcB()

user_funcC()

Main Task 00

Main Task Module

Data Storage

ISA

Heap

Residual

OS/390 C MTF
Library

tinit, tsched

tsyncro, tterm

...

user_pfuncX()

user_pfuncY()

user_funcD()

EDCMTFS_main

Subtask 01

Parallel Module

Data Storage

ISA

Heap

Residual

user_pfuncX()

user_pfuncY()

user_funcD()

EDCMTFS_main

Subtask nn

Parallel Module

Data Storage

ISA

Heap

Residual

Single User Application/Single Address Space

Notes:

1. Each task has private and separate storage structure that leads to most of the
parallel function idiosyncrasies:

v All file operations from same task.

v Storage must be malloc() or free()d from same task.

v Independent signal handling environments.

2. MTF library functions are only operational in the main task.

3. call/return used for invocation within a task.

4. MTF only supports parallel load modules in a PDS. Parallel load modules in a
PDSE are NOT supported.

Figure 164. Basic MTF Layout

Chapter 37. Using The OS/390 C MultiTasking Facility 565

schedule the parallel function to the same task, you cannot depend upon residual
values from previous invocations of the function.

v Data can be passed between the main task program and parallel functions, and
between parallel functions by passing a pointer to the storage area as a
parameter. Care must be taken to ensure that the data remains valid and
available until completion of the particular parallel function instance being
scheduled.

v If heap storage is obtained on a given task, it must be freed on that task and no
other. Other tasks may be given access to that storage by passing pointers but
no other task can use that pointer to free the storage.

Input/Output
v File pointers must not be shared across subtasks. A given file pointer must only

be used (for file access and closing) on the same task on that it was created
{(using fopen())}. File pointers must be utilized as a serial resource. OS/390 C
does not protect against misuse, and a program will have unpredictable behavior
if this rule is not enforced.

v Each parallel function updates (writes or changes) a file as if it had complete
control over the file; therefore, there should be no simultaneous read or update of
a given file while any function on any task is updating that file (even if separate
file pointers are used).

v Memory files cannot be shared across subtasks.

Exception/Signal Handling
v The parallel functions on the subtasks run with TRAP(ON) run-time option, and

each has a signal handling environment entirely independent from that of each
other task. All signals are initialized to default handling on each task, and can be
modified for a given task only through a signal statement from a parallel function
on that task.

v All signal interrupts are eligible to be raised from the operating system or by the
raise() function during execution of parallel functions. All signals, however,
require special handling in the case of parallel functions because of the
requirement that parallel functions always return normally. Signals must either be
ignored or a handler must be established that does not terminate the program. If
these signals are left to default handling or a handler is established that
terminates the program, MTF will treat this as an abnormal termination of the
parallel function.

Function Termination
v Parallel functions run as called functions (from EDCMTFS, the OS/390 C library

supplied main function for parallel modules) and must terminate by simple return
(to EDCMTFS). For more information on EDCMTFS, see “Creating the Parallel
Functions Load Module” on page 573.

v Termination with exit() and abort() calls is invalid because these functions
interfere with EDCMTFS operation and they are treated by MTF as abnormal
terminations.

v On the first valid call to MTF (tsched(), tsyncro(), tterm()) from the main task
program after a parallel function has abnormally terminated (via exit()/abort()
or otherwise) MTF will:

– Abort all parallel functions scheduled or in progress

– Remove the MTF environment

– Return ETASKABND on that MTF call

566 OS/390 V2R10.0 C/C++ Programming Guide

A subsequent tterm() call is unnecessary and will simply return EINACTIVE. A
tinit() can be reissued, but depending on the severity of the condition that
caused the ETASKABND, the tinit() may or may not be successful.

Step 3: Inserting Calls to Parallel Functions
In the main task, insert a call to tinit() to initialize the MTF environment before to
any other MTF function call, or after tterm() is invoked. Replace each segment of
code that was identified for parallel computation with a call to tsched() which
schedules the corresponding parallel function. If more parallel function instances are
scheduled than tasks are currently available, the additional instances are queued
for subsequent execution in the order in which they were scheduled. They are
queued for any task or to a particular task according to the task_id parameter
supplied on the tsched() call. If parallel operation is to be achieved by scheduling
the same function multiple times with different data, the function call may be placed
within a loop.

The arguments passed to the parallel function may be:

v A variable

v An array element

v An array name

v A constant

v A structure

The following items must not be used as the arguments supplied to the parallel
function using tsched():

v Function pointers

v A pointer to data or storage that will be modified or released before a tsyncro().

After inserting calls to the parallel functions, insert a call to tsyncro() wherever the
program requires that any subtask, one particular subtask, or all of the subtasks
have finished executing the parallel functions previously scheduled to them. As the
last MTF call, insert a call to tterm() before to exit/return from the main task
program to remove the MTF environment.

To properly use MTF from the main task program it is necessary to include the
mtf.h header file before to the first MTF call in your program. MTF calls themselves
can be issued from non-main as well as main functions within the main task
program, subject only to the restrictions already described above. MTF calls,
however, can only be issued from C functions and not from functions written in any
other language.

The next sections show examples of how to change existing C programs to use
MTF following the steps just outlined.

Changing an Application to Use MTF
The following examples show how to change an application to use MTF by creating
parallel functions and inserting calls to these functions.

Example 1
Figure 165 on page 568 shows a computation of the dot product on two long
one-dimensional arrays of data. The processing within the loop structure may be
separated so that the dot product is not a result of serial calculations but a result of
parallel calculations. This is because the first part of the array is not dependent on

Chapter 37. Using The OS/390 C MultiTasking Facility 567

the results computed in any other section of the array. Thus the calculations are
therefore computationally independent of each other, and can be performed at the
same time.

Create Parallel Functions
The segments of the program that have been identified to run as parallel functions
are then recoded as new OS/390 C functions. In this case, there will be one parallel
function, multiple instances of which will be scheduled. The parallel function
corresponding to the code in Figure 165 now looks like Figure 166.

The variables to and from are used to determine on which part of the array the
parallel function is to perform.

Insert Calls to Parallel Functions
The segments of the program that have been removed to form parallel functions are
replaced by calls to these new parallel functions. For the sample code in Figure 165
on page 568sub:exph. is scheduled for each subtask that will be used at run time.
In order to do this, the computations controlled by the k index must be divided so
that each instance of the function sub operates on a different part of the original
range of the k variable. See Figure 167 for an example of how two instances of a
parallel function can be scheduled.

double dotprod(double *a, double *b, int len)
{

int i;
double res = 0;

for (i=0; i < len; ++i)
res += *a++ * *b++;

return(res);
}

Figure 165. Identifying Computationally-Independent Code

void pdotprod(double *a, double *b, int len, int m, int n, double *pres)

/* m = the section of the array */
/* n = the number of subtasks. n must be a factor of len */

{
int i, from, to;

*pres = 0;

/* Determine which section of the array to operate on */
from = (m-1) * len / n;
to = (m * len) / n;

/* Calculate the partial result on part of the array */
for (a+= from, b+=from, i=from; i < to; ++i)

*pres += *a++ * *b++;
}

Figure 166. The Sample Code as a Parallel Function

568 OS/390 V2R10.0 C/C++ Programming Guide

Also, within the main task program, the subtasks must be initialized and eventually
terminated as shown in Figure 168.

Example 2
Not all application programs contain parallelism within the iterations of a loop
structure. The following example illustrates parallel computations that appear as
different segments of code in the original program. Also illustrated is the use of
pointer arguments for passing data, and I/O operations to files in parallel functions.

#include <mtf.h>;

double dotprod(double *a, double *b, int len)
{

...
int i;
double res = 0;
double pres[MAXTASK];

/* Schedule the parallel functions according to */
/* how many subtasks exist */
for (i=1; i < n; ++i)

tsched(MTF_ANY,"pdotprod",a,b,len,i,n,&pres[i-1]);

/* Perform the calculations on the last part of the array */
pdotprod(a,b,len,n,n,&pres[n-1]);

/* Wait until all of the partial results are determined */
tsyncro(MTF_ALL);

/*Add all the partial results to determine the final dot product*/
for (i=0;i < n; ++i)

res += pres[i];

return(res);
}

Figure 167. Scheduling Instances of a Parallel Function

#include <mtf.h>

int main(void)
{

...
/* other code */
/* Attach and initialize a subtask */

tinit(load_sub_name, n);

...
result = dotprod(vector1,vector2,len);

...
/* Terminate subtasks */

tterm();
/* more code */
}

Figure 168. Main Task Program to Call Dot Product Function

Chapter 37. Using The OS/390 C MultiTasking Facility 569

Figure 169 shows two calls to the same function that performs the dot product on
the values in two files of data. The values are read from each file and the function
performs the dot product upon these values. The loop ends when the end of either
file is reached. The two computations are independent of each other and thus can
be performed simultaneously in two different parallel functions.

CBC3GMT1:

Create Parallel Functions
The fdotprod routine is identified as a parallel function so it is recoded as a new C
function in a separate file. Data is passed from the main function to the parallel
functions by means of pointer arguments. The parallel functions are shown in
Figure 171 on page 572. The main task program is shown in Figure 170 on
page 571.

/* MTF example 2 */

#include <stdio.h>

void fdotprod(char *fn1, char *fn2)
{

int i, res1;
double result=0, val1, val2;
FILE *file1, *file2;

file1 = fopen(fn1, "r");
file2 = fopen(fn2, "r");

while (1)
{

res1 = fscanf(file1, "%lf", &val1);
res1 += fscanf(file2, "%lf", &val2);
if (res1 != 2)

break;
result += val1 * val2;

}
if (res1 == 1)

printf("Error: Files of unequal length\n");
else

printf("Result: %lf\n", result);
}

int main(void)
{

fdotprod("a.input", "b.input");
fdotprod("c.input", "d.input");

return(0);
}

Figure 169. Sample Code to Be Changed to Use MTF

570 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GMT2:

/* MTF example 2 */
/* part 2 of 2-other file is CBC3GMT1 */

#include <stdio.h>
#include <mtf.h>

int main(void)
{

tinit("plmod", 2);
tsched(MTF_ANY, "fdotprod", "a.input", "b.input");
tsched(MTF_ANY, "fdotprod", "c.input", "d.input");
tsyncro(MTF_ALL);
tterm();

return(0);
}

void fdotprod(char *fn1, char *fn2)
{

int i, res1;
double result=0, val1, val2;
FILE *file1, *file2;

file1 = fopen(fn1, "r");
file2 = fopen(fn2, "r");

while(1)
{

res1 = fscanf(file1, "%lf", &val1);
res1 += fscanf(file2, "%lf", &val2);
if (res1 != 2)

break;
result += val1 * val2;

}
if (res1 == 1)

printf("Error: Files of unequal length\n");
else

printf("Result: %lf\n", result);
}

Figure 170. The Sample Code

Chapter 37. Using The OS/390 C MultiTasking Facility 571

CBC3GMT3:

Compiling and Linking Programs That Use MTF
Programs that use MTF run using two MVS load modules: a load module that
contains the main task program, and a load module that contains the parallel
functions. You compile and link-edit the main task program in the same procedure
as non-MTF C programs. The parallel function is compiled in the same procedure
as non-MTF C programs and is linked with EDCMTFS.

Creating the Main Task Program Load Module
The main task program load module is the load module that first receives control
when MVS starts running your program. It is the load module named in the PGM
keyword of the EXEC statement. This load module contains your application’s C
main() function plus all other functions that are to run as part of the main task. The
MTF functions can be invoked from any of the C functions contained in the main
task load module and do not necessarily have to be invoked from the C function
called main().

The procedures that you usually use to compile and link-edit a OS/390 C program
can be used to create the main task program load module. For example, the
following JCL sequence (see Figure 172 on page 573) uses the standard OS/390 C
cataloged procedure EDCCL to compile and link-edit the C source for the main task
program (stored in data set USERPGM.C(MTASKPGM)) and create a main task program
load module named MTASKPGM in data set USERPGM.LOAD.

/* MTF example 2 */
/* part 2 of 2-other file is CBC3GMT2 */
#include <stdio.h>

void fdotprod(char *fn1, char *fn2)
{

int i, res1;
double result=0, val1, val2;
FILE *file1, *file2;

file1 = fopen(fn1, "r");
file2 = fopen(fn2, "r");

while(1)
{

res1 = fscanf(file1, "%lf", &val1);
res1 += fscanf(file2, "%lf", &val2);
if (res1 != 2)

break;
result += val1 * val2;

}
if (res1 == 1)

printf("Error: Files of unequal length\n");
else

printf("Result: %lf-n", result);
}

Figure 171. The Sample Code

572 OS/390 V2R10.0 C/C++ Programming Guide

Creating the Parallel Functions Load Module
The parallel functions load module is the load module named in the call to the MTF
library function tinit(). This single load module contains all of your main task
program’s parallel functions. It must not contain any user’s C main() programs.
OS/390 C itself provides the EDCMTFS module to act as the C main() function in the
parallel module. EDCMTFS controls processing of the parallel functions as they are
scheduled (by way of tsched() calls) to the subtasks. The source code for the
EDCMTFS module is included in Figure 174 on page 574.

Note: The executable module for parallel function program must be a load module
(in a PDS dataset), created using the linkage editor (and prelinker if required
due to the presence of C++ code or C code compiled with the RENT option).
The MTF library functions used to access the parallel functions are not
compatible with a program object executable module (in a PDSE dataset).

The procedures that you usually use to compile and link-edit a OS/390 C program
must be modified such that the library module CEESTART will be the entry point of the
parallel functions load module.

When you link-edit this load module, include the following linkage editor control
statements:
INCLUDE SYSLIB(EDCMTFS)
ENTRY CEESTART

For example, the following JCL sequence uses the standard OS/390 C cataloged
procedure EDCCL to compile and link-edit the C source for the parallel functions
:{(stored in data set USERPGM.C(SUBTASK)):} and create a parallel functions load
module named PLMOD in data set USERPGM.LOAD. This load module contains the
module EDCMTFS, and has EDCMTFS as the load module’s entry point.

Note: First we have a step that compiles and link-edits the main task program.

The addressing mode is subject to normal consideration as described in the OS/390
Language Environment Programming Guide.

//MTASKPGM EXEC EDCCL,
// INFILE='USERPGM.C(MTASKPGM)',
// OUTFILE='USERPGM.LOAD(MTASKPGM),DISP=OLD'

Figure 172. Sample JCL to Compile and Link Main Task Program

//MTASKPGM EXEC EDCCL,
// INFILE='CBC.SCBCSAM(CBC3GMT2)',
// OUTFILE='USERPGM.LOAD(CBC3GMT2),DISP=SHR'
//*
//PFUNC EXEC EDCCL,
// INFILE='CBC.SCBCSAM(CBC3GMT3)',
// OUTFILE='USERPGM.LOAD(PLMOD),DISP=SHR'
//LKED.SYSLIN DD

INCLUDE SYSLIB(EDCMTFS)
ENTRY CEESTART

/*

Figure 173. Sample JCL to Compile and Link Parallel Functions

Chapter 37. Using The OS/390 C MultiTasking Facility 573

Specifying the Linkage-Editor Option
Do not specify the NE linkage-editor option when link-editing the parallel functions
load module. MTF cannot schedule parallel functions that are contained in a load
module link-edited with the NE option.

Modifying Run-Time Options
You can alter the #pragma runopts options STACK and HEAP within the EDCMTFS
module for each subtask, but you must recompile the module under the same
name. The source code for EDCMTFS is shown in Figure 174.

You can also add a #pragma runopts statement with the RTLS, LIBRARY, and
VERSION options to EDCMTFS, if required.

Running Programs That Use MTF
To run your program, use the usual MVS JCL for OS/390 C programs, plus a few
additional JCL statements that are required to run MTF.

STEPLIB DD Statement
You must ensure that the library containing the load modules is specified on the
STEPLIB DD statement in your JCL, as well as the other libraries usually specified,
as follows:
//STEPLIB DD DSN=user.dsn,DISP=SHR

where:

user.dsn
is the name of the load module library that contains the parallel functions load
module.

The parallel functions load module (parallel_loadmod_name), specified on the
call to tinit(), must be in this data set.

You must allocate the ddname EDCMTF to the user.dsn data set as well as
adding user.dsn to the STEPLIB concatenation list.

/***/
/* Modify the isa/isainc/heap subparameters in the following line */
/* as required to meet your needs. Ensure that your version (compiled*/
/* and linked) is then accessed in your link-edit of the parallel */
/* module in place of the prebuilt EDCMTFS found in SCEELKED. */
/***/
#pragma runopts(STACK(8K,4K,ANY,FREE),HEAP(4K,4K,ANY,FREE))
/***/
/* The following lines must remain unmodified to ensure proper */
/* operation of MTF. */
/***/
#pragma runopts(TRAP(ON),RPTSTG(OFF),\

(STAE,SPIE,NOREPORT,NOTEST,\
ARGPARSE,REDIR,NOEXECOPS)

int main(int argc, char **argv) { return tsetsubt(argc,argv); }

Figure 174. Source Code for EDCMTFS

574 OS/390 V2R10.0 C/C++ Programming Guide

DD Statements for Standard Streams
For standard streams, MTF assigns a unique run-time output file to each parallel
function. These output files contain diagnostic messages that the library can issue
while the parallel functions are running. They also contain output directed to the
standard streams (stderr and stdout) by parallel functions and input from the
standard stream stdin.

Because these files are automatically allocated while the program is running, you
need not supply DD statements for them unless you wish to override the default
device type or other file characteristics. The default device type is a terminal in TSO
or SYSOUT=* in batch.

If you do supply DD statements, use the following ddnames:

v stdinstn for files containing input for operations such as getc()

v stderrstn for files containing diagnostic messages

v stdoutstn for files containing output from operations such as printf()

Where stn is the 2-digit subtask number; that is, 01, 02, 03, and so on. Thus, for
example, if you had four subtasks and the first two used printf() functions, you
would use the ddnames stdout01, stdout02, stderr01, stderr02, stderr03, and
stderr04.

Example of JCL
An example of the run-time JCL to run a program that uses MTF is shown in
Figure 175 on page 575. This figure shows the JCL that is unique to running MTF,
as well as the other JCL the program would typically require. (Some programs
might require additional DD statements.)

MTASKPGM is the name of the main task program load module, and is the load
module that gets control when MVS first starts running the program. In this
example, this load module is contained in data set USERPGM.LOAD, which is referred
to by the STEPLIB DD statement. USERPGM.LOAD also contains the parallel functions.

The STDIN01 DD statement specifies the data set that contains the program’s input
data for the first task. The STDOUT02 DD statement specifies that printed output aside
from run-time error messages from the second subtask is to be written to SYSOUT
class S and that the record format is to be fixed-length. These DD statements are
necessary only if you do not want to accept the defaults.

Debugging Programs That Use MTF
Debug Tool can be used to interactively debug your main task program. It cannot,
however, be used to debug your parallel functions.

Avoiding Undesirable Results when Using MTF
To prevent undesirable results, be aware of the following concerns and restrictions:

v MTF only supports parallel load modules in a PDS. Parallel load modules in a
PDSE are NOT supported.

//GO EXEC PGM=MTASKPGM
//STEPLIB DD DSN=USERPGM.LOAD,DISP=SHR
//STDIN01 DD DSN=USERPGM.INPUT,DISP=SHR
//STDOUT02 DD SYSOUT=S,DCB=(RECFM=F)

Figure 175. Example Run-Time JCL

Chapter 37. Using The OS/390 C MultiTasking Facility 575

v Do not update a file with one task if the other tasks read the same file. Files can
be destroyed if this is attempted.

v The following products should not be used from the main task or any subtasks
while MTF is active:

– Information Management System (IMS)

– The CICS command level interface

v The following products should not be used from subtasks while MTF is active but
can be used from the main task:

– Data Window Services (DWS)

– Interactive System Productivity Facility (ISPF)

– Graphical Data Display Manager (GDDM)

v All library functions can be issued from the main task program.

v The following library functions should not be issued from parallel functions (see
“Function Termination” on page 566):

– exit()

– abort()

– atexit()

v The following library functions can be used with some restrictions from parallel
functions:

– setjmp()/longjmp() can be used from within any task/subtask but must not be
used across tasks. That is, the stack environment saved via setjmp() on a
given task may be restored by a longjmp() from that task but from no other
task.

– setlocale()/localeconv() are only effective within a task. Each task has its
own distinct locale information. Thus setlocale()/localeconv() issued from
one task have no effect on such functions issued from other tasks.

– tmpnam() may produce identical file names across tasks and should be
restricted to being invoked from a single task (subtask or main task).

– rand()/srand() produce entirely independent series of pseudorandom integers
on each task

– All file manipulation functions (such as fopen()/fread()/...) - were identified
earlier under the rules for parallel functions in “Designing and Coding
Applications for MTF” on page 563. These functions can only be used on the
same task.

Note: When opening files under MTF, you incur additional overhead when
fopen() and freopen() are called. This overhead would normally be
performed at the first read or write to the stream and will not affect the
performance of a program that does indeed perform at least one read
or write to the stream.

– fetch()/release() must only be issued from the same task.

– free() must be issued on the same task as the malloc()/calloc()/realloc()
functions were issued. Note also that a realloc() must be issued in the same
task as the malloc().

– signal()/raise() also identified earlier under the rules for parallel functions in
“Designing and Coding Applications for MTF” on page 563. Basically, each
task has its own distinct interrupt environment. Thus signal()/raise() issued
from one task have no effect on the operation of any other task.

– PL/I and COBOL interlanguage calls must not be made from parallel
functions.

576 OS/390 V2R10.0 C/C++ Programming Guide

– Busy waits (loops that iterate until a flag is changed by a cooperating task)
violate the requirement for computational independence. In particular, they can
result in deadlock because of the scheduling algorithm used by MVS. They
must be avoided.

Chapter 37. Using The OS/390 C MultiTasking Facility 577

578 OS/390 V2R10.0 C/C++ Programming Guide

Part 6. Programming with Other Products

This part contains the following programming product information:

v “Chapter 38. Using the Customer Information Control System (CICS)” on
page 581

v “Chapter 39. Using Cross System Product (CSP)” on page 605

v “Chapter 40. Using Data Window Services (DWS)” on page 619

v “Chapter 41. Using DB2 Universal Database” on page 621

v “Chapter 42. Using Graphical Data Display Manager (GDDM)” on page 627

v “Chapter 43. Using the Information Management System (IMS)” on page 633

v “Chapter 44. Using the Interactive System Productivity Facility (ISPF)” on
page 643

v “Chapter 45. Using the Query Management Facility (QMF)” on page 651

© Copyright IBM Corp. 1996, 2000 579

580 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 38. Using the Customer Information Control System
(CICS)

This chapter describes how to develop C and C++ programs for the Customer
Information Control System (CICS). The OS/390 Language Environment library
provides support for OS/390 C++ programs that run under CICS/ESA Version 4
Release 1 or later, and OS/390 C programs that run under CICS/ESA Version 3
Release 3 or later. You can find more information about the general features of
OS/390 Language Environment and CICS in OS/390 Language Environment
Programming Guide.

For information on using CSP/AD or CSP/AE under CICS, see “Chapter 39. Using
Cross System Product (CSP)” on page 605.

Notes:

1. As of this publication, the CICS translator does not recognize the C compiler’s
support for alternative locales and coded character sets. Therefore, you should
write all your CICS C code in coded character set IBM-1047 (APL 293).

2. XPLINK applications are not supported in a CICS environment.

Developing C and C++ Programs for the CICS Environment
When developing a program to run under CICS you must:

1. Prepare CICS for use with OS/390 Language Environment.

2. Design and code the CICS program.

3. Translate and compile the translated source for reentrancy.

4. Prelink and link all object modules with the CICS stub.

5. Define the program to CICS.

Preparing CICS for Use with OS/390 Language Environment
This section gives general instructions on enabling OS/390 Language Environment
to use a new CICS environment or to add OS/390 Language Environment to an
existing CICS environment. For more detailed information on CICS, refer to the
manuals listed in “CICS” on page 872.

After CICS has been installed on your system, you must perform the following
tasks:

v Create a CICS environment if one does not already exist. This involves creating
a CICS System Definition (CSD), journals, and a Global Catalog Set (GCD).

v Copy CEECCICS from SCEERUN to an Authorized Program Facility (APF) data set.
The data set should be concatenated in the STEPLIB when CICS is cold started.

v Create the CESO and CESE Transient Data Queues. Sample Destination Control
Table (DCT) definitions are supplied in SCEESAMP(CEECDCT).

v Add required definitions to the CSD. Sample CSD definitions are provided in
SCEESAMP(CEECCSD). These sample definitions create a group called CEE, which
must be added to the installation LIST.

v Add SCEERUN and SCEECICS to the DFHRPL concatenation.

The C run-time event handler module CEEEV003 is required for CICS support (in
addition to the OS/390 Language Environment interface modules). CEEEV003 must
be link-edited as AMODE=31, RMODE=ANY, and loaded above the 16M line.

© Copyright IBM Corp. 1996, 2000 581

|

If you will be using the IOSTREAM, Complex Mathematics, Collection, or Application
Support Class DLLs provided with the OS/390 C++ compiler, you must define these
DLLs in the CSD. Sample CICS CSD definitions can be found in
CBC.SCLBSAM(CLB3YCSD).

Designing and Coding for CICS
This section describes what you must do differently when designing and coding a
OS/390 C/C++ program for CICS, such as using EXEC CICS commands in your
code, using input and output, using OS/390 C/C++ functions, managing storage,
using interlanguage calls, and exception handling.

Using the CICS Command-Level Interface
CICS/ESA provides a set of commands to access CICS. The format of a CICS
command is:
EXEC CICS function [option[(arg)]]...;

In the following CICS command, the function is SEND TEXT. This function has 4
options: FROM, LENGTH, RESP and RESP2. In this case, each of the options takes one
argument.
EXEC CICS SEND TEXT FROM(mymsg)

LENGTH(mymsglen)
RESP(myresp)
RESP2(myresp2);

For further information on the EXEC CICS interface and a list of available CICS
functions, refer to CICS Application Programming Guide, SC34-5702 and CICS
Application Programming Reference, SC34-5703.

When you are designing and coding your CICS application, remember the following:

v The EXEC CICS command and options should be in uppercase. The arguments
follow general C or C++ conventions.

v Before any EXEC CICS command is issued, the EXEC Interface Block (EIB) must be
addressed by the EXEC CICS ADDRESS EIB command.

v OS/390 C/C++ does not support the use of EXEC CICS commands in macros.

The examples in Figure 176 on page 583 show the use of several EXEC CICS
commands.

582 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCI1

/* program : GETSTAT */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define FILE_LEN 40

void check_4_down_status(char *status_record) ;
void sendmsg(char* status_record) ;
void unexpected_prob(char* desc, int rc) ;

struct com_struct {
unsigned int quiet ;

} *commarea ;

DFHEIBLK *dfheiptr ;

main ()
{
long int vsamrrn;
signed short int vsamlen;
unsigned char status_record[41];
signed long int myresp;
signed long int myresp2;

/* get addressability to the EIB first */
EXEC CICS ADDRESS EIB(dfheiptr); �1�

/* access common area sent from caller */
EXEC CICS ADDRESS COMMAREA(commarea); �2�

/* call the CATCHIT prog. if it abends */
EXEC CICS HANDLE ABEND PROGRAM("CATCHIT "); �3�

vsamrrn = 1;
vsamlen = FILE_LEN;

/* read the status record from the file*/
EXEC CICS READ FILE("STATFILE") �4�

UPDATE
INTO(status_record)
RIDFLD(vsamrrn)
RRN
LENGTH(vsamlen)
RESP(myresp)
RESP2(myresp2);

Figure 176. Example Illustrating How to Use EXEC CICS Commands (Part 1 of 4)

Chapter 38. Using the Customer Information Control System (CICS) 583

/* check cics response */
/* -- non 0 implies a problem */

if (myresp != DFHRESP(NORMAL))
unexpected_prob("Unable to read from file",61);

printf("The status_record from READ in GETSTAT = %s\n", status_record);

if (memcmp(status_record,"DOWNTME ",8) == 0)
check_4_down_status(status_record);

if (commarea->quiet != 1)
sendmsg(status_record);

exit(11);
}
void check_4_down_status(char *status_record)
{

unsigned char uptime[9];
unsigned char update[9];
char curabs[8];
unsigned char curtime[9];
unsigned char curdate[9];

long int vsmrrn;
signed short int vsmlen;
signed long int dnresp;
signed long int dnresp2;

strncpy((status_record+8),update,8);
strncpy((status_record+16),uptime,8);
update[8] ='\0';
uptime[8] ='\0';

/* get the current time/date */
EXEC CICS ASKTIME ABSTIME(curabs) �5�

RESP(dnresp)
RESP2(dnresp2);

if (dnresp != DFHRESP(NORMAL))
unexpected_prob("Unexpected prob with ASKTIME",dnresp);

/* format current date to YYMMDD */
/* format current time to HHMMSS */

EXEC CICS FORMATTIME ABSTIME(curabs) �6�
YYMMDD(curdate)
TIME(curtime)
TIMESEP
DATESEP;

Figure 176. Example Illustrating How to Use EXEC CICS Commands (Part 2 of 4)

584 OS/390 V2R10.0 C/C++ Programming Guide

if (dnresp != DFHRESP(NORMAL))
unexpected_prob("Unexpected prob with FORMATTIME",dnresp);

curdate[8] ='\0';
curtime[8] ='\0';

if ((atoi(curdate) > atoi(update)) ||
(atoi(curdate) == atoi(update) && atoi(curtime) >= atoi(uptime)))

{
strcpy(status_record,"OK ");

vsmrrn = 1;
vsmlen = FILE_LEN;

/* update the first record to OK */
EXEC CICS REWRITE FILE("STATFILE") �7�

FROM(status_record)
LENGTH(vsmlen)
RESP(dnresp)
RESP2(dnresp2);

if (dnresp != DFHRESP(NORMAL)) {
printf("The dnresp from REWRITE = %d\n", dnresp) ;
printf("The dnresp2 from REWRITE = %d\n", dnresp2) ;
unexpected_prob("Unexpected prob with WRITE",dnresp);

}

printf("%s %s Changed status from DOWNTME to OK\n",curdate,
curtime);

}

}

void sendmsg(char* status_record)
{

long int msgresp, msgresp2;
char outmsgÝ80};
int outlen;

if (memcmp(status_record,"OK ",3)==0)
strcpy(outmsg,"The system is available.");

else if (memcmp(status_record,"DOWNTME ",8)==0)
strcpy(outmsg,"The system is down for regular backups.");

else
strcpy(outmsg,"SYSTEM PROBLEM -- call help line for details.");

printf("%s\n",outmsg);
outlen=strlen(outmsg);

Figure 176. Example Illustrating How to Use EXEC CICS Commands (Part 3 of 4)

Chapter 38. Using the Customer Information Control System (CICS) 585

Both of these examples use EXEC CICS commands to:

�1� Initialize the CICS interface

�2� Access the storage passed from the caller

�3� Handle unexpected abends

�4� and �7� I/O to RRDS files

�5� and �6� Requesting and formatting time

Using Input and Output
This section describes how to use OS/390 C/C++ I/O with CICS. It describes the
file and device support and the type of I/O used with CICS.

Note: You can set up a SIGIOERR handler to catch read or write system errors. See
“Chapter 18. Debugging I/O Programs” on page 227 for more information.

Standard Stream Support
Under CICS, if you are using the OS/390 C++ standard streams documented in the
OS/390 C/C++ IBM Open Class Library Reference and the OS/390 C/C++ IBM
Open Class Library User’s Guide, note the following:

v cin is not supported under CICS.

v cout maps to the C standard stream stdout.

v cerr and clog both map to the C standard stream stderr.

stdout and stderr are assigned to transient data destinations (queues). The type of
queue, intrapartition or extrapartition, is determined during CICS initialization.

EXEC CICS SEND TEXT FROM(outmsg)
LENGTH(outlen)
RESP(msgresp)
RESP2(msgresp2);

if (msgresp != DFHRESP(NORMAL))
unexpected_prob("Message output failed from sendmsg",71);

}

void unexpected_prob(char* desc, int rc)
{

long int msgresp, msgresp2;
int msglen;

msglen = strlen(desc);

EXEC CICS SEND TEXT FROM(desc)
LENGTH(msglen)
RESP(msgresp)
RESP2(msgresp2);

fprintf(stderr,"%s\n",desc);

if (msgresp != DFHRESP(NORMAL))
exit(99);

else
exit(rc);

}

Figure 176. Example Illustrating How to Use EXEC CICS Commands (Part 4 of 4)

586 OS/390 V2R10.0 C/C++ Programming Guide

Intrapartition queues are used for queueing messages and data within a CICS
region. Extrapartition queues are used to send data outside the CICS region or to
receive data from outside the CICS region.

The transient data queues associated with stdout and stderr are CESO and CESE
respectively. OS/390 C/C++ supports VA and VBA queues with an lrecl of at least
137 bytes.

Records sent to the transient data queues associated with stdout and stderr take
the form of a message. The entire message record can be preceded by an ASA
Standard control character.

ASA
terminal

id
transaction

id
sp Time Stamp

YYYYMMDDHHMMSS
sp data

1 4 4 1 14 1 108

Figure 177 illustrates the recommended message format.

In Figure 177:

ASA is the carriage-control character.

terminal id is a 4-character terminal identifier.

transaction id is a 4-character transaction identifier.

sp is a space.

Time Stamp is the date and time displayed in the format YYYYMMDDHHMMSS.

data is the data that is output to the standard streams stdout and
stderr.

The following are sample messages of data written to a CICS data queue:
SAMATST1 19940401080523 Hello World - from transaction TST1!
BOBATST3 19940401112348 Hello World - from transaction TST3!
TEDATST2 19940401112348 Hello World - from transaction TST2!

Standard streams can only be redirected to or from memory files.

Because only one transient data queue can be associated with each of stdout and
stderr, these queues can contain output written in chronological order from many C
and C++ programs. This output must be sorted as necessary into the desired
sequence.

Full Memory File Support
The full set of C I/O library functions is supported under CICS for memory files.
Memory files are created with the parameter type set to memory on the fopen() call.
If you are using C++, you can also use the I/O Stream class library to create and
access memory files. Hiperspace memory files are not supported.

Support for Disk Files and Other Devices
There is no support by the C I/O library or the I/O Stream class library for using
disk files and other devices with CICS. I/O to access methods supported by CICS
must use the CICS Application Programming Interface.

Figure 177. Format of Data Written to a CICS Data Queue

Chapter 38. Using the Customer Information Control System (CICS) 587

Using OS/390 C/C++ Library Support
This section discusses restrictions and support for the OS/390 C/C++ library with
CICS.

Arguments to C or C++ main()
When a OS/390 C/C++ program is running under CICS, you cannot pass command
line arguments to it. The values for argc and argv have the following settings:

argc 1

argv[0] 4-character CICS transaction ID

Run-Time Options
Command line run-time options cannot be passed in CICS. To specify run-time
options in C/C++, you must include the #pragma runopts directive in the code.
Figure 176 on page 583 shows how to do this. See OS/390 Language Environment
Programming Guide for information on other ways to supply run-time options when
you are running under CICS.

Using Packed Decimal with CICS
The packed decimal data type is supported under CICS. However, the CICS
translator does not support packed decimal. CICS expects packed decimal streams
to be passed to it as arrays of characters. If you want to manipulate these arrays as
a packed decimal number, you should define the array of characters in union with
the appropriate packed decimal definition. Refer to the CICSPlex SM Application
Programming Guide for information on how to define the data fields for the EXEC
CICS commands you are using.

Note: The OS/390 C++ compiler does not support packed decimal data. Any
program using the C or C++ character data type to handle packed decimal
data must have its own functions for the manipulation of this data.

Locales
All locale functions are supported for locales that have been defined in the CSD.
CSD definitions for the IBM-supplied locales are provided in SCEESAMP(CEECCSD).
setlocale() returns NULL if the locales are not defined.

Code Set Conversion Tables
The code set conversion tables that are used by the iconv() functions must be
defined in the CSD.

POSIX
There is no support for POSIX functions that are not already defined as part of
ANSI/ISO. OS/390 UNIX is not supported under CICS.

Multitasking Facility
MTF functions are not supported under CICS.

System Programming C Facilities
There is no support for the System Programming C facilities (SP C) under CICS.

SVC99 and Dynamic Allocation Functions
svc99() and the dynamic allocation functions dynalloc(), dynfree(), and dyninit()
are not supported under CICS. The svc99() function returns 0 if the input is NULL,
otherwise the return value is undefined.

588 OS/390 V2R10.0 C/C++ Programming Guide

IMS
There is no support for the ctdli() function under CICS. If you call ctdli() under
CICS, the return value is -1. Refer to the CICSPlex SM Application Programming
Guide for information on the CICS method to access IMS.

Dump Functions
The dump functions csnap(), cdump(), and ctrace() are supported under CICS.
The output is sent to the CESE transient data queue. The dump can not be written if
the queue does not have a sufficient LRECL. An LRECL of at least 161 is
recommended.

Dynamic Linked Libraries (DLL)
All DLLs must be defined in the CSD.

fetch()
The fetch() function is supported under CICS. Modules to be fetched must be
defined to the CSD and installed in the PPT.

release()
The release() function is supported under CICS.

system()
The system() function is not supported under CICS. However, there are two EXEC
CICS commands that give you similar functionality:

EXEC CICS LINK
This command enables you to transfer control to another program and
return to the calling program later. See Figure 178 on page 593.

EXEC CICS XCTL
This command enables you to transfer control to another program. Control
does not return to the caller after completion of the called program.

Time Functions
All time functions are supported except the clock() function, which returns the
value (time_t)(-1) if it is used under CICS.

iscics()
The iscics() function is an extension to the C library. It returns a non-zero value if
your program is currently running under CICS. If your program is not running under
CICS, iscics() returns the value 0. The following example shows how to use
iscics() in your C or C++ program to specify non-CICS or CICS specific behavior.

if (iscics() == 0)
< non-CICS behavior>

else
< CICS-specific behavior>

Floating Point Arithmetic
The simulation of extended precision floating point is not supported in CICS.

Program Termination
A C or C++ program running under CICS will terminate when:

v An exit() function call or a return statement is issued in the C or C++ program.
The atexit list of functions is run when the C or C++ program terminates.

Note: On return from a C or C++ application, the return statement or values
passed by C or C++ through the exit() function are saved in the
EIBRESP2 field of the EIB.

Chapter 38. Using the Customer Information Control System (CICS) 589

v An abend occurs and is not handled.

v An EXEC CICS RETURN is issued in your C or C++ program. The atexit list of
functions runs after these calls.

v The abort() function is started.

Storage Management
A OS/390 C/C++ program can acquire storage from and release storage to
CICS/ESA implicitly or explicitly.

Storage is acquired and released implicitly by the run-time environment. This
storage is used for automatic, external, and static variables. External variables are
valid until program completion.

Storage is acquired and released explicitly by the user with the C library functions
malloc(), calloc(), realloc(), or free(), with OS/390 Language Environment
Callable Services (refer to OS/390 Language Environment Programming Guide),
with the C++ new and delete operators, or with the EXEC CICS commands EXEC CICS
GETMAIN, or EXEC CICS FREEMAIN.

v If you request the storage by using the C functions malloc(), realloc(), or
calloc() you must deallocate it by using C functions as well.

v If you request the storage by using OS/390 Language Environment Callable
Services, you must deallocate it by using OS/390 Language Environment
Callable Services.

v If you request the storage by using EXEC CICS GETMAIN, you must deallocate it by
using EXEC CICS FREEMAIN.

v If you request storage using the C++ new operator, you must deallocate it by
using the C++ delete operator.

All other combinations of methods of requesting and deallocating storage are
unsupported and lead to unpredictable behavior.

Partial deallocations are not supported. All storage allocated at a given time must
be deallocated at the same time.

Under the OS/390 Language Environment library, OS/390 C/C++ uses the OS/390
Language Environment Callable Services to allocate and free storage. Refer to
OS/390 Language Environment Programming Guide for specific information on
memory and storage manipulation in CICS.

The OS/390 C/C++ library functions acquire all storage from the Extended Dynamic
Storage Area (EDSA) unless you specify otherwise using the ANYHEAP, BELOWHEAP,
HEAP, STACK, or LIBSTACK run-time options.

Storage that is acquired with the EXEC CICS GETMAIN command exists for the
duration of the CICS task.

If your application is multi-threaded or often uses malloc(), realloc(), calloc(),
and free(), you should consider using the HEAPPOOLS run-time option. Although
storage requirements may increase, you can expect better performance.

590 OS/390 V2R10.0 C/C++ Programming Guide

Using Interlanguage Support
The OS/390 Language Environment library supports a variety of different types of
interlanguage calls (ILC) with CICS. For information on supported configurations,
please refer to OS/390 Language Environment Writing Interlanguage Applications.

Exception Handling
You can use three different kinds of exception handlers when running C programs
in a CICS environment: CICS exception handlers, OS/390 Language Environment
abend handlers, and C exception handlers. If you are using C++, you can use any
of these three, or the C++ exception handling approach using try, throw, and
catch. When a CICS condition is not handled under C++, the behavior of
constructors and destructors for objects is undefined.

If the CICS command EXEC CICS HANDLE ABEND PROGRAM(name) was specified in the
application, it will be called for any program exception that occurs (such as an
operation exception or a protection exception) as well as for any EXEC CICS ABEND
ABCODE(...) command that is run.

OS/390 Language Environment provides facilities to set up a user handler. These
facilities are discussed in detail in OS/390 Language Environment Programming
Guide.

In CICS, the C error handling facilities have almost the same behavior as discussed
in “Chapter 27. Handling Exceptions, Error Conditions, and Signals” on page 371. A
signal raised with the raise() function is handled by its corresponding signal
handler or the default actions if no handler is installed. If a program exception such
as a protection exception occurs, it is handled by the appropriate C handler if no
CICS or OS/390 Language Environment handler is present.

When a C or C++ application is invoked by an EXEC CICS LINK PROGRAM(...), the
invoked program inherits any handlers registered by EXEC CICS HANDLE ABEND
PROGRAM(...) in the parent program. Any handlers registered in the child override
the inherited handlers. C signal handlers are not inherited.

The following chart shows the process for handling abends in CICS.

Chapter 38. Using the Customer Information Control System (CICS) 591

MAP 0050: Error Handling in CICS

001

Is this the result of a call to raise()?
Yes No

002

Has EXEC CICS HANDLE ABEND been issued?
Yes No

003

Continue at Step 005.

004

Call OS/390 C/C++-CICS interface for termination of program. CICS turns off
signal and runs program in handler.

005

Is SIG_IGN set for the signal?
Yes No

006

Is a OS/390 Language Environment handler registered?
Yes No

007

Is a C or C++ handler established?
Yes No

008

Default handling the program check and percolate to next stack
frame.

009

Run C or C++ handler.

010

Run OS/390 Language Environment user handler. See the OS/390 Language
Environment Programming Guide for more details.

011

Resume at the next instruction.

Example of Error Handling in CICS
The examples in Figure 178 on page 593 show how to handle errors when using
OS/390 C/C++ with CICS.

592 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCI2

/* program : CHKSTAT */
/* transaction : called stand alone from transaction CHST */
/* is also used by other transactions to determine */
/* system status */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>

#define FILE_LEN 40

void status_not_ok(int sig);
void unexpected_prob(char* desc, int rc);
volatile unsigned char status_record [41];

struct com_struct {
int quiet;

} com_reg;

main (int argc, char *argv [])
{
long int vsamrrn;
signed short int vsamlen;

signed long int myresp;
signed long int myresp2;
unsigned char status_downtme [41];

if (strcmp(argv[0],"CHST") !=0) {
printf("argv[0] = %s\n", argv[0]) ;
com_reg.quiet = 1;

}
else

com_reg.quiet = 0;

/* get addressability to the EIB first */
EXEC CICS ADDRESS EIB(dfheiptr);

EXEC CICS HANDLE ABEND PROGRAM("CATCHIT "); �1�
signal(SIGUSR1,status_not_ok); �2�

EXEC CICS LINK PROGRAM("GETSTAT ") �3�
RESP(myresp)
RESP2(myresp2)
COMMAREA(&com_reg)
LENGTH(4);

Figure 178. Example Illustrating Error Handling under CICS (Part 1 of 3)

Chapter 38. Using the Customer Information Control System (CICS) 593

/* check for failure in linked-to program */
if (myresp != DFHRESP(NORMAL)) {

printf("The RESP of LINK = %d\n", myresp) ;
printf("The RESP2 of LINK = %d\n", myresp2) ;
unexpected_prob("CICS failure on EXEC CICS LINK\n",51);

}

if (myresp2 != 11)
unexpected_prob("Unexpected rc from GETSTAT\n",myresp2);

vsamrrn = 1;
vsamlen = FILE_LEN;

/* following READ for UPDATE is for test purpose only. */
EXEC CICS READ FILE("STATFILE")

UPDATE
INTO(status_record)
RIDFLD(vsamrrn)
RRN
LENGTH(vsamlen)
RESP(myresp)
RESP2(myresp2);

/* check for cics response - non-0 implies problem */
if (myresp != DFHRESP(NORMAL))

unexpected_prob("Unable to read from file",52);

/* write DOWNTME back to file - for test purpose only */
strcpy(status_downtme,"DOWNTME ");
EXEC CICS REWRITE FILE("STATFILE")

FROM(status_downtme)
LENGTH(vsamlen)
RESP(myresp)
RESP2(myresp2);

if (myresp != DFHRESP(NORMAL)) {
printf("The dnresp from REWRITE = %d\n", myresp) ;
printf("The dnresp2 from REWRITE = %d\n", myresp2) ;
unexpected_prob("Unexpected prob with WRITE",myresp);

}

if (memcmp(status_record,"OK ",3) != 0)
raise(SIGUSR1);

exit(11);
}

void unexpected_prob(char* desc, int rc)
{

long int msgresp, msgresp2;
int msglen;

msglen = strlen(desc);

Figure 178. Example Illustrating Error Handling under CICS (Part 2 of 3)

594 OS/390 V2R10.0 C/C++ Programming Guide

The numbers in the following list correspond to the numbers in the example code.

�1� The program CATCHIT has been installed as the CICS abend handler.
Because this CICS abend handler is installed, C exception handlers will
only catch signals raised with the raise() function.

�2� Install a C signal handler to catch the user defined signal SIGUSR1. This
handler will only be called if raise(SIGUSR1)is run.

�3� This command causes the flow of control to shift to a child program called
GETSTAT. GETSTAT will inherit CHKSTAT’s CICS abend handler.

�4� The C signal handler status_not_OK that was will be invoked if this line is
run. The raise() function will not trigger the CICS abend handler.

ABEND Codes and Error Messages under OS/390 C/C++
For information on ABEND Codes and error messages used by the OS/390
Language Environment library, refer to OS/390 Language Environment
Programming Guide and OS/390 Language Environment Debugging Guide and
Run-Time Messages.

Coding Hints and Tips
v Do not use EXEC CICS commands in macros.

v Do not use EXEC CICS commands in header files. This makes the translation
process much simpler.

v Do not set atexit() routines before an EXEC CICS XCTL. You will get
unpredictable results.

v If you call fclose() or freopen() for a standard stream, you cannot redirect or
reopen the link to the transient data queue. OS/390 C/C++ does not provide a
method of opening or reopening the transient data queues.

v The actual transient data queue is not closed when you call fclose() or
freopen() for a standard stream; however, the transaction will lose access to the
stream.

v You should not use the stdin stream unless you are redirecting it from a memory
file.

EXEC CICS SEND TEXT FROM(desc)
LENGTH(msglen)
RESP(msgresp)
RESP2(msgresp2);

fprintf(stderr,"%s\n",desc);

if (msgresp != DFHRESP(NORMAL))
exit(99);

else
exit(rc);

}

void status_not_ok(int sig) �4�
{
if (memcmp(status_record,"DOWNSTR ",8) != 0)

exit(22);
else

exit(33);
}

Figure 178. Example Illustrating Error Handling under CICS (Part 3 of 3)

Chapter 38. Using the Customer Information Control System (CICS) 595

v Closing the cout, cerr, or clog standard streams in a C++ application has the
same effect as closing stdout or stderr.

v When CICS handlers (using EXEC CICS HANDLE ABEND PROG) are activated along
with C or C++ signal handlers, the CICS handler is invoked when an abend
occurs. The C or C++ signal handler that corresponds to that class of abends is
ignored.

Note: The handler mentioned here is not a catch clause. It is a C signal handler
exception registered by a C++ routine.

v If you do an EXEC CICS RETURN out of an atexit() routine, the resulting return
code (RESP2) is undefined.

Translating and Compiling for Reentrancy
This section discusses and provides examples of using the CICS language
translator and compiling for CICS. It also discusses reentrancy issues with respect
to CICS.

Translating
CICS/ESA provides a utility program called the CICS language translator. This
program translates the EXEC CICS statements into C or C++ code.

Note:

If you are using C++, you must use the CPP translator option to indicate to
the compiler that you are using the C++ language, rather than the C
language. The use of the CPP parameter specifies that the translator is to
translate OS/390 C++ programs.

Code translated without the CPP option or with a translator released before
version 4.1 of CICS is not supported by the OS/390 C++ compiler and will
not compile.

The translator supplies a control block (DFHEIBLK) for passing information between
CICS/ESA and the application program. C or C++ function references for the EXEC
CICS commands are generated. The translation step is not required if you do not
use EXEC CICS statements.

The CICS translator does not evaluate preprocessor statements such as #include
or #define. You should ensure that all EXEC CICS statements are translated.

Translating Example
Figure 179 on page 597 shows pieces of C and C++ code before they are
translated with the CICS language translator. Figure 180 on page 598 shows the
corresponding programs after translation.

596 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCI3

In Figure 179 observe the following:

�1� and �2�
These programs each contain two EXEC CICS commands to be translated
by the CICS translator. A single instance of the EXEC CICS ADDRESS EIB
command is required before any other call to the EXEC CICS interface. In
this case, the main program (see Figure 176 on page 583) issues the
ADDRESS EIB command. Since the two pieces of code make up one
program there is no need to ADDRESS the EIB again.

The programs once translated appear as follows:

/* program : CATCHIT */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

struct com_struct {
unsigned int quiet ;

} *commarea ;

main () {

signed long int myresp;
signed long int myresp2;

/* get addressability to the EIB first */
EXEC CICS ADDRESS EIB(dfheiptr); �1�

/* access common area sent from caller */
EXEC CICS ADDRESS COMMAREA(commarea); �2�

printf("The program is now inside CATCHIT.\n");

/* statements required to handle the abend
EXEC CICS ..
EXEC CICS .. */

EXEC CICS RETURN;

}

Figure 179. Example Illustrating How to Use EXEC CICS Commands

Chapter 38. Using the Customer Information Control System (CICS) 597

#ifndef __dfheitab
#define __dfheitab 1

char *dfhldver = "LD TABLE DFHEITAB 320." ;
unsigned short int dfheib0 = 0 ;

char *dfheid0 = "\x00\x00\x00\x0c" ;
char *dfheicb = " " ;

typedef struct { �3�
unsigned char eibtime [4] ;
unsigned char eibdate [4] ;
unsigned char eibtrnid [4] ;
unsigned char eibtaskn [4] ;
unsigned char eibtrmid [4] ;
signed short int eibfil01 ;
signed short int eibcposn ;
signed short int eibcalen ;
unsigned char eibaid ;
unsigned char eibfn [2] ;
unsigned char eibrcode [6] ;
unsigned char eibds [8] ;
unsigned char eibreqid [8] ;
unsigned char eibrsrce [8] ;
unsigned char eibsync ;
unsigned char eibfree ;
unsigned char eibrecv ;
unsigned char eibfil02 ;
unsigned char eibatt ;
unsigned char eibeoc ;
unsigned char eibfmh ;
unsigned char eibcompl ;
unsigned char eibsig ;
unsigned char eibconf ;
unsigned char eiberr ;
unsigned char eiberrcd [4] ;
unsigned char eibsynrb ;
unsigned char eibnodat ;
signed long int eibresp ;
signed long int eibresp2 ;
unsigned char eibrldbk ;

} DFHEIBLK;
DFHEIBLK *dfheiptr;

#endif

Figure 180. Child C program after Translation (Part 1 of 3)

598 OS/390 V2R10.0 C/C++ Programming Guide

#ifndef __dfhtemps
#pragma linkage(dfhexec,OS) /* force OS linkage */
void dfhexec(); /* Function to call CICS */

#define __dfhtemps 1
signed short int dfhb0020, *dfhbp020 = &dfhb0020 ;
signed short int dfhb0021, *dfhbp021 = &dfhb0021 ;
signed short int dfhb0022, *dfhbp022 = &dfhb0022 ;
signed short int dfhb0023, *dfhbp023 = &dfhb0023 ;
signed short int dfhb0024, *dfhbp024 = &dfhb0024 ;
signed short int dfhb0025, *dfhbp025 = &dfhb0025 ;
unsigned char dfhc0010, *dfhcp010 = &dfhc0010 ;
unsigned char dfhc0011, *dfhcp011 = &dfhc0011 ;
signed short int dfhdummy;

#endif
/* this is an example of a CICS program for C */
/* program : GETSTAT (part 2 - infrequent use routines) */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void unexpected_prob(char* desc, int rc);

void sendmsg(char* status_record)
{

long int msgresp, msgresp2;
char outmsg[80];
int outlen;

if (memcmp(status_record,"OK ",3)==0)
strcpy(outmsg,"The system is available.");

else if (memcmp(status_record,"DOWNTME ",8)==0)
strcpy(outmsg,"The system is down for regular backups.");

else
strcpy(outmsg,"SYSTEM PROBLEM -- call help line for details.");

outlen=strlen(outmsg);

Figure 180. Child C program after Translation (Part 2 of 3)

Chapter 38. Using the Customer Information Control System (CICS) 599

In Figure 180 on page 598 observe the following:

�3� This structure, DFHEIBLK, is used for passing information between CICS and
the application program.

�4� This is the CICS command that was interpreted by the translator. The
translator comments out the EXEC CICS commands.

�5� The translator inserts this call to the function dfhexec and comments out the
EXEC CICS commands for further processing by the OS/390 C/C++
compiler. The values msgresp and msgresp2 are set from the values in the
DFHEIBLK structure.

�6� This EXEC CICS command is similar in format to the one discussed in �4�.
However, you should note that the generated call to dfhexec is different. For
this reason it is important that EXEC CICS commands are not imbedded in
macros.

/* EXEC CICS SEND TEXT FROM(outmsg) �4�
LENGTH(outlen)
RESP(msgresp)
RESP2(msgresp2) */

{
dfhb0020 = outlen;
dfhexec("\x18\x06\x60\x00\x2F\x00\x00\x00\x00\x00\x20\x04\x00\x00\x20\xF0\xF0\

\xF0\xF0\xF2\xF2\xF0\xF0",dfhdummy,outmsg,dfhbp020); �5�
msgresp = dfheiptr->eibresp;
msgresp2 = dfheiptr->eibresp2;
}

if (msgresp != 0)
unexpected_prob("Message output failed from sendmsg",71);

}

void unexpected_prob(char* desc, int rc)
{

long int msgresp, msgresp2;
int msglen;

msglen = strlen(desc);

/* EXEC CICS SEND TEXT FROM(desc)
LENGTH(msglen)
RESP(msgresp)
RESP2(msgresp2) */

{
dfhb0020 = msglen;
dfhexec("\x18\x06\x60\x00\x2F\x00\x00\x00\x00\x00\x20\x04\x00\x00\x20\xF0\xF0\

\xF0\xF0\xF4\xF1\xF0\xF0",dfhdummy,desc,dfhbp020); �6�
msgresp = dfheiptr->eibresp;
msgresp2 = dfheiptr->eibresp2;
}

fprintf(stderr,"%s\n",desc);

if (msgresp != 0)
exit(99);

else
exit(rc);

}

Figure 180. Child C program after Translation (Part 3 of 3)

600 OS/390 V2R10.0 C/C++ Programming Guide

Compiling
CICS requires that programs be reentrant at CICS entry points. If you are using C,
this means:

v If your program is not naturally reentrant, you must compile with the RENT
compiler option.

v If you are compiling code that was translated by the CICS translator, you must
compile with the RENT compiler option. The CICS translator puts external writable
static in the program.

For both C and C++, this means that if your program is naturally reentrant and has
not been translated, you can compile and link it just as you would a non-CICS
program.

Sample JCL to Translate and Compile
The sample JCL in Figure 181 and Figure 182 on page 602 shows you how to
translate and compile C and C++ modules.

//*--
//* Translate a C-CICS program
//*--
//*--
//* Translate a C program for CICS
//*--
//TRANSTEP EXEC PGM=DFHEDP1$,
// REGION=2048K,
// PARM='MAR(1,80,0),OM(1,80,0),NOS'
//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DSN=&&SYSCIN,DISP=(,PASS),UNIT=VIO,
// DCB=BLKSIZE=400,SPACE=(400,(400,100))
//SYSIN DD DSN=MYID.CHKSTAT.C,DISP=SHR
//*--
//* Compile the translated C source.
//*--
//C0010308 EXEC EDCC,
// INFILE='MYID.CHKSTAT.C',
// OUTFILE='MYID.OBJECT(CHKSTAT),DISP=SHR',
// CPARM='OPT(0) NOSEQ NOMAR RENT ',
// SYSOUT6='*'
//SYSIN DD DSN=*.TRANSTEP.SYSPUNCH,DISP=(OLD,DELETE)
//USERLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR

Figure 181. JCL to Translate and Compile a C Program

Chapter 38. Using the Customer Information Control System (CICS) 601

Prelinking and Linking All Object Modules
If you are using C++, or if you have compiled your C source with the RENT
compile-time option, you must prelink all of the object modules together. The
prelinker accepts one or more object modules, combines them, and generates a
single output object module which can then be linked. For further information on the
prelinker, see the OS/390 C/C++ User’s Guide.

When you are prelinking for CICS, you should expect some unresolved external
references and a return code of 4. These unresolved references should be resolved
at link time.

CICS provides a stub called DFHELII, which must be link-edited with the load
module. For your convenience, the linkage editor commands required for CICS are
provided with CICS in the DFHEILID member of the SDFHC370 data set. The DFHEILID
member must be reblocked before it is passed to the linkage editor. A name card
should also be passed to the linkage editor. All applications must run AMODE=31. It is
recommended that the object module is linked with AMODE(31) and RMODE(ANY).
CICS does not require any other linkage editor options.

If you are using C, and your program will reside in one of the DFHRPL libraries, you
do not need to link-edit the module with the RENT option. However, if the program is
to be installed in one of the link pack areas, STEPLIBs, or data sets in the system
link list, you should link-edit the module with the RENT option.

The example in Figure 183 on page 603 shows you how to prelink and link C and
C++ modules.

//*--
//* Translate a C++-CICS program
//*--
//*--
//* Translate C++ program for CICS
//*--
//TRANSTEP EXEC PGM=DFHEDP1$,
// REGION=2048K,
// PARM='MAR(1,80,0),OM(1,80,0),NOS,CPP'
//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DSN=&&SYSCIN,DISP=(,PASS),UNIT=VIO,
// DCB=BLKSIZE=400,SPACE=(400,(400,100))
//SYSIN DD DSN=MYID.CHKSTAT.C,DISP=SHR
//*--
//* Compile the translated C++ source.
//*--
//C0010308 EXEC CBCC,
// OUTFILE='MYID.OBJECT(CHKSTAT),DISP=SHR',
// CPARM='NOSEQ NOMAR RENT ',
// SYSOUT6='*'
//SYSIN DD DSN=*.TRANSTEP.SYSPUNCH,DISP=(OLD,DELETE)

Figure 182. JCL to Translate and Compile a C++ Program

602 OS/390 V2R10.0 C/C++ Programming Guide

Defining and Running the CICS Program
This section discusses the implications of program processing, link considerations
for C programs, and CSD considerations. Sample JCL to install OS/390 C/C++
application programs is provided.

Program Processing
In a CICS environment, a single copy of a program is used by several transactions
concurrently. One section of a program can process a transaction and then be
suspended (usually as a result of an EXEC CICS command); another transaction can
then start or resume processing the same or any other section of the same
application program. This behavior requires that the program be reentrant.

Link Considerations for C Programs
If your C program will reside in one of the DFHRPL libraries, following the translate,
compile, and link steps detailed earlier in this chapter is sufficient; there is no
requirement to link-edit the module with the RENT linkage editor option.

//*--
//* Reblock CICS support link module
//*--
//COPYLINK EXEC PGM=IEBGENER
//SYSUT1 DD DSN=CICS.V4R1M0.SDFHC370(DFHEILID),DISP=SHR
//SYSUT2 DD DSN=&©LINK,DISP=(,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),
// UNIT=VIO,SPACE=(400,(20,20))
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*---
//* Prelink and link MYMAIN with MYCICSTF and MYOTHSTF
//*---
//P0010598 EXEC EDCPL,
// INFILE='MYID.OBJECT(MYMAIN)',
// OUTFILE='MYID.CICS.LOAD(MYMAIN),DISP=SHR',
// PPARM=' NCAL',
// LPARM='AMODE(31),RMODE(ANY) ',
// SYSOUT4='*'
//PLKED.SYSIN DD DATA,DLM='/>'

INCLUDE OBJECT(MYMAIN)
INCLUDE OBJECT(MYCICSTF)
INCLUDE OBJECT(MYOTHSTF)

/>
//PLKED.SYSMOD DD DSN=&&PLNK,DISP=(,PASS),UNIT=VIO,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),
// SPACE=(32000,(30,30))
//PLKED.OBJECT DD DSN=MYID.OBJECT,DISP=SHR
//LKED.SYSLIB DD DSN=CICS.V4R1M0.SDFHLOAD,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
//LKED.SYSLIN DD DSN=&©LINK,DISP=(SHR,DELETE)
// DD DSN=*.PLKED.SYSMOD,DISP=(SHR,DELETE)
// DD DDNAME=SYSIN
//LKED.SYSLMOD DD DSN=MYID.CICS.LOAD,DISP=SHR
//LKED.SYSIN DD DATA,DLM='/>'
NAME MYMAIN(R)
/>

Figure 183. Prelinking and Linking

Chapter 38. Using the Customer Information Control System (CICS) 603

However, if the program is to be installed in one of the link pack areas, STEPLIBs, or
data sets in the system link list, the module should be link-edited with the RENT
option.

CSD Considerations
Before you can run a program, you must define it in the CICS CSD. When defining
a program to CICS, you should use LANGUAGE(LE). However, if the program is in C
and does not use ILC support, you can use LANGUAGE(C).

If you use a copy of a reentrant C or C++ application program that has been
installed in the link pack area, you must specify USELPACOPY(YES) in the resource
definition when you define the program in the CSD. You can use the CICS-supplied
procedure DFYEITDL to translate, compile, prelink, and link-edit C or C++ programs.
For C programs, you may have to change the compile step of this procedure. You
will have to change the compile step to use it with the C++ compiler.

Sample JCL to Install OS/390 C/C++ Application Programs
This is the sample JCL to install an OS/390 C/C++ application program.

Your application is anyname. x can resolve to I or X.

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=DFHExTEL

//TRN.SYSIN DD *
#pragma XOPTS(Translator options . . .)

...
OS/390 C/C++ source statements

...
/*
//LKED.SYSIN DD *

NAME anyname(R)
/*
//

Figure 184. JCL to Install OS/390 C/C++ Application Programs

604 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 39. Using Cross System Product (CSP)

This chapter briefly describes the interface between OS/390 C and applications
generated through the Cross System Product/Application Development (CSP/AD)
and the Cross System Product/Application Execution (CSP/AE) Version 3 Release 2
Modification 2 or later. CSP refers to both CSP/AD and CSP/AE.

CSP/AD is an interactive application generator that provides methods for
interactively defining, testing, and generating application programs. It can aid in
improving productivity in application development.

CSP/AE takes the generated program and executes it in a production environment.

Note: XPLINK is not supported in a CSP environment.

Common Data Types
Table 69 lists the data types common to both CSP and OS/390 C.

Table 69. Common Data Types Between OS/390 C and CSP

OS/390 C CSP

signed short BIN - 2 bytes

signed int/long BIN - 4 bytes

struct RECORD

char array(size) Characters

You must use the function __csplist to receive the parameter list from a CSP
application. See OS/390 C/C++ Run-Time Library Reference for more information
on this function.

Passing Control
You can pass control between CSP and OS/390 C as follows:

CALL Calls another application or subroutine to be run.
When execution is completed, control is returned to
the statement following the CALL statement in the
original application.

XFER|DXFR Transfers control and initiates execution of a CSP
application or non-CSP program or transaction. The
current application is terminated when the transfer
statement is executed.

Under CICS, XFER is used to transfer control to
another CICS transaction, while DXFR is used to
transfer control to an application or program. If the
target name is an application, control remains in
CSP and the application is initiated immediately. If
the target name is a program, CSP issues CICS
XCTL to the program name.

Note: From a OS/390 C program, you can pass control to a CSP application but
you cannot pass control to another OS/390 Language Environment-enabled

© Copyright IBM Corp. 1996, 2000 605

|

|

|

language (COBOL, PL/I) from that CSP application. Only one OS/390
Language Environment-enabled language can be in the chain of calls.

Running CSP under MVS
This section covers:

v Calling CSP applications from OS/390 C

v Calling OS/390 C from CSP

Calling CSP Applications from OS/390 C
To call a CSP application from OS/390 C, you must:

1. Define the CSP program to be called one of the following:

v DCGCALL - calling under MVS/TSO

v DCGXFER - transferring control under MVS/TSO with OS pragma linkage

2. Fetch the program dynamically.

3. Transfer control to the program. You must pass at least one parameter when
calling CSP from OS/390 C. This is the pointer to the ALF name and application
name.

Examples
The following example program CALLs a CSP application in the OS/390
environment. You must receive a structure.

CBC3GCP1

/* this example shows how to CALL CSP from C under TSO */

/* CALL */
/* CBC3GCP1 ====> R924A6 */
/* R924A6 is a CSP application */

#include <stdlib.h>
#include <math.h>

#pragma linkage(DCGCALL,OS)

void main(int argc , char * argv[])
{

int ctr,base, power ;

typedef void ASM_VOID();
#pragma linkage (ASM_VOID,OS)
ASM_VOID * fetch_ptr;

int rc = 0;
char module [8] = {"DCGCALL " } ;
struct tag_a6progc {

char alfx [8];
char applx [8];

} ;

Figure 185. C/370 CALLing CSP under TSO (Part 1 of 2)

606 OS/390 V2R10.0 C/C++ Programming Guide

Note: CSP cannot pass the DXFR statement to OS/390 C under TSO.

The following example program uses an XFER command to transfer control to a CSP
application. You must pass a structure.

struct tag_a6rec {
char a6ct [4];
char a6lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a6xbc;
int a6ybc;
int a6zbc;

};
struct {

char s_parm [240];
} s_parms = {"ALF=C "};

struct tag_a6progc a6_progc = {"FZERSAM.","R924A6 "} ;

_Packed struct tag_a6rec a6_rec = {"CALL" ,
"C " ,
"0000110C",
"0000220C",
"0000330C",
12, 2, 0

};
base = atoi(argv[1]) ;
power= atoi(argv[2]) ;

a6_rec.a6xbc = base;
a6_rec.a6ybc = power;
a6_rec.a6zbc = (int) pow((double) a6_rec.a6xbc,

(double) a6_rec.a6ybc);

if ((fetch_ptr = (ASM_VOID *) fetch(module)) == NULL) {
printf (" failed on fetch of CSP %s module \n", module);

}
else {

fetch_ptr (&a6_progc, &a6_rec);
rc = release((void (*)()) fetch_ptr) ;
if (rc != 0) {

printf ("CBC3GCP1: rc from release =%d\n", rc);
}

}
}

Figure 185. C/370 CALLing CSP under TSO (Part 2 of 2)

Chapter 39. Using Cross System Product (CSP) 607

CBC3GCP2

/* this example shows how to transfer control to CSP from C under */
/* TSO, using XFER */

/* XFER */
/* CBC3GCP2 ====> R924A5 */
/* R924A5 is a CSP application */

#include <stdlib.h>
#include <math.h>

#pragma linkage(DCGXFER,OS)

void main(int argc , char * argv[])
{

int ctr,base, power ;
int rc = 0;
char module [8] = {"DCGXFER " } ;

typedef void ASM_VOID();
#pragma linkage (ASM_VOID,OS)
ASM_VOID * fetch_ptr;

struct tag_a5ws {
short length ;
char filler [8];
char a5ct [4];
char a5lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a5xbc;
int a5ybc;
int a5zbc;

};
struct tag_a5progx {

char alfx [8];
char applx [8];

};

struct {
char s_parm [240];

} s_parms = {"ALF=C "};

Figure 186. OS/390 Ctransferring control to CSP under TSO using the XFER/DXFR
statement (Part 1 of 2)

608 OS/390 V2R10.0 C/C++ Programming Guide

Calling OS/390 C from CSP
To call a OS/390 C program from CSP:

v PLIST(OS) must be specified in the OS/390 C program so that input parameters
will not be processed by the run-time environment.

v When CSP passes a parameter list to a OS/390 C function, the list is in a
different format from what OS/390 C expects in a normal OS/390 environment.
To receive the parameters, use the macro __csplist, found in the csp.h header
file and described in OS/390 C/C++ Run-Time Library Reference.

Notes:

1. PLIST(OS) must be specified in the OS/390 C program so that input parameters
will not be processed by the run-time environment.

2. When CSP passes a parameter list to a OS/390 C function, the list is in a
different format from what OS/390 C expects in a normal OS/390 environment.
To receive the parameters, use the macro __csplist, found in the csp.h header
file and described in OS/390 C/C++ Run-Time Library Reference.

Examples
The following example program shows how parameters are received from a CSP
application that uses a CALL statement to transfer control. You must pass three
parameters:

An int

A string

struct tag_a5progx a5_progx = {"FZERSAM.","R924A5 "} ;
_Packed struct tag_a5ws a5_ws = { 54,

"CBC3GCP2",
"XFER" ,
"C " ,
"0000110C",
"0000220C",
"0000330C",
12, 2, 0

};
base = atoi(argv[1]) ;
power= atoi(argv[2]) ;

a5_ws.a5xbc = base;
a5_ws.a5ybc = power;
a5_ws.a5zbc = (int) pow((double) a5_ws.a5xbc,

(double) a5_ws.a5ybc);

if ((fetch_ptr = (ASM_VOID *) fetch(module)) == NULL) {
printf (" failed on fetch of CSP %8s module \n", module);

}
else {

fetch_ptr (&a5_ws , &a5_progx);
rc = release((void (*) ())fetch_ptr) ;
if (rc != 0) {

printf ("CBC3GCP2: rc from release =%d\n", rc);
}

}
}

Figure 186. OS/390 Ctransferring control to CSP under TSO using the XFER/DXFR
statement (Part 2 of 2)

Chapter 39. Using Cross System Product (CSP) 609

A struct

CBC3GCP3

The following example program shows how parameters are received from a CSP
application that uses an XFER/DXFR statement to transfer control. You must pass a
structure.

Notes:

1. Under TSO, CSP/AD cannot use the XFER statement to transfer control to
OS/390 C.

2. Under TSO, you cannot use the DXFR statement to transfer control to CSP.

/* this example shows how to CALL C from CSP under TSO */

#pragma runopts (plist(os))
#include <csp.h>
#include <math.h>
#include <stdlib.h>

void main()
{

struct date {
char yy[2];
char mm[2];
char dd[2];

} ;
int *parm1_ptr ;
char *parm2_ptr ;
struct date * parm3_ptr ;

parm1_ptr = (int *) __csplist[0]; /* get 1st parm */
parm2_ptr = (char *) __csplist[1]; /* get 2nd parm */
parm3_ptr = (struct date *) __csplist[2]; /* get 3rd parm */

}

Figure 187. CSP CALLing OS/390 C under TSO

610 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCP4

/* this example shows how to transfer control from CSP to C */

/* This program will be called from CSP through */
/* "XFER" or DXFR call. */
/* Parameters are passed as a working storage record */
/* plus 10 bytes of filler information */
/* 2 bytes length */
/* 8 bytes filler */
/* n bytes working storage record. */

#pragma runopts (plist(os))
#include <stdlib.h>
#include <csp.h>
#include <math.h>
#include <string.h>

#pragma linkage(DCGXFER,OS)
#pragma linkage(DCGCALL,OS)

void xfer_rtn ();
void call_rtn ();

struct tag_a3ws {
short length ;
char filler [8];
char a3ct [4];
char a3lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a3xbc;
int a3ybc;
int a3zbc;

};
struct tag_a3progx {

char alfx [8];
char applx [8];

};

Figure 188. CSP Transferring Control to OS/390 C under TSO Using the XFER Statement
(Part 1 of 3)

Chapter 39. Using Cross System Product (CSP) 611

void main()
{

_Packed struct tag_a3ws *parm1 ;
_Packed struct tag_a3ws a3_ws ;

parm1 = (_Packed struct tag_a3ws *) __csplist[0];
parm1->a3zbc = (int) pow((double) parm1->a3xbc,

(double) parm1->a3ybc);

if (parm1->a3zbc > 255)
xfer_rtn(parm1); /* xfer to csp */

else
call_rtn(parm1); /* call to csp */

}
/***/
/* */
/***/
void xfer_rtn(_Packed struct tag_a3ws * parm1)
{

#pragma linkage (ASM_VOID,OS)
typedef void ASM_VOID();
ASM_VOID * fetch_ptr;

struct tag_a3progx a3_progx = {"FZERSAM.","R924A5 "} ;
int rc = 0;
char pgm_xfer [8] = {"DCGXFER " } ;

if ((fetch_ptr = (ASM_VOID *) fetch(pgm_xfer)) == NULL) {
printf (" failed on fetch of CSP %8s module \n", pgm_xfer);

}
else {

fetch_ptr (parm1, &a3_progx);
rc = release((void (*)()) fetch_ptr) ;
if (rc != 0) {

printf ("xfer_rtn: rc from release =%d\n", rc);
}

}
}

Figure 188. CSP Transferring Control to OS/390 C under TSO Using the XFER Statement
(Part 2 of 3)

612 OS/390 V2R10.0 C/C++ Programming Guide

Running under CICS Control

CSP-CICS Note: Because all OS/390 C applications running under CICS must run
with AMODE=31, when passing parameters to CSP, you must either

v Pass parameters below the line, or

v Relink the CSP load library with AMODE=31

Examples
The following example program shows how parameters are received from a CSP
application that uses a CALL statement to transfer control. The OS/390 C program is
expecting to receive an int as a parameter.

/***/
/* */
/***/
void call_rtn(_Packed struct tag_a3ws * parm1)
{

typedef void ASM_VOID();
ASM_VOID * fetch_ptr;
char pgm_call [8] = {"DCGCALL " } ;
int rc = 0;

struct tag_a3progx a3_progx = {"FZERSAM.","R924A6 "} ;
struct tag_a6rec {

char a6ct [4];
char a6lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a6xbc;
int a6ybc;
int a6zbc;

};
struct tag_a6rec a6_rec ;

memcpy(a6_rec.a6ct ,parm1->a3ct ,4);
memcpy(a6_rec.a6lan,parm1->a3lan,4);
memcpy(a6_rec.fil1 ,parm1->fil1 ,8);
memcpy(a6_rec.fil2 ,parm1->fil2 ,8);
memcpy(a6_rec.fil3 ,parm1->fil3 ,8);
a6_rec.a6xbc = parm1->a3xbc;
a6_rec.a6ybc = parm1->a3ybc;
a6_rec.a6zbc = parm1->a3zbc;

if ((fetch_ptr = (ASM_VOID *) fetch(pgm_call)) == NULL) {
printf (" failed on fetch of CSP %s module \n", pgm_call);

}
else {

fetch_ptr (&a3_progx, &a6_rec);
rc = release((void (*)()) fetch_ptr) ;
if (rc != 0) {

printf ("CBC3GCP4: rc from release =%d\n", rc);
}

}
}

Figure 188. CSP Transferring Control to OS/390 C under TSO Using the XFER Statement
(Part 3 of 3)

Chapter 39. Using Cross System Product (CSP) 613

CBC3GCP5

The following example program shows how parameters are received from a CSP
application that uses an XFER statement to transfer control.

CBC3GCP6

/* this example shows how to call C from CSP under CICS, and how */
/* parameters are passed */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

main()
{

struct tag_commarea { /* commarea passed to OS/390 C from R924A1 */
int *ptr1 ;
int *ptr2 ;
int *ptr3 ;

} * ca_ptr ; /* commarea ptr */

int *parm1_ptr ;
int *parm2_ptr ;
int *parm3_ptr ;

/* addressability to EIB control block */
/* and COMMUNICATION AREA */

EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(ca_ptr) ;
parm1_ptr = ca_ptr->ptr1 ;
parm2_ptr = ca_ptr->ptr2 ;
parm3_ptr = ca_ptr->ptr3 ;

*parm3_ptr = (int) pow((double) *parm1_ptr,
(double) *parm2_ptr);

EXEC CICS RETURN;
}

Figure 189. CSP CALLing OS/390 C under CICS

/* this example shows how to XFER control to C from CSP under CICS */

/* XFER CALL */
/* R924A3 ====> CBC3GCP6 ====> R924A6 */
/* R924A3 and R924A6 are CSP applications */

#include <math.h>
#include <string.h>

/* structure passed to R924A6*/

Figure 190. CSP transferring control to OS/390 C under CICS using the XFER statement
(Part 1 of 3)

614 OS/390 V2R10.0 C/C++ Programming Guide

void main()
{
struct {

char *appl_ptr;
_Packed struct tag_a3rec *rec3_ptr ;

} parm_ptr ;
/* Structure received R924A3*/

struct tag_a3rec {
char a3ct [4];
char a3lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a3xbc; /* int field 1 for OS/390 C/C++ */
int a3ybc; /* int field 2 for OS/390 C/C++ */
int a3zbc; /* int field 3 for OS/390 C/C++ */

};
_Packed struct tag_a3rec a3rec ;
char lk_appl[16] = "USR5ALF.R924A6 " ;

struct tag_a3progx {
char alfx [8];
char applx [8];

};
_Packed struct tag_a3progx a3progx = {"USR5ALF.","R924A6 "};
short length_a3rec = sizeof(a3rec) ;
char * pa3rec ;
short i ;

/*----- start of CSP XFER-ing to C under CICS ------------------*/

EXEC CICS ADDRESS EIB(dfheiptr);
/* retrieve data from CSP */

EXEC CICS RETRIEVE INTO(&a3rec) LENGTH(length_a3rec) ;

a3rec.a3zbc = (int) pow((double) a3rec.a3xbc,
(double) a3rec.a3ybc);

/*----- end of CSP XFER-ing to C under CICS --------------------*/

Figure 190. CSP transferring control to OS/390 C under CICS using the XFER statement
(Part 2 of 3)

/* call CSP to display results*/
parm_ptr.appl_ptr = lk_appl ; /* alf.application */
parm_ptr.rec3_ptr = &a3rec ;

/* LINK to CSP application */
EXEC CICS LINK PROGRAM("DCBINIT ")

COMMAREA(parm_ptr)
LENGTH(8) ;

if (dfheiptr->eibresp2 != 0) {
printf("CBC3GCP6: EXEC CICS LINK returned non zero \n");
printf(" return code. eibresp2 =%d\n",

dfheiptr->eibresp2);
}

/*----- end of C calling CSP under CICS ------------------------*/
EXEC CICS RETURN ;

}

Figure 190. CSP transferring control to OS/390 C under CICS using the XFER statement
(Part 3 of 3)

Chapter 39. Using Cross System Product (CSP) 615

The following example program shows how parameters are received from a CSP
application that uses a DXFR statement to transfer control. You must receive a
structure.

CBC3GCP7

/* this example shows how to transfer control to C from CSP under */
/* CICS, using the DXFR statement */

/* DXFR XCTL(equivalent to dxfr) */
/* R924A3 ====> CBC3GCP7 ====> DCBINIT (appl R924A5) */
/* R924A3 is a CSP application */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

main ()
{

struct tag_a3rec {
char a3ct [4];
char a3lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a3xbc;
int a3ybc;
int a3zbc;

};

Figure 191. CSP Transferring Control to OS/390 C under CICS Using the DXFR Statement
(Part 1 of 2)

616 OS/390 V2R10.0 C/C++ Programming Guide

/* commarea passed to C/370 from R924A3 */
struct tag_commarea {

char a3ct [4] ;
char a3lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a3xbc;
int a3ybc;
int a3zbc;

} * ca_ptr ; /* commarea ptr */

struct tag_a5progc {
char alfc [8] ;
char applc [8] ;
struct tag_a3rec a3rec;

} a5progc = {"USR5ALF.","R924A5 "};

short length_a3rec = sizeof(struct tag_a3rec) ;
short length_a5progc = sizeof(struct tag_a5progc) ;

/* addreasability to EIB control block */
/* and COMMUNICATION AREA */

EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(ca_ptr) ;

if (dfheiptr->eibcalen == length_a3rec) {
memcpy(&a5progc.a3rec, ca_ptr , length_a3rec);

/* calculate the pow(x,y) */
a5progc.a3rec.a3zbc = (int) pow((double) a5progc.a3rec.a3xbc,

(double) a5progc.a3rec.a3ybc);

EXEC CICS XCTL
PROGRAM("DCBINIT ")
COMMAREA(a5progc)
length(length_a5progc) ;

if (dfheiptr->eibresp2 != DFHRESP(NORMAL)) {
printf ("CBC3GCP7: failed on xctl call to DCBINIT\n");
printf (" \n");

}
}
else {

printf ("CBC3GCP7:length of COMMAREA is different from expected\n");
printf (" expected %d, actual %d\n",

length_a3rec, dfheiptr->eibcalen);
printf (" \n");
EXEC CICS RETURN;

}

EXEC CICS RETURN;
}

Figure 191. CSP Transferring Control to OS/390 C under CICS Using the DXFR Statement
(Part 2 of 2)

Chapter 39. Using Cross System Product (CSP) 617

618 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 40. Using Data Window Services (DWS)

Data Window Services (DWS) is part of the CSL (Callable Services Library). DWS
gives your C or C++ program the ability to manipulate data objects (temporary data
objects known as TEMPSPACE, and VSAM linear data sets).

Note: XPLINK is not supported with DWS.

To use DWS functions with C code, you do not have to specify a linkage pragma or
add any specialized code. Code the DWS function call directly inside your OS/390
C program just as you would a call to an OS/390 C/C++ library function and then
link-edit the DWS module containing the function you want (such as CSRIDAC,
CSRVIEW, CSRSCOT, CSRSAVE or CSRREFR) with your C or C++ program.

To use DWS functions with C++ code, you must specify C linkage for any DWS
function that you use. For example, if you wished to use CSRIDAC, you would use a
code fragment like this one:

CBC3GDW2

At link-edit time, you should link-edit the DWS module containing the function you
want, just as you would for a C program.

/* this example shows how DWS may be used with C++ */
#include <stdlib.h>

extern "C" {
void csridac(char*, char*, char*, char*, char*,

char*, long int*, char*, long int*,
long int*, long int*);

}

int main(void)
{

/* Set up the parameters that will be used by CSRIDAC. */

char op_type[6] = "BEGIN";
char object_type[10] = "TEMPSPACE";
char object_name[45] = "DWS.FILE ";
char scroll_area[4] = "YES";
char object_state[4] = "NEW";
char access_mode[7] = "UPDATE";
long int object_size = 8;
char object_id[9];
long int high_offset, return_code, reason_code;

/* Access a DWS TEMPSPACE data object. */

csridac(op_type, object_type, object_name, scroll_area, object_state,
access_mode,OBJECT_size,object_id,&high_offset,
&return_code,&reason_code);

/* INSERT ADDITIONAL CODE HERE */
}

Figure 192. Example Using DWS and C++

© Copyright IBM Corp. 1996, 2000 619

|

|

|

In DWS the data types of the parameters are specified differently from OS/390
C/C++ data types. When invoking DWS functions from your C or C++ program, you
must specify:

v A long int data type for DWS parameters of integer (I*4) type.

v Character strings (of the required length) for DWS parameters of character type.
For example, if the DWS function requires a 9-character object name (in this
example we will set the object name to TEMPSPACE) you can declare the
parameter in your C or C++ function as follows:
char object_type[9] = "TEMPSPACE";

For more information on DWS, see OS/390 MVS Programming: Callable Services
for HLL.

Example
The following is an excerpt from a C program that shows parameter declarations for
the DWS CSRIDAC function and the function call.

CBC3GDW1

/* this example shows how DWS may be used with C */

int main(void)
{

/* Set up the parameters that will be used by CSRIDAC. */

char op_type[5] = "BEGIN";
char object_type[9] = "TEMPSPACE";
char object_name[45] = "DWS.FILE ";
char scroll_area[3] = "YES";
char object_state[3] = "NEW";
char access_mode[6] = "UPDATE";
long int object_size = 8;
char object_id[8];
long int high_offset, return_code, reason_code;

/* Access a DWS TEMPSPACE data object. */

csridac(op_type, object_type, object_name, scroll_area, object_state,
access_mode,OBJECT_size,OBJECT_id,&high_offset,
&return_code,&reason_code);

/* INSERT ADDITIONAL CODE HERE */

return 0;
}

Figure 193. OS/390 C/C++ Using Data Window Services

620 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 41. Using DB2 Universal Database

Both OS/390 Language Environment and OS/390 C/C++ provide an interface to the
IBM DB2 Universal Database Licensed Program. Refer to “DB2” on page 872 for a
list of books describing DB2.

An application program requests DB2 services using SQL statements imbedded in
the program. The SQL preprocessor translates imbedded SQL statements into host
language statements that perform assignments and call a database language
interface module.

The DB2 SQL preprocessor supports C and C++. DB2 also can be accessed
through C code that is statically or dynamically called by C++.

DB2 processes a request and then returns to the application. Any errors occurring
during database processing are handled by the database product.

If a program is terminated, DB2 takes appropriate action depending on the nature of
termination.

The DB2 preprocessor does not recognize the OS/390 C/C++ compiler’s support for
alternative locales and codepages; therefore, all DB2 OS/390 C/C++ code should
be written in codepage IBM-1047 (APL293).

Note: Applications compiled XPLINK can invoke DB2 services that are called
through stubs defined as #pragma linkage(..., OS). The SQL commands are
one example of this. DB2 stored procedures cannot be compiled XPLINK.

C++ Example
Examples CBC3GDB1 and CBC3GDB2, demonstrate how to use DB2 with C++. To
use the examples, precompile example CBC3GDB2 (Figure 195 on page 622) with
the DB2 precompiler (compiled in C) and then prelink the resulting code with
CBC3GDB1.Bind the C++ extended object modules to produce the executable
program object.

CBC3GDB1

/* this example shows how to use DB2 with C++ */
/* part 1 of 2-other file is CBC3GDB2 */

/* this file is to be compiled with C++, */
/* and then prelinked with CBC3GDB2 */

#include <stdlib.h>
#include <iostream.h>

Figure 194. Using DB2 with C++ (Part 1 of 2)

© Copyright IBM Corp. 1996, 2000 621

|

|
|
|

|

CBC3GDB2

extern "C" {
int CreaTab(void);
int DropTab(void);

}

int main(void)
{

if (CreaTab() == -1)
{

cout << "Test Failed in table-creation." << endl;
exit(-1);

}

if (DropTab() == -1)
{

cout << "Test Failed in table-dropping." << endl;
exit(-1);

}
cout << "Test Successful." << endl;
return 0;

}

Figure 194. Using DB2 with C++ (Part 2 of 2)

/* this example demonstrates how to use DB2 with C++ */
/* part 2 of 2-other file is CBC3GDB1 */

/* this file is to be precompiled with the DB2 precompiler, */
/* compiled in C, and then prelinked with CBC3GDB1 */

#include <string.h>
#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

/*
* This routine creates the table CTAB1 and inserts some values
* into it
*/

Figure 195. Using DB2 with C++ (Part 1 of 2)

622 OS/390 V2R10.0 C/C++ Programming Guide

int CreaTab(void)
{

EXEC SQL CREATE TABLE CTAB1
(EMPNO CHAR(6) NOT NULL,

FIRSTNME VARCHAR(12) NOT NULL,
LASTNME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) NOT NULL,
PHONENO CHAR(7),
EDUCLVL SMALLINT,
SALARY FLOAT(21)) IN DATABASE DSNUCOMP;

if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"creation of CTAB1, received %d\n",sqlca.sqlcode);

return(-1);
}

/* Now insert some values into the table */

EXEC SQL INSERT INTO CTAB1 VALUES
('097892','John','Adams','003','8883945',3,29500.00);

EXEC SQL INSERT INTO CTAB1 VALUES
('000002','Joe','Smith','004','8883791',NULL,25500.00);

EXEC SQL INSERT INTO CTAB1 VALUES
('043929','Ralph','Holland','001','8888734',1,NULL);

EXEC SQL INSERT INTO CTAB1 VALUES
('000010','Holly','Waters','001','8884590',3,29550.00);

if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"insert into tables, received %d\n",sqlca.sqlcode);

return(-1);
}
return(0);

}

/*
* This routine will drop the table.
*/
int DropTab(void)
{

EXEC SQL DROP TABLE CTAB1;
if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"drop of CTAB1 received %d??\n",sqlca.sqlcode);

return(-1);
}
EXEC SQL COMMIT WORK;
return(0);

}

Figure 195. Using DB2 with C++ (Part 2 of 2)

Chapter 41. Using DB2 Universal Database 623

C Example
In Figure 196, a C program creates a table called CTAB1, inserts values into the
table and then drops the table. To use this example, run the program through the
DB2 SQL preprocessor, and compile the generated code. Bind the C extended
object modules to produce the executable program object.

CBC3GDB4

/* this example demonstrates how to use SQL with C */

#include <string.h>
#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

int main(void)
{

if (CreaTab() == −1)
{

printf("Test Failed in table-creation.\n");
exit(−1);

}

if (DropTab() == −1)
{

printf("Test Failed in table-dropping.\n");
exit(−1);

}
printf("Test Successful.\n");
return(0);

}

/*
* This routine creates the table CTAB1 and inserts some values
* into it
*/

int CreaTab(void)
{

EXEC SQL CREATE TABLE CTAB1
(EMPNO CHAR(6) NOT NULL,

FIRSTNME VARCHAR(12) NOT NULL,
LASTNME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) NOT NULL,
PHONENO CHAR(7),
EDUCLVL SMALLINT,
SALARY FLOAT(21));

if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"creation of CTAB1, received %d\n",sqlca.sqlcode);

return(−1);
}

Figure 196. Using DB2 with C (Part 1 of 2)

624 OS/390 V2R10.0 C/C++ Programming Guide

/* Now insert some values into the table */

EXEC SQL INSERT INTO CTAB1 VALUES
('097892','John','Adams','003','8883945',3,29500.00);

EXEC SQL INSERT INTO CTAB1 VALUES
('000002','Joe','Smith','004','8883791',NULL,25500.00);

EXEC SQL INSERT INTO CTAB1 VALUES
('043929','Ralph','Holland','001','8888734',1,NULL);

EXEC SQL INSERT INTO CTAB1 VALUES
('000010','Holly','Waters','001','8884590',3,29550.00);

if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"insert into tables, received %d\n",sqlca.sqlcode);

return(−1);
}
return(0);

}

/*
* This routine will drop the table.
*/

int DropTab(void)
{

EXEC SQL DROP TABLE CTAB1;
if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"drop of CTAB1 received %d??\n",sqlca.sqlcode);

return(−1);
}
EXEC SQL COMMIT WORK;
return(0);

}

Figure 196. Using DB2 with C (Part 2 of 2)

Chapter 41. Using DB2 Universal Database 625

626 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 42. Using Graphical Data Display Manager (GDDM)

The Graphical Data Display Manager (GDDM*) provides programmers with a
comprehensive set of functions for displaying or printing information in the most
effective manner.

The major functions provided are:

v A windowing system that the user can tailor to display selected information

v Support for presentation and interaction through the keyboard

v Comprehensive graphics support

v Fonts, including support for double-byte character sets (DBCS)

v Business image support

v Saving and restoring graphics pictures

v Support for many types of display terminals, printers, and plotters.

Because GDDM uses OS-style linkage, calls from C to GDDM require the #pragma
linkage pragma, as in the following example:
#pragma linkage(identifier, OS)

In C++ code, calls to and from GDDM require that any GDDM functions you use be
prototyped as extern "OS", as in the following example:
extern "OS" {

ASREAD(int *type, int *num, int *count);
CHAATT(int num, int *attrib);
CHHATT(int num, int *attrib);

}

Because C++ does not support #pragma linkage, any existing C code that you are
moving to C++ should use the extern "OS" specification instead.

When linking a GDDM application, you must add the GDDM library to your SYSLIB
concatenation.

Note: XPLINK is not supported by GDDM.

Example
The following example demonstrates the interface between C and GDDM by
drawing a polar chart to compare the characteristics of two cars.

© Copyright IBM Corp. 1996, 2000 627

|

|

|

CBC3GGD1

/* this example demonstrates the use of C and GDDM */
#include <string.h>

#pragma linkage(asread,OS)
#pragma linkage(chaatt,OS)
#pragma linkage(chhatt,OS)
#pragma linkage(chhead,OS)
#pragma linkage(chkatt,OS)
#pragma linkage(chkey,OS)
#pragma linkage(chnatt,OS)
#pragma linkage(chnoff,OS)
#pragma linkage(chnote,OS)
#pragma linkage(chpolr,OS)
#pragma linkage(chset,OS)
#pragma linkage(chxlab,OS)
#pragma linkage(chxlat,OS)
#pragma linkage(chxtic,OS)
#pragma linkage(chyrng,OS)
#pragma linkage(chyset,OS)
#pragma linkage(fsinit,OS)
#pragma linkage(fsterm,OS)
/* Arrays are expected for int * and float * */
/* char * can be an array or a string */
extern int asread (int *type, int *num, int *count);
extern int chaatt (int num, int *attrib);
extern int chhatt (int num, int *attrib);
extern int chkatt (int num, int *attrib);
extern int chkey (int, int, char *);
extern int chnatt (int num, int *attrib);
extern int chnoff (double, double);
extern int chnote (char *string, int num, char *title);
extern int chpolr (int, int, float *xdata, float *ydata);
extern int chset (char *charactr);
extern int chxlab (int num, int, char *);
extern int chxlat (int num, int *attrib);
extern int chxtic (double x, double y);
extern int chyrng (double from, double to);
extern int chyset (char *charactr);
extern int fsinit (void);
extern int fsterm (void);
/**
** Attribute arrays used for the chart. **
**/

int i ;
int h_attrs[4] = { 3, 3, 0, 175 }; /* Head text attribute */
int n_attrs[4] = { 7, 3, 0, 200 }; /* Note text attribute */
int a_attrs[2] = { 7, 1 }; /* X-axis color and line */
int xl_attrs[1] = { 5 }; /* X-label color */
int k_attrs[1] = { 5 }; /* Key text color */
int type, num, count ;

float x_data[8] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };
float y_data[16] = {

14190.0, 260.0, 0.21, 0.066, 83.3, 6.0, 19.1, 14190.0,
12986.0, 290.0, 0.23, 0.066, 95.6, 5.0, 16.2, 12986.0 };

float maxvals[16] = {
15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0,
15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0 };

Figure 197. Example Using GDDM and C (Part 1 of 2)

628 OS/390 V2R10.0 C/C++ Programming Guide

This is a similar example, in C++:

int main(void)
{

fsinit();
chhatt(4, h_attrs);
chhead(40,"TWO CARS COMPARED USING SEVEN PARAMETERS");
chaatt(2,a_attrs);
chxtic(1.0, 0.0);
chxlat(1, xl_attrs);
chxlab(7, 31,
"PURCHASE PRICE ; $15,000 INSURANCE ;$300/YEAR "
"$0.25/MILE ;SERVICING $0.070/MILE ;FUEL "
" 100 BHP/TON; POWER/WT RATIO 6; SEATS"
" BAGGAGE SPACE; 20 CU FT");
chyrng (0.5,1.0);
chyset("NOAXIS");
chyset("NOLABEL");
chyset("PLAIN");
chset("KBOX");
chkatt(1,k_attrs);
chkey(2, 5, "CAR ACAR B");
for(i=0; i<16; ++i)
y_data[i] = y_data[i] / maxvals[i];
chpolr(2, 8, x_data, y_data);
chnatt(4, n_attrs);
chnoff(0.0, 0.53);
chnote("Z2", 1, "+");
chset("BNOTE");
n_attrs[3] = 75;
chnatt(4,n_attrs);
chnoff(0.0, 0.60);
chnote("Z2", 12, "CENTER VALUE");
chnoff(0.0, 0.55);
chnote("Z2", 23, "= 1/2 X PERIMETER VALUE");

/***
** Issue a screen read. When any interrupt is generated **
** by the terminal operator, the program terminates. **
***/

asread(&type, &num, &count);
fsterm();
exit(0);

}

Figure 197. Example Using GDDM and C (Part 2 of 2)

Chapter 42. Using Graphical Data Display Manager (GDDM) 629

CBC3GGD2

/* this example demonstrates the use of C++ and GDDM */
#include <stdlib.h>
#include <string.h>

/* Arrays are expected for int * and float * */
/* char * can be an array or a string */
extern "OS" {

int asread (int *type, int *num, int *count);
int chaatt (int num, int *attrib);
int chhatt (int num, int *attrib);
int chkatt (int num, int *attrib);
int chkey (int, int, char *);
int chhead(int, char *);
int chnatt (int num, int *attrib);
int chnoff (double, double);
int chnote (char *string, int num, char *title);
int chpolr (int, int, float *xdata, float *ydata);
int chset (char *charactr);
int chxlab (int num, int, char *);
int chxlat (int num, int *attrib);
int chxtic (double x, double y);
int chyrng (double from, double to);
int chyset (char *charactr);
int fsinit (void);
int fsterm (void);

}
/**
** Attribute arrays used for the chart. **
**/

int i ;
int h_attrs[4] = { 3, 3, 0, 175 }; /* Head text attribute */
int n_attrs[4] = { 7, 3, 0, 200 }; /* Note text attribute */
int a_attrs[2] = { 7, 1 }; /* X-axis color and line */
int xl_attrs[1] = { 5 }; /* X-label color */
int k_attrs[1] = { 5 }; /* Key text color */
int type, num, count ;

float x_data[8] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };
float y_data[16] = {

14190.0, 260.0, 0.21, 0.066, 83.3, 6.0, 19.1, 14190.0,
12986.0, 290.0, 0.23, 0.066, 95.6, 5.0, 16.2, 12986.0 };

float maxvals[16] = {
15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0,
15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0 };

Figure 198. Example Using GDDM and C++ (Part 1 of 2)

630 OS/390 V2R10.0 C/C++ Programming Guide

int main(void)
{

fsinit();
chhatt(4, h_attrs);
chhead(40,"TWO CARS COMPARED USING SEVEN PARAMETERS");
chaatt(2,a_attrs);
chxtic(1.0, 0.0);
chxlat(1, xl_attrs);
chxlab(7, 31,
"PURCHASE PRICE ; $15,000 INSURANCE ;$300/YEAR "
"$0.25/MILE ;SERVICING $0.070/MILE ;FUEL "
" 100 BHP/TON; POWER/WT RATIO 6; SEATS"
" BAGGAGE SPACE; 20 CU FT");
chyrng (0.5,1.0);
chyset("NOAXIS");
chyset("NOLABEL");
chyset("PLAIN");
chset("KBOX");
chkatt(1,k_attrs);
chkey(2, 5, "CAR ACAR B");
for(i=0; i<16; ++i)
y_data[i] = y_data[i] / maxvals[i];
chpolr(2, 8, x_data, y_data);
chnatt(4, n_attrs);
chnoff(0.0, 0.53);
chnote("Z2", 1, "+");
chset("BNOTE");
n_attrs[3] = 75;
chnatt(4,n_attrs);
chnoff(0.0, 0.60);
chnote("Z2", 12, "CENTER VALUE");
chnoff(0.0, 0.55);
chnote("Z2", 23, "= 1/2 X PERIMETER VALUE");

/***
** Issue a screen read. When any interrupt is generated **
** by the terminal operator, the program terminates. **
***/

asread(&type, &num, &count);
fsterm();
exit(0);

}

Figure 198. Example Using GDDM and C++ (Part 2 of 2)

Chapter 42. Using Graphical Data Display Manager (GDDM) 631

632 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 43. Using the Information Management System (IMS)

This chapter explains how the Information Management System (IMS) and OS/390
C/C++ coordinate error handling, and describes the limitations to using IMS with
OS/390 C/C++.

OS/390 C/C++ provides the ctdli() C library function to invoke IMS facilities (see
OS/390 C/C++ Run-Time Library Reference for more information).

You can also invoke IMS facilities with the callable service CEETDLI which is
provided by the OS/390 Language Environment. The CEETDLI interface performs
essentially the same functions as ctdli(), but it offers some advantages,
particularly if you plan to run an ILC application in IMS. If you use the CEETDLI
interface instead of ctdli(), condition handling is improved because of the
coordination between OS/390 Language Environment and IMS condition handling
facilities. For complete information on the CEETDLI interface, see OS/390 Language
Environment Programming Guide.

For a description of writing IMS batch and online programs in C or C++, see the
appropriate book listed in “IMS/ESA” on page 873.

To use IMS from OS/390 C/C++, you must keep the following in mind:

v The file <ims.h> must be included in the program.

v PLIST(OS) and TARGET(IMS) must be used to compile IMS OS/390 C and C++
application programs. PLIST(OS) establishes the correct parameter list format
when invoked under IMS and TARGET(IMS) establishes the correct operating
environment. These compile-time options can alternatively be specified using
#pragma runopts. The PLIST(OS) compile-time option is equivalent to
#pragma runopts(ENV(IMS)). The descriptions that follow use the compile-time
options, but the #pragma runopts equivalents can be used instead.

v TARGET(IMS) is mandatory, as it establishes the correct operating environment.
PLIST(OS) must also be used if the program is the initial main() program called
under IMS. Programs in nested enclaves do not need to be compiled with
PLIST(OS).

v When you specify PLIST(OS) the argument count (argc) will be set to one (1),
and the first element in the argument vector (argv[0]) will contain a NULL string.

v IMS provides a language interface module (DFSLI000) that gives a common
interface to IMS and DL/I. This module must be link-edited with the application
program.

The rest of this chapter is based on the assumption that you are using the ctdli()
interface.

Handling Errors
The IMS environments are sensitive to errors and error-handling issues. A failing
IMS transaction or program can potentially corrupt an IMS database. IMS must
know about the failure of a transaction or program that has been updating a
database so that it can back out any updates made by that failing program.

OS/390 C/C++ provides extensive error-handling facilities for the programmer, but
special steps are required to coordinate IMS and C or C++ error handling so that
IMS can do its database rollbacks when a program fails.

© Copyright IBM Corp. 1996, 2000 633

When you are using IMS from C or C++:

v Run your C or C++ program with the TRAP(ON) option, and use IMS interfaces by
calling the ctdli() library function. If your application programs also use SQL
facilities provided by DB2, you must modify the user exit CEEBXITA to add the
user abend codes 777 and 778 to prevent the error handler from trapping these
abends. This will allow deadlocks to be successfully resolved by IMS. See
OS/390 Language Environment Programming Guide for more information on
CEEBXITA.

v The ctdli() library function will keep track of calls to and returns from IMS. If an
abend or program check occurs and the C or C++ error handler gets control, it
can determine if the problem arose on the IMS side of the interface or on the C
or C++ side.

v If a program check or abend occurs in IMS, when the C or C++ exception
handler gets control, it immediately issues an ABEND. The IMS Region Controller
gets control next and ensures that the integrity of the database is preserved.

v If a program check occurs in the C or C++ program rather than in IMS, all the
facilities of C or C++ error handling apply, provided that you meet certain
conditions when you code your program. For any error condition that arises, you
must do one of the following:

1. Resolve the error completely so that the application can continue.

2. Have IMS back out the program’s updates by issuing a rollback call to IMS,
and then terminate the program.

3. Make sure that the program terminates abnormally and provide an
installation-modified run-time user exit that turns all abnormal terminations
into operating system ABENDs to effect IMS rollbacks. See OS/390 Language
Environment Programming Guide for more information.

The errors you most likely can fix in your program are arithmetic exception
(SIGFPE) conditions. It is unlikely that you can resolve other types of program
checks or system abends in your program.

Any program that invokes IMS by way of some other IMS interface should be
executed with TRAP(OFF). You should be sure that the program contains code to
issue a rollback call to IMS before terminating after an error. Refer to OS/390
Language Environment Programming Reference for more information about the
limitations of using TRAP(OFF).

Other Considerations
A program communication block (PCB) is a control block used by IMS to describe
results of a DL/I call (DB PCB) or the results of a message retrieval or insertion (I/O
PCB) made by your program. A valid PCB is one that has been correctly initialized
by IMS and passed to you through your C or C++ program. For details on PCBs,
refer to the “IMS/ESA” on page 873. See also the sample C-IMS and C++-IMS
programs in OS/390 C/C++ Run-Time Library Reference.

If you are running an IMS C/MVS program under TSO or IMS, you should be aware
of the effects of specifying PLIST(OS), ENV(IMS), and their combinations with the
#pragma runopts preprocessor directive. The following chart shows the
combinations of PLIST(OS) and ENV(IMS) and the resulting PCB generated under
each of the environments:

634 OS/390 V2R10.0 C/C++ Programming Guide

Table 70. PCB Generated under TSO and IMS

Combination Running under TSO Running under IMS

ENV(IMS) only Invalid PCB Valid PCB

PLIST(OS) only Null PCB Null PCB

ENV(IMS) and PLIST(OS) Invalid PCB Valid PCB

For more information on the run-time options ENV and PLIST, see OS/390 Language
Environment Programming Reference.

If you are running an IMS C or OS/390 C++ program under TSO or IMS, you
should be aware of the effects of specifying compiler options PLIST(OS),
TARGET(IMS), and their combinations. The following chart shows the combinations of
PLIST(OS) and TARGET(IMS) and the resulting PCB generated under each of the
environments:

Table 71. PCB Generated under TSO and IMS

Combination Running under TSO Running under IMS

TARGET(IMS) only Invalid PCB Valid PCB

PLIST(OS) only Null PCB Null PCB

TARGET(IMS) and PLIST(OS) Invalid PCB Valid PCB

For both C and C++, specifying PLIST(OS) under either TSO or IMS results in an
argc value of 1 (one), and argv[0] = NULL.

For more information on the compiler options TARGET(IMS) and PLIST(OS), see
OS/390 C/C++ User’s Guide.

Examples
The following C++ program CBC3GIM1 makes an IMS call and checks the return
code status of the call in IMS batch. Header file CBC3GIM3 (shown at the end of
this chapter) is included by this program.

Chapter 43. Using the Information Management System (IMS) 635

CBC3GIM1

/* this is an example of how to use IMS with C++ */

#pragma runopts(env(ims),plist(os))
#include <ims.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "cbc3gim3.h"

int main(void) {
/***/
/* Declare the database pointer control blocks for each database */
/***/

PCB_STRUCT_8_TYPE *locdb_ptr,*orddb_ptr;

/***/
/* IO areas used for DL/I calls */
/***/

auto IOA2 aio_area, a2io_area;
static IOA2 sio_area;
IOA2 *io_area;

/***/
/* SSAs for DL/I calls */
/***/

static char qual0[] = "ORDER (ORDKEY =333333)";
static char qual1[] = "ORDITEM ";
static char qual2[] = "DELIVERY ";
static int six = 6;
static int four = 4;
static char gu[5] = "GU ";
static char isrt[5] = "ISRT";

int rc;
int failed = 0; /* Indicate if any part of test case failed. */

Figure 199. C++ Program Using IMS (Part 1 of 2)

636 OS/390 V2R10.0 C/C++ Programming Guide

The following C program CBC3GIM2 makes an IMS call and checks the return code
status of the call in IMS batch. Header file CBC3GIM3 is included by this program.

/***/
/* Get the pointers to the databases from the parameter list */
/***/

locdb_ptr = (__pcblist[1]);
orddb_ptr = (__pcblist[2]);

/***/
/* Make some calls to the database and change its contents */
/***/

printf("IMS Test starting\n");

io_area = (IOA2 *)malloc(sizeof(IOA2));
/***/
/* Issue a DL/I call with arguments below the line (using CTDLI) */
/***/

/**/
/* The first parameter for ctdli is an int specifying the number of */
/* arguments-this parameter was optional under C but is mandatory */
/* under C++ */
/**/

rc = ctdli(six,gu,orddb_ptr,&aio_area,qual0,qual1,qual2);

if ((orddb_ptr−>stat_code[0] == ' ' && orddb_ptr−>stat_code[1]==' ')
&& (rc == 0))
printf("Call to CTDLI returned successfully\n");

else
{
printf("Call to CTDLI returned status of %c%c.\n",
orddb_ptr−>stat_code[0],orddb_ptr−>stat_code[1]);
failed = 1;
}

if (failed == 0)
printf("Test Successful\n");
else printf("Test Failed");

return(0);
}

Figure 199. C++ Program Using IMS (Part 2 of 2)

Chapter 43. Using the Information Management System (IMS) 637

CBC3GIM2

/* This is an example of how to use IMS with C */

#pragma runopts(env(ims),plist(os))
#include <ims.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "cbc3gim3.h"

int main(void) {
/***/
/* Declare the database pointer control blocks for each database */
/***/

PCB_STRUCT_8_TYPE *locdb_ptr,*orddb_ptr;

/***/
/* IO areas used for DL/I calls */
/***/

auto IOA2 aio_area, a2io_area;
static IOA2 sio_area;
IOA2 *io_area;

/***/
/* SSAs for DL/I calls */
/***/

static char qual0[] = "ORDER (ORDKEY =333333)";
static char qual1[] = "ORDITEM ";
static char qual2[] = "DELIVERY ";
static int six = 6;
static int four = 4;
static char gu[4] = "GU ";
static char isrt[4] = "ISRT";

int rc;
int failed = 0; /* Indicate if any part of test case failed. */

Figure 200. C Program Using IMS (Part 1 of 2)

638 OS/390 V2R10.0 C/C++ Programming Guide

The following header file is used by both the C and the C++ examples.

/***/
/* Get the pointers to the databases from the parameter list */
/***/

locdb_ptr = (__pcblist[1]);
orddb_ptr = (__pcblist[2]);

/***/
/* Make some calls to the database and change its contents */
/***/

printf("IMS Test starting\n");

io_area = malloc(sizeof(IOA2));
/***/
/* Issue a DL/I call with arguments below the line (using CTDLI) */
/***/

rc = ctdli(six,gu,orddb_ptr,&aio_area,qual0,qual1,qual2);

if ((orddb_ptr−>stat_code[0] == ' ' &&; orddb_ptr−>stat_code[1]==' ')
&&; (rc == 0))
printf("Call to CTDLI returned successfully\n");

else
{
printf("Call to CTDLI returned status of %c%c.\n",
orddb_ptr−>stat_code[0],orddb_ptr−>stat_code[1]);
failed = 1;
}

if (failed == 0)
printf("Test Successful\n");
else printf("Test Failed");

return(0);
}

Figure 200. C Program Using IMS (Part 2 of 2)

Chapter 43. Using the Information Management System (IMS) 639

CBC3GIM3

/* this header file is used with the IMS example */

/*------------------*/
/* DB PCB */
/*------------------*/
typedef struct {

char db_name[8];
char seg_level[2];
char stat_code[2];
char proc_opt[4];
int dli;
char seg_name[8];
int len_kfb;
int no_senseg;
char key_fb[2];

} DB_PCB;
/*------------------*/
/* IO PCB */
/*------------------*/
typedef struct {

char term[8];
char ims_res[2];
char stat_code[2];
char date[4];
char time[4];
int input_seq;
char output_mess[8];
char mod_nme[8];
char user_id[8];

} IO_AREA;
/*------------------*/
/* SPA DATA */
/*------------------*/
typedef struct {

short int uosplth;
char uospres1[4];
char uosptran[8];
char uospuser;
char fill[85];

} SPA_DATA;

Figure 201. Header File for IMS Example (Part 1 of 2)

640 OS/390 V2R10.0 C/C++ Programming Guide

/*------------------*/
/* INPUT MESSAGE */
/*------------------*/
typedef struct {

short int ll;
char zz[2];
char fill[2];
char numb[4];
char nme[6];

} IN_MSG;

/*-------------------*/
/* OUTPUT MESSAGE */
/*-------------------*/
typedef struct {

short int ll;
char z1;
char z2;
char fill[2];
char sca[2];

} OUT_MSG;

/*------------------*/
/* IO AREA */
/*------------------*/
typedef struct {

char key[20];
} IOA1;

typedef struct {
char item[40];

} IOA2;

Figure 201. Header File for IMS Example (Part 2 of 2)

Chapter 43. Using the Information Management System (IMS) 641

642 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 44. Using the Interactive System Productivity Facility
(ISPF)

OS/390 C/C++ allows access to the Interactive System Productivity Facility (ISPF)
Dialog Management Services. Some of the services provided by ISPF include:

v Display services

v Variable services

v Message services

v Dialog control services

For C applications, two interfaces may be used with ISPF: ISPLINK. and ISPEXEC.
Because ISPF uses OS style linkage, calls from C to ISPF require the following
pragma statements for ISPLINK and ISPEXEC respectively:

#pragma linkage(ISPLINK, OS)

#pragma linkage(ISPEXEC, OS)

For C++ applications, two interfaces may be used with ISPF: ISPLINK and ISPEXEC.
Because ISPF uses OS style linkage, calls from C++ to ISPF require that ISPLINK
and ISPEXEC be prototyped as extern "OS", as follows:

extern "OS"{
int ISPLINK(char*,...);

}

extern "OS"{
int ISPEXEC(int, char*,...);

}

Consult OS/390 ISPF Dialog Developer’s Guide and Reference for specific
information about using the ISPF Dialog Management Services.

Note: XPLINK is not supported by ISPF.

Examples
To run the following example under C:

1. Compile and link the CBC3GIS3 C source file using the EDCCL procedure.
Override the SYSLIB DD statement on the LKED step to use the ISPF load
library available on your system. Your JCL should appear similar to the fragment
below:
//CISPF EXEC EDCCL,
// INFILE='userid.C(CBC3GIS3)',
// OUTFILE='userid.LOADLIB(CBC3GIS3),DISP=SHR'
//LKED.SYSLIB DD
// DD DSN=ISP.SISPLOAD,DISP=SHR
//LKED.SYSIN DD DATA,DLM='/>'
NAME CBC3GIS3(R)
/>

2. Copy the CBC3GIS2 and CBC3GIS4 menus, and the CBC3GIS5 panel to your
own ISPPLIB data set. Copy CBC3GIS1 to your own CLIST data set.

3. Ensure that your ISPPLIB data set is allocated to the ISPPLIB ddname. The
data set containing the CBC3GIS3 program, and the SCEERUN data set,
should be allocated to the STEPLIB ddname.

© Copyright IBM Corp. 1996, 2000 643

|

|

|

4. Run the CLIST. The opening menu of the example will be displayed. Choose
the first option to call the program that starts the C to ISPF interface and
displays a secondary menu. You can either exit from this menu or press the
help key for a help panel.

CBC3GIS1

CBC3GIS2

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CBC3GIS2)

Figure 202. CBC3GIS1 CLIST

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */

)BODY
%--------------------- SAMPLE ISPF DIALOG PANEL --------------------------
%OPTION ===>_ZCMD +
+
+ %1+ SELECTION 1 CALL C PROGRAM.

%2+ FUTURE NOT IMPLEMENTED.
%3+ FUTURE NOT IMPLEMENTED.

+
+ENTER %END+COMMAND TO TERMINATE.
)PROC

&ZSEL=TRANS(TRUNC(&ZCMD,'.')
1,'PGM(CBC3GIS3)'
*,'?')

)END

Figure 203. CBC3GIS2 Menu

644 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GIS3

CBC3GIS4

/* this program shows how to use ISPF with C */

#include <stdio.h>
#include <stdlib.h>

#pragma linkage(ISPLINK,OS)

extern ISPLINK() ;

int rc,buflen;
char buffer[20];

int main(void)
{
/* Retrieve the panel definition CBC3GIS4 and display it. */

strcpy(buffer,"PANEL(CBC3GIS4)");
buflen = strlen(buffer);
rc = ISPLINK("SELECT", buflen, buffer);

}

Figure 204. C Program CBC3GIS3

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only*/
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

)BODY
%------------------------ A SAMPLE ISPF MENU ------------------------
%OPTION ===>_ZCMD
+
+ %1+ SELECTION 1 NOT IMPLEMENTED.

%2+ SELECTION 2 EXIT

+ %END+ TO EXIT.
+
)INIT

.HELP = cbc3gis5
)PROC

&ZSEL=TRANS(TRUNC(&ZCMD,'.')
2,'EXIT'
*,'?')

)END

Figure 205. CBC3GIS4 Menu-ISPEXEC or ISPLINK Example

Chapter 44. Using the Interactive System Productivity Facility (ISPF) 645

CBC3GIS5

To run the following example under C++:

1. Compile and bind the C++ source file using the CBCCB procedure. You can use
either the ISPLINK version of the code (CBC3GIS8) or the ISPEXEC version of
the code (CBC3GISB). Override the SYSLIB DD statement for the BIND step to
use the ISPF load library. Your JCL should appear similar to the JCL below:
//CXXISPF EXEC CBCCB,
// INFILE='userid.C(CBC3GIS8)',
// OUTFILE='userid.LOADLIB(CBC3GIS8),DISP=SHR'
//LKED.SYSLIB DD
// DD
// DD
// DD DSN=ISP.SISPLOAD,DISP=SHR
//LKED.SYSIN DD DATA,DLM='/>'
NAME CBC3GIS8(R)
/>

2. Copy the CBC3GIS7 menu (if you are using ISPLINK) or the CBC3GISA menu
(if you are using ISPEXEC) to your own ISPPLIB data set. Copy the CBC3GIS4
menu and CBC3GIS5 panel to your ISPPLIB data set as well. Copy the
CBC3GIS6 CLIST (if you are using ISPLINK) or the CBC3GIS9 CLIST (if you
are using ISPEXEC) to your own CLIST data set.

3. Ensure that your ISPPLIB data set is allocated to the ISPPLIB ddname. The
data set containing the CBC3GIS8 or CBC3GISB program, and the SCEERUN
data set, should be allocated to the STEPLIB ddname.

4. Run the CLIST. The opening menu of the example will be displayed. Choose
the first option to call the program that starts the C++ to ISPF interface and
displays a secondary menu. You can either exit from this menu or press the
help key for a help panel.

CBC3GIS6

)ATTR DEFAULT(%+_)
/* this panel is used by the ISPF example */
)BODY
%--------------------- Sample Ispf Help Panel --------------------------------
+

This is a HELP panel. Enter %END +to exit.

)PROC
)END

Figure 206. CBC3GIS5 Help Panel-ISPEXEC or ISPLINK Example

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CBC3GIS7)

Figure 207. CBC3GIS6 CLIST-ISPLINK Example

646 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GIS7

CBC3GIS8

CBC3GIS9

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */

)BODY
%--------------------- SAMPLE ISPF DIALOG PANEL -----------------------------
%OPTION ===>_ZCMD +
+
+ %1+ SELECTION 1 CALL C PROGRAM.

%2+ FUTURE NOT IMPLEMENTED.
%3+ FUTURE NOT IMPLEMENTED.

+
+ENTER %END+COMMAND TO TERMINATE.
)PROC

&ZSEL=TRANS(TRUNC(&ZCMD,'.')
1,'PGM(CBC3GIS8)'
*,'?')

)END

Figure 208. CBC3GIS7 Menu-ISPLINK Example

/* this program shows how to use ISPF with C++, using ISPLINK */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

extern "OS" {
int ISPLINK(char*,...);

}

int rc,buflen;
char buffer[20];

int main(void)
{
/* Retrieve the panel definition CBC3GIS4 and display it. */

strcpy(buffer,"PANEL(CBC3GIS4)");
buflen = strlen(buffer);
rc = ISPLINK("SELECT",buflen, buffer);

}

Figure 209. C++ Program CBC3GIS8-ISPLINK Example

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CBC3GISA)

Figure 210. CBC3GIS9 CLIST-ISPEXEC Example

Chapter 44. Using the Interactive System Productivity Facility (ISPF) 647

CBC3GISA

CBC3GISB

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */

)BODY
%--------------------- SAMPLE ISPF DIALOG PANEL -----------------------------
%OPTION ===>_ZCMD +
+
+ %1+ SELECTION 1 CALL C PROGRAM.

%2+ FUTURE NOT IMPLEMENTED.
%3+ FUTURE NOT IMPLEMENTED.

+
+ENTER %END+COMMAND TO TERMINATE.
)PROC

&ZSEL=TRANS(TRUNC(&ZCMD,'.')
1,'PGM(CBC3GISB)'
*,'?')

)END

Figure 211. CBC3GISA Menu-ISPEXEC Example

/* this program shows how to use ISPF with C++, using ISPEXEC */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

extern "OS" {
int ISPEXEC(int, char*);

}

int rc,buflen;
char buffer[20];

int main(void)
{
/* Retrieve the panel definition CBC3GIS4 and display it. */

strcpy(buffer,"SELECT PANEL(CBC3GIS4)");
buflen = strlen(buffer);
rc = ISPEXEC(buflen, buffer);

}

Figure 212. C++ Program CBC3GISB-ISPEXEC Example

648 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GIS4

CBC3GIS5

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only*/
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

)BODY
%------------------------ A SAMPLE ISPF MENU ------------------------
%OPTION ===>_ZCMD
+
+ %1+ SELECTION 1 NOT IMPLEMENTED.

%2+ SELECTION 2 EXIT

+ %END+ TO EXIT.
+
)INIT

.HELP = cbc3gis5
)PROC

&ZSEL=TRANS(TRUNC(&ZCMD,'.')
2,'EXIT'
*,'?')

)END

Figure 213. CBC3GIS4 Menu-ISPEXEC or ISPLINK Example

)ATTR DEFAULT(%+_)
/* this panel is used by the ISPF example */
)BODY
%--------------------- Sample Ispf Help Panel --------------------------------
+

This is a HELP panel. Enter %END +to exit.

)PROC
)END

Figure 214. CBC3GIS5 Help Panel-ISPEXEC or ISPLINK Example

Chapter 44. Using the Interactive System Productivity Facility (ISPF) 649

650 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 45. Using the Query Management Facility (QMF)

The OS/390 C/C++ compiler’s support of the Query Management Facility (QMF)
interface, a query and report writing facility, enables you to write applications
through the SAA callable interface. You can create applications to perform a variety
of tasks such as data entry, query building, administration aids, and report analysis.

The OS/390 C++ compiler itself does not support QMF. However, QMF can be
accessed through C code that is statically or dynamically called from C++.

You must include the header file DSQCOMMC.H (provided with the QMF application),
which contains the function and structure definitions necessary to use the QMF
interface.

For information on how to write your OS/390 C/C++ applications with the QMF
interface, see the appropriate manual listed in “QMF” on page 873.

Note: XPLINK is not supported by QMF.

Example
The following example demonstrates the interface between the QMF facility and the
OS/390 C/C++ compiler.

CBC3GQM1

/* this example shows how to use the interface between QMF and C */

#include <string.h>
#include <stdlib.h>
#include <DSQCOMMC.H> /* QMF header file */

int main(void)
{

struct dsqcomm communication_area; /* found in DSQCOMMC */

/**/
/* Query interface command length and commands */
/**/

signed long command_length;
static char start_query_interface [] = "START";
static char set_global_variables [] = "SET GLOBAL";
static char run_query [] = "RUN QUERY Q1";
static char print_report [] = "PRINT REPORT (FORM=F1)";
static char end_query_interface [] = "EXIT";

Figure 215. QMF Interface Example (Part 1 of 3)

© Copyright IBM Corp. 1996, 2000 651

|

|

|

/**/
/* Query command extension, number of parameters and lengths */
/**/

signed long number_of_parameters;
signed long keyword_lengths[10];
signed long data_lengths[10];

/**/
/* Variable data type constants */
/**/

static char char_data_type[] = DSQ_VARIABLE_CHAR;
static char int_data_type[] = DSQ_VARIABLE_FINT;

/**/
/* Keyword parameter and value for START command */
/**/

static char start_keywords[] = "DSQSCMD";
static char start_keyword_values[] = "USERCMD1";

/**/
/* Keyword parameter and value for SET command */
/**/

#define SIZE_VAL 8
char set_keywords[3][SIZE_VAL];
signed long set_values[3];

/**/
/* Start a Query Interface Session */
/**/

number_of_parameters = 1;
command_length = sizeof(start_query_interface);
keyword_lengths[0] = sizeof (start_keywords);
data_lengths[0] = sizeof(start_keyword_values);
dsqcice(&communication_area,

&command_length,
START_query_interface[0],
&number_of_parameters,
&keyword_lengths[0],
START_keywords[0],
&data_lengths[0],
START_keyword_values[0],
char_data_type[0]);

Figure 215. QMF Interface Example (Part 2 of 3)

652 OS/390 V2R10.0 C/C++ Programming Guide

The following example demonstrates how a C++ program may call a C program
that accesses QMF.

/**/
/* Set numeric values into query using SET command */
/**/

number_of_parameters = 3;
command_length = sizeof(set_global_variables);
strcpy(set_keywords[0],"MYVAR01");
strcpy(set_keywords[1],"SHORT");
strcpy(set_keywords[2],"MYVAR03");
keyword_lengths[0] = SIZE_VAL;
keyword_lengths[1] = SIZE_VAL;
keyword_lengths[2] = SIZE_VAL;
data_lengths[0] = sizeof(long);
data_lengths[1] = sizeof(long);
data_lengths[2] = sizeof(long);
set_values[0] = 20;
set_values[1] = 40;
set_values[2] = 84;
dsqcice(&communication_area,

&command_length,
&set_global_variables[0],
&number_of_parameters,
&keyword_lengths[0],
&set_keywords[0],
&data_lengths[0],
&set_values[0],
&int_data_type[0]);

/**/
/* Run a Query */
/**/

command_length = sizeof(run_query);
dsqcic(&communication_area, &command_length,

&run_query[0]);

/**/
/* Print the results of the query */
/**/

command_length = sizeof(print_report);
dsqcic(&communication_area, &command_length,

&print_report[0]);

/**/
/* End the query interface session */
/**/

command_length = sizeof(end_query_interface);
dsqcic(&communication_area, &command_length,

&end_query_interface[0]);

return 0;
}

Figure 215. QMF Interface Example (Part 3 of 3)

Chapter 45. Using the Query Management Facility (QMF) 653

CBC3GQM2

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

extern "C" {
int Gen_Report(void);

}

int main(int argc, char *argv[])
{

int cmd;

if (argc < 2)
{

printf("ERROR - program takes at least one parm");
}
else
{

cmd=argv[1][0];
cmd=toupper(cmd);
switch (cmd)
{

case 'R':
{

Gen_Report();
break;

}
default:

printf("%d is an invalid option.\n");
}

}

}

Figure 216. C++ Calling a C Program That Accesses QMF

654 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GQM3

/* this example shows how C++ can access QMF by way of a C program */
/* part 2 of 2-this file is called from C */
/* other file is CBC3GQM2 */

#include <string.h>
#include <stdlib.h>
#include <DSQCOMMC.H> /* QMF header file */

int Gen_Report(void)
{

struct dsqcomm communication_area; /* found in DSQCOMMC */

/**/
/* Query interface command length and commands */
/**/

signed long command_length;
static char start_query_interface [] = "START";
static char set_global_variables [] = "SET GLOBAL";
static char run_query [] = "RUN QUERY Q1";
static char print_report [] = "PRINT REPORT (FORM=F1)";
static char end_query_interface [] = "EXIT";

/**/
/* Query command extension, number of parameters and lengths */
/**/

signed long number_of_parameters;
signed long keyword_lengths[10];
signed long data_lengths[10];

/**/
/* Variable data type constants */
/**/

static char char_data_type[] = DSQ_VARIABLE_CHAR;
static char int_data_type[] = DSQ_VARIABLE_FINT;

/**/
/* Keyword parameter and value for START command */
/**/

static char start_keywords[] = "DSQSCMD";
static char start_keyword_values[] = "USERCMD1";

/**/
/* Keyword parameter and value for SET command */
/**/

#define SIZE_VAL 8
char set_keywords[3][SIZE_VAL];
signed long set_values[3];

Figure 217. C Program That Accesses QMF (Part 1 of 3)

Chapter 45. Using the Query Management Facility (QMF) 655

/**/
/* Start a Query Interface Session */
/**/

number_of_parameters = 1;
command_length = sizeof(start_query_interface);
keyword_lengths[0] = sizeof (start_keywords);
data_lengths[0] = sizeof(start_keyword_values);
dsqcice(&communication_area,

&command_length,
&start_query_interface[0],
&number_of_parameters,
&keyword_lengths[0],
&start_keywords[0],
&data_lengths[0],
&start_keyword_values[0],
&char_data_type[0]);

/**/
/* Set numeric values into query using SET command */
/**/

number_of_parameters = 3;
command_length = sizeof(set_global_variables);
strcpy(set_keywords[0],"MYVAR01");
strcpy(set_keywords[1],"SHORT");
strcpy(set_keywords[2],"MYVAR03");
keyword_lengths[0] = SIZE_VAL;
keyword_lengths[1] = SIZE_VAL;
keyword_lengths[2] = SIZE_VAL;
data_lengths[0] = sizeof(long);
data_lengths[1] = sizeof(long);
data_lengths[2] = sizeof(long);
set_values[0] = 20;
set_values[1] = 40;
set_values[2] = 84;
dsqcice(&communication_area,

&command_length,
&set_global_variables[0],
&number_of_parameters,
&keyword_lengths[0],
&set_keywords[0],
&data_lengths[0],
&set_values[0],
&int_data_type[0]);

Figure 217. C Program That Accesses QMF (Part 2 of 3)

656 OS/390 V2R10.0 C/C++ Programming Guide

/**/
/* Run a Query */
/**/

command_length = sizeof(run_query);
dsqcic(&communication_area, &command_length,

&run_query[0]);

/**/
/* Print the results of the query */
/**/

command_length = sizeof(print_report);
dsqcic(&communication_area, &command_length,

&print_report[0]);

/**/
/* End the query interface session */
/**/

command_length = sizeof(end_query_interface);
dsqcic(&communication_area, &command_length,

&end_query_interface[0]);

exit(0);
}

Figure 217. C Program That Accesses QMF (Part 3 of 3)

Chapter 45. Using the Query Management Facility (QMF) 657

658 OS/390 V2R10.0 C/C++ Programming Guide

Part 7. Internationalization: Locales and Character Sets

This part includes the following topics related to Locales and Character Sets:

v “Chapter 46. Introduction to Locale” on page 661

v “Chapter 47. Building a Locale” on page 665

v “Chapter 48. Customizing a Locale” on page 705

v “Chapter 49. Customizing a Time Zone” on page 711

v “Chapter 50. Definition of S370 C, SAA C, and POSIX C Locales” on page 713

v “Chapter 51. Code Set Conversion Utilities” on page 721

v “Chapter 52. Coded Character Set Considerations with Locale Functions” on
page 749

© Copyright IBM Corp. 1996, 2000 659

660 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 46. Introduction to Locale

Internationalization in Programming Languages
Internationalization in programming languages is a concept that comprises
externally stored cultural data, a set of programming tools to create such cultural
data, a set of programming interfaces to access this data, and a set of
programming methods that enable you to use provided interfaces to write programs
that do not make any assumptions about the cultural environments they run in.
Such programs modify their behavior according to the user’s cultural environment,
specified during the program’s execution.

Elements of Internationalization
The typical elements of cultural environment are as follows:

Native language
The text that the executing program uses to communicate with a user or
environment, that is, the natural language of the end user.

Character sets and coded character sets
Map an alphabet, the characters used in a particular language, onto the set
of hexadecimal values (code points) that uniquely identify each character.
This mapping creates the coded character set, which is uniquely identified
by the character set it encodes, the set of code point values, and the
mapping between these two.

For example IBM-273, also known as the German Code Page, and
IBM-297, also known as the French Code Page, are two coded character
sets which assign different EBCDIC encodings in the hexadecimal range 40
to FE to the same Latin Alphabet Number 1. IBM S/390 systems in
Germany and France both use this Latin 1 alphabet, which is specified by
International Standard ISO/IEC 8859-1. However, systems in Germany are
configured for encodings of this alphabet given by IBM-273; whereas,
systems in France are configured for encodings of this alphabet given by
IBM-297.

IBM-1027, Japanese Latin Code Page, is another example of a coded
character set. It assigns EBCDIC encodings in the hexadecimal range 40 to
FE to characters specified by Japanese Industrial Standard JIS X 201-1978
plus encodings for a few more Latin characters selected by IBM. The
resulting alphabet defined by IBM-1027 consists of some characters found
in Latin Alphabet Number 1 and some Katakana characters. IBM S/390
systems in Japan are configured for encodings of this alphabet assigned by
IBM-1027.

Collating and ordering
The relative ordering of characters used for sorting.

Character classification
Determines the type of character (alphabetic, numeric, and so forth)
represented by a code point.

Character case conversion
Defines the mapping between uppercase and lowercase characters within a
single character set.

© Copyright IBM Corp. 1996, 2000 661

Date and time format
Defines the way date and time data are formatted (names of weekdays and
months; order of month, day, and year, and so forth).

Format of numeric and non-numeric numbers
Define the way numbers and monetary units are formatted with commas,
decimal points, and so forth.

OS/390 C/C++ Support for Internationalization
The OS/390 C/C++ compiler and library support of internationalization is based on
the IEEE POSIX P1003.2 and X/Open Portability Guide standards for global locales
and coded character set conversion. See “Chapter 47. Building a Locale” on
page 665 for more information about locales.

Locales and Localization
A locale is a collection of data that encodes information about the cultural
environment. Localization is an action that establishes the cultural environment for
an application by selecting the active locale. Only one locale can be active at one
time, but a program can change the active locale at any time during its execution.
The active locale affects the behavior of the locale-sensitive interfaces for the entire
program. This is called the global locale model.

Locale-Sensitive Interfaces
The OS/390 C/C++ run-time library provides many interfaces to manipulate and
access locales. You can use these interfaces to write internationalized C programs.

This list summarizes all the OS/390 C/C++ library functions which affect or are
affected by the current locale.

Selecting locale
Changing the characteristics of the user’s cultural environment by changing
the current locale: setlocale()

Querying locale
Retrieving the locale information that characterizes the user’s cultural
environment:

Monetary and numeric formatting conventions:
localeconv()

Date and time formatting conventions:
localdtconv()

User-specified information:
nl_langinfo()

Encoding of the variant part of the portable character set:
getsyntx()

Character set identifier:
csid(), wcsid()

Classification of characters:

Single-byte characters:
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),
islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit()

662 OS/390 V2R10.0 C/C++ Programming Guide

Wide characters:
iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(),
iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), wctype(), iswctype()

Character case mapping:

Single-byte characters:
tolower(), toupper()

Wide characters:
towlower(), towupper()

Multibyte character and multibyte string conversion:
mblen(), mbrlen(), mbtowc(), mbrtowc(), wctomb(), wcrtomb(), mbstowcs(),
mbsrtowcs(), wcstombs(), wcsrtombs(), mbsinit(), wctob()

String conversions to arithmetic:
strtod(), wcstod(), strtol(), wcstol(), strtoul(), wcstoul(), atof(),
atoi(), atol()

String collating:
strcoll(), strxfrm(), wcscoll(), wcsxfrm()

Character display width:
wcswidth(), wcwidth()

Date, time, and monetary formatting:
strftime(), strptime(), wcsftime(), mktime(), ctime(), gmtime(),
localtime() strfmon()

Formatted input/output:
printf() (and family of functions), scanf() (and family of functions),
vswprintf(), swprintf(), swscanf()

Processing regular expressions:
regcomp(), regexec()

Wide character unformatted input/output:
fgetwc(), fgetws(), fputwc(), fputws(), getwc(), getwchar(), putwc(),
putwchar(), ungetwc()

Response matching:
rpmatch()

Collating elements:
ismccollel(), strtocoll(), colltostr(), collequiv(), collrange(),
collorder(), cclass(), maxcoll(), getmccoll(), getwmccoll()

Chapter 46. Introduction to Locale 663

664 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 47. Building a Locale

Cultural information is encoded in the locale source file using the locale definition
language. One locale source file characterizes one cultural environment. See
“Appendix D. Locales Supplied with OS/390 C/C++” on page 779 for a list of the
locale source and object files supplied with the OS/390 C/C++ compiler.

The locale source file is processed by the locale compilation tool, called the
localedef tool.

To enhance portability of the locale source files, certain information related to the
character sets can be encoded using the symbolic names of characters. The
mapping between the symbolic names and the characters they represent and its
associated hexadecimal value is defined in the character set description file or
charmap file. See “Appendix E. Charmap Files Supplied with OS/390 C/C++” on
page 787 for a list of the charmap files shipped with your product.

The conceptual model of the locale build process is presented below:

locale source charmap

LOCALEDEF tool

coded
character set
definition

cultural
environment
definition

Compiled locale
compiled object
used by the
OS/390 C/C++ interfaces

Using the charmap File
The charmap file defines a mapping between the symbolic names of characters and
the hexadecimal values associated with the character in a given coded character
set. Optionally, it can provide the alternate symbolic names for characters.
Characters in the locale source file can be referred to by their symbolic names or
alternate symbolic names, thereby allowing for writing generic locale source files
independent of the encoding of the character set they represent.

Each charmap file must contain at least the definition of the portable character set
and the character symbolic names associated with each character. The characters
in the portable character set and the corresponding symbolic names, and optional
alternate symbolic names, are defined in Table 72.

Table 72. Characters in Portable Character Set and Corresponding Symbolic Names

Symbolic Name Alternate Name Character
Hex Value
(EBCDIC)

<NUL> 00

<tab> <SE10> 05

<vertical-tab> <SE12> 0b

© Copyright IBM Corp. 1996, 2000 665

Table 72. Characters in Portable Character Set and Corresponding Symbolic
Names (continued)

Symbolic Name Alternate Name Character
Hex Value
(EBCDIC)

<form-feed> <SE13> 0c

<carriage-return> <SE14> 0d

<newline> <SE11> 15

<backspace> <SE09> 16

<alert> <SE08> 2f

<space> <SP01> 40

<period> <SP11> . 4b

<less-than-sign> <SA03> < 4c

<left-parenthesis> <SP06> (4d

<plus-sign> <SA01> + 4e

<ampersand> <SM03> & 50

<right-parenthesis> <SP07>) 5d

<semicolon> <SP14> ; 5e

<hyphen> <SP10> - 60

<hyphen-minus> <SP10> - 60

<slash> <SP12> / 61

<solidus> <SP12> / 61

<comma> <SP08> , 6b

<percent-sign> <SM02> % 6c

<underscore> <SP09> _ 6d

<low-line> <SP09> _ 6d

<greater-than-sign> <SA05> > 6e

<question-mark> <SP15> ? 6f

<colon> <SP13> : 7a

<apostrophe> <SP05> ' 7d

<equals-sign> <SA04> = 7e

<quotation-mark> <SP04> " 7f

<a> <LA01> a 81

 <LB01> b 82

<c> <LC01> c 83

<d> <LD01> d 84

<e> <LE01> e 85

<f> <LF01> f 86

<g> <LG01> g 87

<h> <LH01> h 88

<i> <LI01> i 89

<j> <LJ01> j 91

<k> <LK01> k 92

666 OS/390 V2R10.0 C/C++ Programming Guide

Table 72. Characters in Portable Character Set and Corresponding Symbolic
Names (continued)

Symbolic Name Alternate Name Character
Hex Value
(EBCDIC)

<l> <LL01> l 93

<m> <LM01> m 94

<n> <LN01> n 95

<o> <LO01> o 96

<p> <LP01> p 97

<q> <LQ01> q 98

<r> <LR01> r 99

<s> <LS01> s a2

<t> <LT01> t a3

<u> <LU01> u a4

<v> <LU01> v a5

<w> <LW01> w a6

<x> <LX01> x a7

<y> <LY01> y a8

<z> <LZ01> z a9

<A> <LA02> A c1

 <LB02> B c2

<C> <LC02> C c3

<D> <LD02> D c4

<E> <LE02> E c5

<F> <LF02> F c6

<G> <LG02> G c7

<H> <LH02> H c8

<I> <LI02> I c9

<J> <LJ02> J d1

<K> <LK02> K d2

<L> <LL02> L d3

<M> <SM02> M d4

<N> <LN02> N d5

<O> <LO02> O d6

<P> <LP02> P d7

<Q> <LQ02> Q d8

<R> <LR02> R d9

<S> <LS02> S e2

<T> <LT02> T e3

<U> <LU02> U e4

<V> <LV02> V e5

<W> <LW02> W e6

Chapter 47. Building a Locale 667

Table 72. Characters in Portable Character Set and Corresponding Symbolic
Names (continued)

Symbolic Name Alternate Name Character
Hex Value
(EBCDIC)

<X> <LX02> X e7

<Y> <LY02> Y e8

<Z> <LZ02> Z e9

<zero> <ND10> 0 f0

<one> <ND01> 1 f1

<two> <ND02> 2 f2

<three> <ND03> 3 f3

<four> <ND04> 4 f4

<five> <ND05> 5 f5

<six> <ND06> 6 f6

<seven> <ND07> 7 f7

<eight> <ND08> 8 f8

<nine> <ND09> 9 f9

<vertical-line> <SM13> | (4f)

<exclamation-mark> <SP02> ! (5a)

<dollar-sign> <SC03> $ (5b)

<circumflex> <SD15> | (5f)

<circumflex-accent> <SD15> | (5f)

<grave-accent> <SD13> (79)

<number-sign> <SM01> # (7b)

<commercial-at> <SM05> @ (7c)

<tilde> <SD19> (a1)

<left-square-bracket> <SM06> [(ad)

<right-square-bracket> <SM08>] (bd)

<left-brace> <SM11> { (c0)

<left-curly-bracket> <SM11> { (c0)

<right-brace> <SM14> } (d0)

<right-curly-bracket> <SM14> } (d0)

<backslash> <SM07> \ (e0)

<reverse-solidus> <SM07> \ (e0)

The portable character set is the basis for the syntactic and semantic processing of
the localedef tool, and for most of the utilities and functions that access the locale
object files. Therefore the portable character set must always be defined. It is
conceptually divided into two parts:

Invariant
Characters for which encoding must be constant among all charmap files.
The required encoded values are specified in Table 72 on page 665. If any
of these values change, the behavior of any utilities and functions on
OS/390 C/C++ is unpredictable.

668 OS/390 V2R10.0 C/C++ Programming Guide

For example, if you are using charmaps such as Turkish IBM-1026 or
Japanese IBM-290, where the characters encoded vary from the encoding
in Table 72 on page 665, you may get unpredictable results with the utilities
and functions.

Variant
Characters for which encoding may vary from one charmap file to another.
Only the following characters are allowed in this group:
<backslash>
<right-brace>
<left-brace>
<right-square-bracket>
<left-square-bracket>
<circumflex>
<tilde>
<exclamation-mark>
<number-sign>
<vertical-line>
<dollar-sign>
<commercial-at>
<grave-accent>

The default EBCDIC encoding of each variant character is shown by a
hexadecimal value in parentheses. It is equivalent to the encoding in code
page 1047.

The charmap file is divided into two main sections:

1. the charmap section, or CHARMAP

2. the character set identifier section, or CHARSETID

The following definitions can precede the two sections listed above. Each consists
of the symbol shown in the following list, starting in column 1, including the
surrounding brackets, followed by one or more <blank>s, followed by the value to
be assigned to the symbol.

<code_set_name>
The string literal containing the name of the coded character set name
(IBM-1047, IBM-273, etc.)

<mb_cur_max>
the maximum number of bytes in a multibyte character which can be set to
a value of either 1 or 4. If it is 1, each character in the character set defined
in this charmap is encoded by a one-byte value. If it is 4, each character in
the character set defined in this charmap is encoded by a one-, two-, three-,
or four-byte value. If it is not specified, the default value of 1 is assumed. If
a value of other than 1 or 4 is specified, a warning message is issued and
the default value of 1 is assumed.

<mb_cur_min>
The minimum number of bytes in a multibyte character. Can be set to 1
only. If a value of other than 1 is specified, a warning message is issued
and the default value of 1 is assumed.

<escape_char>
Specifies the escape character that is used to specify hexadecimal or octal
notation for numeric values. It defaults to the hexadecimal value 0xe0,
which represents the \ character in the coded character set IBM-1047.

Chapter 47. Building a Locale 669

For portability among the EBCDIC based systems, the escape character
has been redefined to the / or <slash> character in all IBM-supplied charmap
files, with the following statement:

<escape_char> /

<comment_char>
Denotes the character chosen to indicate a comment within a charmap file.
It defaults to the hexadecimal value 0x7b, which represents the # character
in the coded character set IBM-1047.

For portability among the EBCDIC based systems, the comment character
has been redefined to the % or <percent-sign> character in all
IBM-supplied charmap files, with the following statement:

<comment_char> %

<shift_out>
Specifies the value of the shift-out control character that indicates the start
of a string of double-byte characters. If specified, it must be the value of the
EBCDIC shift-out (SO) character (hexadecimal value 0x0e). It is ignored if
the <mb_cur_max> value is 1.

<shift_in>
Specifies the value of the shift-in control character that indicates the end of
a string of double-byte characters. If specified, it must be the value of the
EBCDIC shift-in (SI) character (hexadecimal value 0x0f). It is ignored if the
<mb_cur_max> value is 1.

The CHARMAP Section
The CHARMAP section defines the values for the symbolic names representing
characters in the coded character set. Each charmap file must define at least the
portable character set. The character symbolic names or alternate symbolic names
(or both) must be used to define the portable character set. These are shown in
Table 72 on page 665.

Additional characters can be defined by the user with symbolic character names.

The CHARMAP section starts with the line containing the keyword CHARMAP, and ends
with the line containing the keywords END CHARMAP. CHARMAP and END CHARMAP must
both start in column one.

The character set mapping definitions are all the lines between the first and last
lines of the CHARMAP section.

The formats of the character set mappings for this section are as follows:
"%s %s %s\n", <symbolic-name>, <encoding>, <comments>
"%s...%s %s %s\n", <symbolic-name>, <symbolic-name>, <encoding>, <comments>

The first format defines a single symbolic name and a corresponding encoding. A
symbolic name is one or more characters with visible glyphs, enclosed between
angle brackets.

For reasons of portability, a symbolic name should include only the characters from
the invariant part of the portable character set. If you use variant characters or
decimal or hexadecimal notation in a symbolic name, the symbolic name will not be
portable. A character following an escape character is interpreted as itself; for
example, the sequence <\\\>> represents the symbolic name \> enclosed within

670 OS/390 V2R10.0 C/C++ Programming Guide

angle brackets, where the backslash \ is the escape character. If / is the escape
character, the sequence <///>> represents the symbolic name />. In the supplied
charmap files, the escape character has been redefined to the forward slash /.

The second format defines a group of symbolic names associated with a range of
values. The two symbolic names are comprised of two parts, a prefix and suffix.
The prefix consists of zero or more non-numeric invariant visible glyph characters
and is the same for both symbolic names. The suffix consists of a positive decimal
integer. The suffix of the first symbolic name must be less than or equal to the suffix
of the second symbolic name. As an example, <j0101>...<j0104> is interpreted as
the symbolic names <j0101>,<j0102>,<j0103>,<j0104>. The common prefix is 'j'
and the suffixes are '0101' and '0104'.

The encoding part can be written in one of two forms:
<escape-char><number> (single byte value)
<escape-char><number><escape-char><number> (double byte value)

The number can be written using octal, decimal, or hexadecimal notation. Decimal
numbers are written as a 'd' followed by 2 or 3 decimal digits. Hexadecimal
numbers are written as an 'x' followed by 2 hexadecimal digits. An octal number is
written with 2 or 3 octal digits. As an example, the single byte value x1F could be
written as '\37', '\x1F', or '\d31'.

The double byte value of 0x1A1F could be written as '\32\37', '\x1A\x1F', or
'\d26\d31'.

In lines defining ranges of symbolic names, the encoded value is the value for the
first symbolic name in the range (the symbolic name preceding the ellipsis).
Subsequent names defined by the range have encoding values in increasing order.

When constants are concatenated for multibyte character values, they must be of
the same type, and are interpreted in byte order from first to last with the least
significant byte of the multibyte character specified by the last constant. Each value
is then prepended by the byte value of <shift_out> and appended with the byte
value of <shift_in>. Such a string represents one EBCDIC multibyte character. For
example:

is interpreted as:
<j0101> /d129/d254
<j0102> /d129/d255
<j0103> /d130/d0
<j0104> /d130/d1

It produces four 4-byte long multibyte EBCDIC characters:

<escape_char> /
<comment_char> %
<mb_cur_max> 4
<mb_cur_min> 1
<shift-out> /x0e
<shift-in> /x0f
CHARMAP
% many definition lines
<j0101>...<j0104> /d129/d254
%many definition lines
END CHARMAP

Chapter 47. Building a Locale 671

<j0101> x0Ex81xFEx0F
<j0102> x0Ex81xFFx0F
<j0103> x0Ex82x00x0F
<j0104> x0Ex82x01x0F

The CHARSETID Section
The character set identifier section of the charmap file maps the symbolic names
defined in the CHARMAP section to a character set identifier.

Note: The two functions csid() and wcsid() query the locales and return the
character set identifier for a given character. This information is not currently
used by any other library function.

The CHARSETID section starts with a line containing the keyword CHARSETID, and
ends with the line containing the keywords END CHARSETID. Both CHARSETID and END
CHARSETID must begin in column 1. The lines between the first and last lines of the
CHARSETID section define the character set identifier for the defined coded character
set.

The character set identifier mappings are defined as follows:
"%s %c", <symbolic-name>, <value>
"%c %c", <value>, <value>
"%s...%s %c", <symbolic-name>, <symbolic-name>, <value>
"%c...%c %c", <value>, <value>, <value>
"%s...%c %c", <symbolic-name>, <value>, <value>
"%c...%s %c", <value>, <symbolic-name>, <value>

The individual characters are specified by the symbolic name or the value. The
group of characters are specified by two symbolic names or by two numeric values
(or combination) separated by an ellipsis (...). The interpretation of ranges of values
is the same as specified in the CHARMAP section. The character set identifier is
specified by a numeric value.

For example:
<comment_char> %
<escape_char> /
<code_set_name> "IBM-930"
<mb_cur_max> 4
<mb_cur_min> 1
<shift_out> /x0e
<shift_in> /x0f

%
% CHARMAP
%

CHARMAP
...
<j0110> /x42/x5a
<j0111>...<j0112> /x43/xbe
<judc2001>...<judc2094> /x72/x8d
...
END CHARMAP

%
% CHARSETID
%

CHARSETID
...
<j0110> 1

672 OS/390 V2R10.0 C/C++ Programming Guide

<j0111>...<j0112> 1
<judc2001>...<judc2094> 3
...
END CHARSETID

Locale Source Files
Locales are defined through the specification of a locale definition file. The locale
definition contains one or more distinct locale category source definitions and not
more than one definition of any category. Each category controls specific aspects of
the cultural environment. A category source definition is either the explicit definition
of a category or the copy directive, which indicates that the category definition
should be copied from another locale definition file.

The definition file is composed of an optional definition section for the escape and
comment characters to be used, followed by the category source definitions.
Comment lines and blank lines can appear anywhere in the locale definition file. If
the escape and comment characters are not defined, default code points are used
(xE0 for the escape character and x7B for the comment character, respectively). The
definition section consists of the following optional lines:
escape_char <character>
comment_char <character>

where <character> in both cases is a single-byte character to be used, for example:
escape_char /

defines the escape character in this file to be '/' (the <slash> character).

Locale definition files passed to the localedef utility are assumed to be in coded
character set IBM-1047.

To ensure portability among EBCDIC systems, you should redefine these characters
to characters from the invariant part of the portable character set. The suggested
redefinition is:

escape_char /
comment_char %

This suggested redefinition is used in all locale definition files supplied by IBM. For
reasons of portability, you should use the suggested redefinition in all your
customized locale definition files. See “Chapter 48. Customizing a Locale” on
page 705 for information about customizing locales. These two redefinitions should
be placed in the first lines of the locale definition source file, before any of the
redefined characters are used.

Each category source definition consists of a category header, a category body, and
a category trailer, in that order.

category header
consists of the keyword naming the category. Each category name starts
with the characters LC_. The following category names are supported:
LC_CTYPE, LC_COLLATE, LC_NUMERIC, LC_MONETARY, LC_TIME, LC_MESSAGES,
LC_TOD, and LC_SYNTAX.

The LC_TOD and LC_SYNTAX categories, if present, must be the last two
categories in the locale definition file.

Chapter 47. Building a Locale 673

category body
consists of one or more lines describing the components of the category.
Each component line has the following format:

<identifier> <operand1>
<identifier> <operand1>;<operand2>;...;<operandN>

<identifier> is a keyword that identifies a locale element, or a symbolic
name that identifies a collating element. <operand> is a character, collating
element, or string literal. Escape sequences can be specified in a string
literal using the <escape_character>. If multiple operands are specified, they
must be separated by semicolons. White space can be before and after the
semicolons.

category trailer
consists of the keyword END followed by one or more <blank>s and the
category name of the corresponding category header.

Here is an example of locale source containing the header, body, and trailer:

You do not have to define each category. Where category definitions are absent
from the locale source, default definitions are used.

In each category, the keyword copy followed by a string specifies the name of an
existing locale to be used as the source for the definition of this category.

If the locale is not found, an error is reported and no locale output is created.

For MVS, the name must be the member name of a partitioned data set allocated
to the EDCLOCL DD statement.

You can continue a line in a locale definition file by placing an escape character as
the last character on the line. This continuation character is discarded from the
input. Even though there is no limitation on the length of each line, for portability
reasons it is suggested that each line be no longer than 2048 characters (bytes).
There is no limit on the accumulated length of a continued line. You cannot continue
comment lines on a subsequent line by using an escaped <newline>.

Individual characters, characters in strings, and collating elements are represented
using symbolic names, as defined below. Characters can also be represented as
the characters themselves, or as octal, hexadecimal, or decimal constants. If you
use non-symbolic notation, the resultant locale definition file may not be portable
among systems and environments. The left angle bracket (<) is a reserved symbol,
denoting the start of a symbolic name; if you use it to represent itself, you must
precede it with the escape character.

The following rules apply to the character representation:

1. A character can be represented by a symbolic name, enclosed within angle
brackets. The symbolic name, including the angle brackets, must exactly match

escape_char /
comment_char %
%
% Here is a simple locale definition file consisting of one
% category source definition, LC_CTYPE.
%
LC_CTYPE
upper <A>;...;<Z>
END LC_CTYPE

674 OS/390 V2R10.0 C/C++ Programming Guide

a symbolic name defined in the charmap file. The symbolic name is replaced by
the character value determined from the value associated with the symbolic
name in the charmap file.

The use of a symbolic name not found in the charmap file constitutes an error,
unless the name is in the category LC_CTYPE or LC_COLLATE, in which case it
constitutes a warning. Use of the escape character or right angle bracket within
a symbolic name is invalid unless the character is preceded by the escape
character. For example:

<c>;<c-cedilla>
specifies two characters whose symbolic names are "c" and
"c-cedilla"

"<M><a><y>"
specifies a 3-character string composed of letters represented by
symbolic names "M", "a", and "y"

"<a><\>>"
specifies a 2-character string composed of letters represented by
symbolic names "a" and ">" (assuming the escape character is \)

If the character represented by the symbolic name is a multibyte character
defined by 2 byte values in the charmap file, and the shift-out and shift-in
characters are defined, the value is enclosed within shift-out and shift-in
characters before the localedef utility processes it any further.

2. A character can represent itself. Within a string, the double quotation mark, the
escape character, and the left angle bracket must be escaped (preceded by the
escape character) to be interpreted as the characters themselves. For example:

c 'c' character represented by itself

"may" represents a 3-character string, each character within the string
represented by itself

"%%%"%>"
represents the three character long string "%">", where the escape
character is defined as %

3. A character can be represented as an octal constant. An octal constant is
specified as the escape character followed by two or more octal digits. Each
constant represents a byte value.

For example:
\131 "\212\129\168" \16\66\193\17

4. A character can be represented as a hexadecimal constant. A hexadecimal
constant is specified as the escape character, followed by an x, followed by two
or more hexadecimal digits. Each constant represents a byte value.

For example: \x83 "\xD4\x81\xA8"

5. A character can be represented as a decimal constant. A decimal constant is
specified as the escape character followed by a d followed by two or more
decimal digits. Each constant represents a byte value.

For example: \d131 "\d212\d129\d168" \d14\d66\d193\d15

For multibyte characters, the entire encoding sequence, including the shift-out and
shift-in characters, must be present. Otherwise, the sequence of bytes not enclosed
between the shift-out and shift-in characters are interpreted as a sequence of single
byte characters.

Chapter 47. Building a Locale 675

Multibyte characters can be represented by concatenating constants specified in
byte order with the last constant specifying the least significant byte of the
character. If the sequence of octal, hexadecimal, or decimal constants is to
represent a multibyte character, it must be enclosed in shift-out and shift-in
constants.

For example: \x0e\x42\xC1\x0f

LC_CTYPE Category
This category defines character classification, case conversion, and other character
attributes. In this category, you can represent a series of characters by using three
adjacent periods as an ellipsis symbol (...). An ellipsis is interpreted as including
all characters with an encoded value higher than the encoded value of the
character preceding the ellipsis and lower than the encoded value following the
ellipsis.

An ellipsis is valid within a single encoded character set.

For example, \x30;...;\x39; includes in the character class all characters with
encoded values from X'30' to X'39'.

The keywords recognized in the LC_CTYPE category are listed below. In the
descriptions, the term "automatically included" means that it is not an error either to
include or omit any of the referenced characters; they are assumed by default even
if the entire keyword is missing and accepted if present. If a keyword is specified
without any arguments, the default characters are assumed.

When a character is automatically included, it has an encoded value dependent on
the charmap file in effect. If no charmap file is specified, the encoding of the encoded
character set IBM-1047 is assumed.

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keywords
are present in this category. If the locale is not found, an error is reported
and no locale output is created. The copy keyword cannot specify a locale
that also specifies the copy keyword for the same category.

charclass
Defines one or more locale-specific character class names as strings
separated by semicolons. Each named character class can then be defined
subsequently in the LC_CTYPE definition. A character class name consists of
at least one and at most {CHARCLASS_NAME_MAX} bytes of alphanumeric
characters from the portable filename character set. The first character of a
character class name cannot be a digit. The name cannot match any of the
LC_CTYPE keywords defined in this document.

upper Defines characters to be classified as uppercase letters. No character
defined for the keywords cntrl, digit, punct, or space can be specified.
The uppercase letters A through Z are automatically included in this class.

The isupper() and iswupper() functions test for any character and wide
character, respectively, included in this class.

lower Defines characters to be classified as lowercase letters. No character
defined for the keywords cntrl, digit, punct, or space can be specified.
The lowercase letters a through z are automatically included in this class.

676 OS/390 V2R10.0 C/C++ Programming Guide

The islower() and iswlower() functions test for any character and wide
character, respectively, included in this class.

alpha Defines characters to be classified as letters. No character defined for the
keywords cntrl, digit, punct, or space can be specified. Characters
classified as either upper or lower are automatically included in this class.

The isalpha() and iswalpha() functions test for any character or wide
character, respectively, included in this class.

digit Defines characters to be classified as numeric digits. Only the digits 0, 1,
2, 3, 4, 5, 6, 7, 8, 9. can be specified. If they are, they must be in
contiguous ascending sequence by numerical value. The digits 0 through 9
are automatically included in this class.

The isdigit() and iswdigit() functions test for any character or wide
character, respectively, included in this class.

space Defines characters to be classified as whitespace characters. No character
defined for the keywords upper, lower, alpha, digit, or xdigit can be
specified for space. The characters <space>, <form-feed>, <newline>,
<carriage-return>, <horizontal-tab>, and <vertical-tab>, and any
characters defined in the class blank are automatically included in this
class.

The functions isspace() and iswspace() test for any character or wide
character, respectively, included in this class.

cntrl Defines characters to be classified as control characters. No character
defined for the keywords upper, lower, alpha, digit, punct, graph, print, or
xdigit can be specified for cntrl.

The functions iscntrl() and iswcntrl() test for any character or wide
character, respectively, included in this class.

punct Defines characters to be classified as punctuation characters. No character
defined for the keywords upper, lower, alpha, digit, cntrl, or xdigit, or as
the <space> character, can be specified.

The functions ispunct() and iswpunct() test for any character or wide
character, respectively, included in this class.

graph Defines characters to be classified as printing characters, not including the
<space> character. Characters specified for the keywords upper, lower,
alpha, digit, xdigit, and punct are automatically included. No character
specified in the keyword cntrl can be specified for graph.

The functions isgraph() and iswgraph() test for any character or wide
character, respectively, included in this class.

print Defines characters to be classified as printing characters, including the
<space> character. Characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct, and the <space> character are automatically
included. No character specified in the keyword cntrl can be specified for
print.

The functions isprint() and iswprint() test for any character or wide
character, respectively, included in this class.

xdigit Defines characters to be classified as hexadecimal digits. Only the
characters defined for the class digit can be specified, in contiguous
ascending sequence by numerical value, followed by one or more sets of
six characters representing the hexadecimal digits 10 through 15, with each

Chapter 47. Building a Locale 677

set in ascending order (for example, A, B, C, D, E, F, a, b, c, d, e, f).
The digits 0 through 9, the uppercase letters A through F, and the lowercase
letters a through f are automatically included in this class.

The functions isxdigit() and iswxdigit() test for any character or wide
character, respectively, included in this class.

blank Defines characters to be classified as blank characters. The characters
<space> and <tab> are automatically included in this class.

The functions isblank() and iswblank() test for any character or wide
character, respectively, included in this class.

toupper
Defines the mapping of lowercase letters to uppercase letters. The operand
consists of character pairs, separated by semicolons. The characters in
each character pair are separated by a comma; the pair is enclosed in
parentheses. The first character in each pair is the lowercase letter, and the
second is the corresponding uppercase letter. Only characters specified for
the keywords lower and upper can be specified for toupper. The lowercase
letters a through z, their corresponding uppercase letters A through Z, are
automatically in this mapping, but only when the toupper keyword is omitted
from the locale definition.

It affects the behavior of the toupper() and towupper() functions for
mapping characters and wide characters, respectively.

tolower
Defines the mapping of uppercase letters to lowercase letters. The operand
consists of character pairs, separated by semicolons. The characters in
each character pair are separated by a comma; the pair is enclosed by
parentheses. The first character in each pair is the uppercase letter, and the
second is its corresponding lowercase letter. Only characters specified for
the keywords lower and upper can be specified. If the tolower keyword is
omitted from the locale definition, the mapping is the reverse mapping of
the one specified for the toupper.

The tolower keyword affects the behavior of the tolower() and towlower()
functions for mapping characters and wide characters, respectively.

You may define additional character classes using your own keywords. A maximum
of 31 classes are supported in total: the 12 standard classes, and up to 29
user-defined classes.

The defined classes affect the behavior of wctype() and iswctype() functions.

Here is an example of the definition of the LC_CTYPE category:

678 OS/390 V2R10.0 C/C++ Programming Guide

LC_COLLATE Category
A collation sequence definition defines the relative order between collating elements
(characters and multicharacter collating elements) in the locale. This order is
expressed in terms of collation values. It assigns each element one or more
collation values (also known as collation weights). The collation sequence definition
is used by regular expressions, pattern matching, and sorting and collating
functions. The following capabilities are provided:

1. Multicharacter collating elements. Specification of multicharacter collating
elements (sequences of two or more characters to be collated as an entity).

2. User-defined ordering of collating elements. Each collating element is
assigned a collation value defining its order in the character (or basic) collation
sequence. This ordering is used by regular expressions and pattern matching,
and unless collation weights are explicitly specified, also as the collation weight
to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be
assigned 1 to 6 collating weights for use in sorting. The first weight is referred to
as the primary weight.

4. One-to-many mapping. A single character is mapped into a string of collating
elements.

5. Many-to-many substitution. A string of one or more characters are mapped to
another string (or an empty string). The character or characters are ignored for
collation purposes.

Note: This is an IBM extension; therefore, locales that use it may not be
portable to localedef tools developed by other vendors.

escape_char /
comment_char %

%%%%%%%%%%%%%
LC_CTYPE
%%%%%%%%%%%%%
% upper letters are A-Z by default plus the three defined below
upper <A-acute.>;<A-grave.>;<C-acute.>

% lower case letters are a-z by default plus the three defined below
lower <a-acute>;<a_grave><c-acute>

% space characters are default 6 characters plus the one defined below
space <hyphen-minus>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/
<form-feed>;<carriage-return>;<NUL>;/
<SO>;<SI>

% default graph, print,punct, digit, xdigit, blank classes

% toupper mapping defined only for the following three pairs
toupper (<a-acute),<A-acute>);/

(<a-grave),<A-grave>);/
(<c-acute),<C-acute>);

% default upper to lower case mapping

% user defined class
myclass <e-ogonek>;<E-ogonek>

END LC_CTYPE

Chapter 47. Building a Locale 679

6. Equivalence class definition. Two or more collating elements have the same
collation value (primary weight).

7. Ordering by weights. When two strings are compared to determine their
relative order, the two strings are first broken up into a series of collating
elements. Each successive pair of elements is compared according to the
relative primary weights for the elements. If they are equal, and more than one
weight is assigned, then the pairs of collating elements are compared again
according to the relative subsequent weights, until either two collating elements
are not equal or the weights are exhausted.

Collating Rules
Collation rules consist of an ordered list of collating order statements, ordered from
lowest to highest. The <NULL> character is considered lower than any other
character. The ellipsis symbol ("...") is a special collation order statement. It
specifies that a sequence of characters collate according to their encoded character
values. It causes all characters with values higher than the value of the <collating
identifier> in the preceding line, and lower than the value for the <collating
identifier> on the following line, to be placed in the character collation order
between the previous and the following collation order statements in ascending
order according to their encoded character values.

The use of the ellipsis symbol ties the definition to a specific coded character set
and may preclude the definition from being portable among implementations.

The ellipsis symbol can precede or succeed the ellipsis symbol and may also have
weights on the same line.

A collating order statement describes how a collating identifier is weighted.

Each <collating-identifier> consists of a character, <collating-element>,
<collating-symbol>, or the special symbol UNDEFINED. The order in which collating
elements are specified determines the character order sequence, such that each
collating element is considered lower than the elements following it. The <NULL>
character is considered lower than any other character. Weights are expressed as
characters, <collating-symbol>s, <collating-element>s, or the special symbol
IGNORE. A single character, a <collating-symbol>, or a <collating-element>
represents the relative position in the character collating sequence of the character
or symbol, rather than the character or characters themselves. Thus rather than
assigning absolute values to weights, a particular weight is expressed using the
relative "order value" assigned to a collating element based on its order in the
character collation sequence.

A <collating-element> specifies multicharacter collating elements, and indicates
that the character sequence specified by the <collating-element> is to be collated
as a unit and in the relative order specified by its place.

A <collating-symbol> can define a position in the relative order for use in weights.

The <collating-symbol> UNDEFINED is interpreted as including all characters not
specified explicitly. Such characters are inserted in the character collation order at
the point indicated by the symbol, and in ascending order according to their
encoded character values. If no UNDEFINED symbol is specified, and the current
coded character set contains characters not specified in this clause, the localedef
utility issues a warning and places such characters at the end of the character
collation order.

680 OS/390 V2R10.0 C/C++ Programming Guide

The syntax for a collation order statement is:
<collating-identifier> <weight1>;<weight2>;...;<weightn>

Collation of two collating identifiers is done by comparing their relative primary
weights. This process is repeated for successive weight levels until the two
identifiers are different, or the weight levels are exhausted. The operands for each
collating identifier define the primary, secondary, and subsequent relative weights
for the collating identifier. Two or more collating elements can be assigned the
same weight. If two collating identifiers have the same primary weight, they belong
to the same equivalence class.

The special symbol IGNORE as a weight indicates that when strings are compared
using the weights at the level where IGNORE is specified, the collating element
should be ignored, as if the string did not contain the collating element. In regular
expressions and pattern matching, all characters that are IGNOREd in their primary
weight form an equivalence class.

All characters specified by an ellipsis are assigned unique weights, equal to the
relative order of the characters. Characters specified by an explicit or implicit
UNDEFINED special symbol are assigned the same primary weight (they belong to the
same equivalence class).

One-to-many mapping is indicated by specifying two or more concatenated
characters or symbolic names. For example, if the character "<ezset>" is given the
string "<s><s>" as a weight, comparisons are performed as if all occurrences of the
character <ezset> are replaced by <s><s> (assuming <s> has the collating weight
<s>). If it is desirable to define <ezset> and <s><s> as an equivalence class, then a
collating element must be defined for the string "ss".

If no weight is specified, the collating identifier is interpreted as itself.

For example, the order statement
<a> <a>

is equivalent to
<a>

Collating Keywords
The following keywords are recognized in a collation sequence definition.

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
shall be present in this category. If the locale is not found, an error is
reported and no locale output is created. The copy keyword cannot specify
a locale that also specifies the copy keyword for the same category.

collating-element
Defines a collating-element symbol representing a multicharacter collating
element. This keyword is optional.

In addition to the collating elements in the character set, the
collating-element keyword can be used to define multicharacter collating
elements. The syntax is:
"collating-element %s from \%s\"", <collating-element>, <string>

The <collating-element> should be a symbolic name enclosed between
angle brackets (< and >), and should not duplicate any symbolic name in

Chapter 47. Building a Locale 681

the current charmap file (if any), or any other symbolic name defined in this
collation definition. The string operand is a string of two or more characters
that collate as an entity. A <collating-element> defined with this keyword is
only recognized within the LC_COLLATE category.

For example:
collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <ll> from "ll"

collating-symbol
Defines a collating symbol for use in collation order statements.

The collating-symbol keyword defines a symbolic name that can be
associated with a relative position in the character order sequence. While
such a symbolic name does not represent any collating element, it can be
used as a weight. This keyword is optional.

This construct can define symbols for use in collation sequence statements,
between the order_start and order_end keywords.

The syntax is:
"collating-symbol \%s\"", <collating-symbol>

The <collating-symbol> must be a symbolic name, enclosed between
angle brackets (< and >), and should not duplicate any symbolic name in
the current charmap file (if any), or any other symbolic name defined in this
collation definition. A <collating-symbol> defined with this keyword is only
recognized within the LC_COLLATE category.

For example:
collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

substitute
The substitute keyword defines a substring substitution in a string to be
collated. This keyword is optional. The following operands are supported
with the substitute keyword:
"substitute %s with \%s\"", <regular-expr>, <replacement>

The first operand is treated as a basic regular expression. The replacement
operand consists of zero or more characters and regular expression
back-references (for example, \1 through \9). The back-references consist
of the backslash followed by a digit from 1 to 9. If the backslash is followed
by two or three digits, it is interpreted as an octal constant.

When strings are collated according to a collation definition containing
substitute statements, the collation behaves as if occurrences of substrings
matching the basic regular expression are replaced by the replacement
string, before the strings are compared based on the specified collation
sequence. Ranges in the regular expression are interpreted according to
the current character collation sequence and character classes according to
the character classification specified by the LC_CTYPE environment variable
at collation time. If more than one substitute statement is present in the
collation definition, the collation process behaves as if the substitute
statements are applied to the strings in the order they occur in the source
definition. The substitution for the substitute statements are processed

682 OS/390 V2R10.0 C/C++ Programming Guide

before any substitutions for one-to-many mappings. The support of the
″substitute″ keyword is an IBM OS/390 C/C++ extension to the POSIX
standard.

Note: This is an IBM extension; therefore, locales that use it may not be
portable to localedef tools developed by other vendors.

order_start
Define collating rules. This statement is followed by one or more collation
order statements, assigning character collation values and collation weights
to collating elements.

The order_start keyword must precede collation order entries. It defines
the number of weights for this collation sequence definition and other
collation rules.

The syntax of the order_start keyword is:
order_start <sort-rule1>;<sort-rule1>;...;<sort-rulen>

The operands of the order_start keyword are optional. If present, the
operands define rules to be applied when strings are compared. The
number of operands define how many weights each element is assigned; if
no operands are present, one forward operand is assumed. If any is
present, the first operand defines rules to be applied when comparing
strings using the first (primary) weight; the second when comparing strings
using the second weight, and so on. Operands are separated by
semicolons (;). Each operand consists of one or more collation directives
separated by commas (,). If the number of operands exceeds the limit of 6,
the localedef utility issues a warning message.

The following directives are supported:

forward
specifies that comparison operations for the weight level proceed
from the start of the string towards its end.

backward
specifies that comparison operations for the weight level proceed
from the end of the string toward its beginning.

no-substitute
no substitution is performed, such that the comparison is based on
collation values for collating elements before any substitution
operations are performed.

Notes:

1. This is an IBM extension; therefore, locales that use it may not
be portable to localedef tools developed by other vendors.

2. When the no-substitute keyword is specified, one-to-many
mappings are ignored.

position
specifies that comparison operations for the weight level must
consider the relative position of non-IGNOREd elements in the
strings. The string containing a non-IGNOREd element after the
fewest IGNOREd collating elements from the start of the comparison
collates first. If both strings contain a non-IGNOREd character in the
same relative position, the collating values assigned to the

Chapter 47. Building a Locale 683

elements determine the order. If the strings are equal, subsequent
non-IGNOREd characters are considered in the same manner.

order_end
The collating order entries are terminated with an order_end keyword.

Here is an example of an LC_COLLATE category:

The example is interpreted as follows:

1. collating elements

v character <c> followed by <h> collate as one entity named <ch>

v character <C> followed by <h> collate as one entity named <Ch>

v character <s> followed by <z> collate as one entity named <eszet>

2. collating symbols <LOW>, <UPPER-CASE>, <LOWER-CASE> and <NONE> are defined
to be used in relative order definition

3. up to 3 string comparisons are defined:

v first pass starts from the beginning of the strings

v second pass starts from the end of the strings, and

v third pass starts from the beginning of the strings

4. the collating weights are defined such that

LC_COLLATE
% ARTIFICIAL COLLATE CATEGORY

% collating elements
�1� collating-element <ch> from "<c><h>"

collating-element <Ch> from "<C><h>"
collating-element <eszet> from "<s><z>"

%collating symbols for relative order definition

collating-symbol <LOW>
�2� collating-symbol <UPPER-CASE>

collating-symbol <LOWER-CASE>
collating-symbol <NONE>

�3� order_start forward;backward;forward
<NONE>

�4� <LOW>
<UPPER-CASE>
<LOWER-CASE>

�5� UNDEFINED IGNORE;IGNORE;IGNORE

<space>
�6�

<quotation-mark>
�7� <a> <a>;<NONE>;<LOWER-CASE>
�10� <a-acute> <a>;<a-acute>;<LOWER-CASE>
�11� <a-grave> <a>;<a-grave>;<LOWER-CASE>
�8� <A> <a>;<NONE>;<UPPER-CASE>
�11� <A-acute> <a>;<a-acute>;<UPPER-CASE>
�11� <A-grave> <a>;<a-grave>;<UPPER-CASE>
�11� <ch> <ch>;<NONE>;<LOWER-CASE>
�11� <Ch> <ch>;<NONE>;<UPPER-CASE>
�9� <s> <s>;<s>;<LOWER-CASE>
�12� <eszet> "<s><s>";"<eszet><s>";<LOWER-CASE>
�9� <z> <z>;<NONE>;<LOWER-CASE>

order_end

684 OS/390 V2R10.0 C/C++ Programming Guide

v <LOW> collates before <UPPER-CASE>,

v <UPPER-CASE> collates before <LOWER-CASE>,

v <LOWER-CASE> collates before <NONE>;

5. all characters for which collation is not specified here are ordered after <NONE>,
and before <space> in ascending order according to their encoded values

6. all characters with an encoded value larger than the encoded value of <space>
and lower than the encoded value of <quotation-mark> in the current encoded
character set, collate in ascending order according to their values;

7. <a> has a:

v primary weight of <a>,

v secondary weight <NONE>,

v tertiary weight of <LOWER-CASE>,

8. <A> has a:

v primary weight of <a>,

v secondary weight of <NONE>,

v tertiary weight of <UPPER-CASE>,

9. the weights of <s> and <z> are determined in a similar fashion to <a> and <A>.

10. <a-acute> has a:

v primary weight of <a>,

v secondary weight of <a-acute> itself,

v tertiary weight of <LOWER-CASE>,

11. the weights of <a-grave>, <A-acute>, <A-grave>, <ch> and <Ch> are determined
in a similar fashion to <a-acute>.

12. <eszet> has a:

v primary weight determined by replacing each occurrence of <eszet> with the
sequence of two <s>’s and using the weight of <s>,

v secondary weight determined by replacing each occurrence of <eszet> with
the sequence of <eszet> and <s> and using their weights,

v tertiary weight is the relative position of <LOWER-CASE>.

Comparison of Strings
Compare the strings s1="aAch" and s2="AaCh" using the above LC_COLLATE
definition:

1. s1=> "aA<ch>", and s2=> "Aa<Ch>"

2. first pass:

a. substitute the elements of the strings with their primary weights: s1=>
"<a><a><ch>", s2=> "<a><a><ch>"

b. compare the two strings starting with the first element — they are equal.

3. second pass:

a. substitute the elements of the strings with their secondary weights: s1=>
"<NONE><NONE><NONE>", s2=>"<NONE><NONE><NONE>"

b. compare the two strings from the last element to the first — they are equal.

4. third pass:

a. substitute the elements of the strings with their third level weights:
s1=> "<LOWER-CASE><UPPER-CASE><LOWER-CASE>",
s2=> "<UPPER-CASE><LOWER-CASE><UPPER-CASE>",

b. compare the two strings starting from the beginning of the strings: s2
compares lower than s1, because <UPPER-CASE> is before <LOWER-CASE>.

Chapter 47. Building a Locale 685

Compare the strings s1="áß" and s2=>"àss":

1. s1=> "á<eszet>" and s2= "àss";

2. first pass:

a. substitute the elements of the strings with their primary weights: s1=>
"<a><s><s>", s2=> "<a><s><s>"

b. compare the two strings starting with the first element — they are equal.

3. second pass:

a. substitute the elements of the strings with their secondary weights: s1=>
"<a-acute><eszet><s>", s2=>"<a-grave><s><s>"

b. compare the two strings from the last element to the first — <s> is before
<ezset>.

LC_MONETARY Category
This category defines the rules and symbols used to format monetary quantities.
The operands are strings or integers. The following keywords are supported:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
should be present in this category. If the locale is not found, an error is
reported and no locale output is created. The copy keyword cannot specify
a locale that also specifies the copy keyword for the same category.

int_curr_symbol
Specifies the international currency symbol. The operand is a four-character
string, with the first three characters containing the alphabetic international
currency symbol in accordance with those specified in ISO4217 Codes for
the Representation of Currency and Funds. The fourth character is the
character used to separate the international currency symbol from the
monetary quantity.

The following value may also be specified, though it is not If not defined, it
defaults to the empty string (″″).

currency_symbol
Specifies the string used as the local currency symbol. If not defined, it
defaults to the empty string (″″).

mon_decimal_point
The string used as a decimal delimiter to format monetary quantities. If not
defined it defaults to the empty string (″″).

mon_thousands_sep
Specifies the string used as a separator for groups of digits to the left of the
decimal delimiter in formatted monetary quantities. If not defined, it defaults
to the empty string (″″).

mon_grouping
Defines the size of each group of digits in formatted monetary quantities.
The operand is a sequence of integers separated by semicolons. Also, for
compatibility, it may be a string of integers separated by semicolons. Each
integer specifies the number of digits in each group, with the initial integer
defining the size of the group immediately preceding the decimal delimiter,
and the following integers defining the preceding groups. If the last integer
is not −1, then the size of the previous group (if any) is used repeatedly for
the rest of the digits. If the last integer is −1, then no further grouping is
performed. If not defined, mon_grouping defaults to −1 which indicates that
no grouping. An empty string is interpreted as −1.

686 OS/390 V2R10.0 C/C++ Programming Guide

positive_sign
A string used to indicate a formatted monetary quantity with a non-negative
value. If not defined, it defaults to the empty string (″″).

negative_sign
Specifies a string used to indicate a formatted monetary quantity with a
negative value. If not defined, it defaults to the empty string (″″).

int_frac_digits
Specifies an integer representing the number of fractional digits (those to
the right of the decimal delimiter) to be displayed in a formatted monetary
quantity using int_curr_symbol. If not defined, it defaults to −1.

frac_digits
Specifies an integer representing the number of fractional digits (those to
the right of the decimal delimiter) to be displayed in a formatted monetary
quantity using currency_symbol. If not defined, it defaults to −1.

p_cs_precedes
Specifies an integer set to 1 if the currency_symbol or int_curr_symbol
precedes the value for a non-negative formatted monetary quantity, and set
to 0 if the symbol succeeds the value. If not defined, it defaults to −1.

p_sep_by_space
Specifies an integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a non-negative formatted monetary
quantity, set to 1 if a space separates the symbol from the value, and set to
2 if a space separates the symbol and the string sign, if adjacent. If not
defined, it defaults to −1.

n_cs_precedes
An integer set to 1 if the currency_symbol or int_curr_symbol precedes the
value for a negative formatted monetary quantity, and set to 0 if the symbol
succeeds the value. If not defined, it defaults to −1.

n_sep_by_space
An integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a negative formatted monetary quantity,
set to 1 if a space separates the symbol from the value, and set to 2 if a
space separates the symbol and the string sign, if adjacent. If not defined, it
defaults to −1.

p_sign_posn
An integer set to a value indicating the positioning of the positive_sign for a
non-negative formatted monetary quantity. The following integer values are
recognized:

0 Parentheses surround the quantity and the currency_symbol or
int_curr_symbol.

1 The sign string precedes the quantity and the currency_symbol or
int_curr_symbol.

2 The sign string succeeds the quantity and the currency_symbol or
int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or
int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or
int_curr_symbol.

Chapter 47. Building a Locale 687

part of the POSIX standard.

5 Use debit-sign or credit-sign for p_sign_posn or n_sign_posn.

If not defined, it defaults to −1.

n_sign_posn
An integer set to a value indicating the positioning of the negative_sign for
a negative formatted monetary quantity. The recognized values are the
same as for p_sign_posn. If not defined, it defaults to −1.

left_parenthesis
The symbol of the locale’s equivalent of (to form a negative-valued
formatted monetary quantity together with right_parenthesis. If not
defined, it defaults to the empty string (″″).

Note: This is an IBM-specific extension.

right_parenthesis
The symbol of the locale’s equivalent of) to form a negative-valued
formatted monetary quantity together with left_parenthesis. If not defined,
it defaults to the empty string (″″);

Note: This is an IBM-specific extension.

debit_sign
The symbol of locale’s equivalent of DB to indicate a non-negative-valued
formatted monetary quantity. If not defined, it defaults to the empty string
(″″);

Note: This is an IBM-specific extension.

credit_sign
The symbol of locale’s equivalent of CR to indicate a negative-valued
formatted monetary quantity. If not defined, it defaults to the empty string
(″″);

Note: This is an IBM-specific extension.

Here is an example of the definition of the LC_MONETARY category:

688 OS/390 V2R10.0 C/C++ Programming Guide

LC_NUMERIC Category
This category defines the rules and symbols used to format non-monetary numeric
information. The operands are strings. The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
should be present in this category. If the locale is not found, an error is
reported and no locale output is created. The copy keyword cannot specify
a locale that also specifies the copy keyword for the same category.

decimal_point
Specifies a string used as the decimal delimiter in numeric, non-monetary
formatted quantities. This keyword cannot be omitted and cannot be set to
the empty string.

thousands_sep
Specifies a string containing the symbol that is used as a separator for
groups of digits to the left of the decimal delimiter in numeric, non-monetary,
formatted quantities.

grouping
Defines the size of each group of digits in formatted non-monetary
quantities. The operand is a sequence of integers separated by semicolons.
Also, for compatibility, it may be a string of integers separated by
semicolons. Each integer specifies the number of digits in each group, with
the initial integer defining the size of the group immediately preceding the
decimal delimiter, and the following integers defining the preceding groups.
If the last integer is not −1, then the size of the previous group (if any) is
used repeatedly for the rest of the digits. If the last integer is −1, then no
further grouping is performed. An empty string is interpreted as −1.

escape_char /
comment_char %

%%%%%%%%%%%%%
LC_MONETARY
%%%%%%%%%%%%%

int_curr_symbol "<J><P><Y><space>"
currency_symbol "<yen>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping 3
positive_sign ""
negative_sign "<hyphen-minus>"
int_frac_digits 0
frac_digits 0
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 1
n_sign_posn 1
debit_sign "<D>"
credit_sign "<C><R>"
left_parenthesis "<left-parenthesis>"
right_parenthesis "<right-parenthesis>"

END LC_MONETARY

Chapter 47. Building a Locale 689

Here is an example of how to specify the LC_NUMERIC category:

LC_TIME Category
The LC_TIME category defines the interpretation of the field descriptors used for
parsing, then formatting, the date and time. The descriptors identify the replacement
portion of the string, while the rest of a string is constant. The definition of
descriptors is included in OS/390 C/C++ Run-Time Library Reference. All these
descriptors can be used in the format specifier in the time formatting functions
strftime().

The following keywords are supported:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
should be present in this category.

If the locale is not found, an error is reported and no locale output is
created. The copy keyword cannot specify a locale that also specifies the
copy keyword for the same category.

abday Defines the abbreviated weekday names, corresponding to the %a field
descriptor. The operand consists of seven semicolon-separated strings. The
first string is the abbreviated name corresponding to Sunday, the second
string corresponds to Monday, and so forth.

day Defines the full weekday names, corresponding to the %A field descriptor.
The operand consists of seven semicolon-separated strings. The first string
is the full name corresponding to Sunday, the second string to Monday, and
so forth.

abmon Defines the abbreviated month names, corresponding to the %b field
descriptor. The operand consists of twelve strings separated by semicolons.
The first string is an abbreviated name that corresponds to January, the
second corresponds to February, and so forth.

mon Defines the full month names, corresponding to the %B field descriptor. The
operand consists of twelve strings separated by semicolons. The first string
is an abbreviated name that corresponds to January, the second
corresponds to February, and so forth.

d_t_fmt
Defines the appropriate date and time representation, corresponding to the
%c field descriptor. The operand consists of a string, which may contain any
combination of characters and field descriptors.

d_fmt Defines the appropriate date representation, corresponding to the %x field
descriptor. The operand consists of a string, and may contain any
combination of characters and field descriptors.

escape_char /
comment_char %

%%%%%%%%%%%%%
LC_NUMERIC
%%%%%%%%%%%%%

decimal_point "<comma>"
thousands_sep "<space>"
grouping 3

END LC_NUMERIC

690 OS/390 V2R10.0 C/C++ Programming Guide

t_fmt Defines the appropriate time representation, corresponding to the %X field
descriptor. The operand consists of a string, which may contain any
combination of characters and field descriptors.

am_pm Defines the appropriate representation of the ante meridian and post
meridian strings, corresponding to the %p field descriptor. The operand
consists of two strings, separated by a semicolon. The first string represents
the ante meridian designation, the last string the post meridian designation.

t_fmt_ampm
Defines the appropriate time representation in the 12-hour clock format with
am_pm, corresponding to the %r field descriptor. The operand consists of a
string and can contain any combination of characters and field descriptors.

era Defines how the years are counted and displayed for each era (or
emperor’s reign) in a locale.

No era is needed if the %E field descriptor modifier is not used for the
locale. See the description of the strftime() function in OS/390 C/C++
Run-Time Library Reference for information about this field descriptor.

For each era, there must be one string in the following format:
direction:offset:start_date:end_date:name:format

where

direction
Either a + or − character. The + character indicates the time axis
should be such that the years count in the positive direction when
moving from the starting date towards the ending date. The −
character indicates the time axis should be such that the years
count in the negative direction when moving from the starting date
towards the ending date.

offset A number of the first year of the era.

start_date
A date in the form yyyy/mm/dd where yyyy, mm and dd are the
year, month and day numbers, respectively, of the start of the era.
Years prior to the year AD 0 are represented as negative numbers.
For example, an era beginning March 5th in the year 100 BC would
be represented as -100/3/5.

end_date
The ending date of the era in the same form as the start_date
above or one of the two special values −* or +*. A value of −*
indicates the ending date of the era extends to the beginning of
time while +* indicates it extends to the end of time. The ending
date may be either before or after the starting date of an era. For
example, the strings for the Christian eras AD and BC would be:
+0:0000/01/01:+*:AD:%EC %Ey
+:1:-0001/12/31:-*:BC:%EC %Ey

name A string representing the name of the era which is substituted for
the %EC field descriptor.

format A string for formatting the %EY field descriptor. This string is usually
a function of the %EC and %Ey field descriptors.

The operand consists of one string for each era. If there is more than one
era, strings are separated by semicolons.

Chapter 47. Building a Locale 691

era_year
Defines the format of the year in alternate era format, corresponding to the
%EY field descriptor.

era_d_fmt
Defines the format of the date in alternate era notation, corresponding to
the %Ex field descriptor.

era_t_fmt
Defines the locale’s appropriate alternative time format, corresponding to
the %Ex field descriptor.

era_d_t_fmt
Defines the locale’s appropriate alternative date and time format,
corresponding to the %Ec field descriptor.

alt_digits
Defines alternate symbols for digits, corresponding to the %O field descriptor
modifier. The operand consists of semicolon-separated strings. The first
string is the alternate symbol corresponding to zero, the second string the
symbol corresponding to one, and so forth. A maximum of 100 alternate
strings may be specified. The %O modifier indicates that the string
corresponding to the value specified by the field descriptor is used instead
of the value.

For the definitions of the time formatting descriptors, see the description of the
strftime() function in OS/390 C/C++ Run-Time Library Reference.

LC_MESSAGES Category
The LC_MESSAGES category defines the format and values for positive and negative
responses.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If you specify this keyword, no other keyword
should be present in this category.

If the locale is not found, an error is reported and no locale output is
created. The copy keyword cannot specify a locale that also specifies the
copy keyword for the same category.

yesexpr
The operand consists of an extended regular expression that describes the
acceptable affirmative response to a question that expects an affirmative
or negative response.

noexpr The operand consists of an extended regular expression that describes the
acceptable negative response to a question that expects an affirmative or
negative response.

yestr The operand consists of an fixed string (not a regular expression) that can
be used by an application for composition of a message that lists an
acceptable affirmative response, such as in a prompt.

nostr The operand consists of an fixed string that can be used by an application
for composition of a message that lists an acceptable negative response.

Here is an example that shows how to define the LC_MESSAGES category:

692 OS/390 V2R10.0 C/C++ Programming Guide

LC_TOD Category
The LC_TOD category defines the rules used to define the beginning, end, and
duration of daylight savings time, and the difference between local time and
Greenwich Mean time. This is an IBM extension.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
should be present in this category.

If the locale is not found, an error is reported and no locale output is
created. The copy keyword cannot specify a locale that also specifies the
copy keyword for the same category.

Note: If you specify this keyword, no other keyword should be present in
this category.

timezone_difference
An integer specifying the time zone difference expressed in minutes. If the
local time zone is west of the Greenwich Meridian, this value must be
positive. If the local time zone is east of the Greenwich Meridian, this value
must be negative. An absolute value greater than 1440 (the number of
minutes in a day) for this keyword indicates that OS/390 Language
Environment is to get the time zone difference from the system.

timezone_name
A string specifying the time zone name such as "PST" (Pacific Standard
Time) specified within quotation marks. The default for this field is a NULL
string.

daylight_name
A string specifying the Daylight Saving Time zone name, such as "PDT"
(Pacific Daylight Time), if there is one available. The string must be
specified within quotation marks. If DST information is not available, this is
set to NULL, which is also the default. This field must be filled in if DST
information as provided by the other fields is to be taken into account by
the mktime() and localtime() functions. These functions ignore DST if this
field is NULL.

%%%%%%%%%%%%%
LC_MESSAGES
%%%%%%%%%%%%%
% yes expression is a string that starts with
% "SI", "Si" "sI" "si" "s" or "S"
yesexpr "<circumflex><left-parenthesis><left-square-bracket><s><S>/
<right-square-bracket><left-square-bracket><i><I><right-square-bracket>/
<vertical-line><left-square-bracket><s><S><right-square-bracket>/
<right-parenthesis>"

% no expression is a string that starts with
% "NO", "No" "nO" "no" "N" or "n"
noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>/
<right-square-bracket><left-square-bracket><o><O><right-square-bracket>/
<vertical-line><left-square-bracket><n><N><right-square-bracket>/
<right-parenthesis>"

END LC_MESSAGES

Chapter 47. Building a Locale 693

start_month
An integer specifying the month of the year when Daylight Saving Time
comes into effect. This value ranges from 1 through 12 inclusive, with 1
corresponding to January and 12 corresponding to December. If DST is not
applicable to a locale, start_month is set to 0, which is also the default.

end_month
An integer specifying the month of the year when Daylight Saving Time
ceases to be in effect. The specifications are similar to those for
start_month.

start_week
An integer specifying the week of the month when DST comes into effect.
Acceptable values range from -4 to +4. A value of 4 means the fourth week
of the month, while a value of -4 means fourth week of the month, counting
from the end of the month. Sunday is considered to be the start of the
week. If DST is not applicable to a locale, start_week is set to 0, which is
also the default.

end_week
An integer specifying the week of the month when DST ceases to be in
effect. The specifications are similar to those for start_week.

Note: The start_week and end_week need not be used. The start_day and
end_day fields can specify either the day of the week or the day of
the month. If day of month is specified, start_week and end_week
become redundant.

start_day
An integer specifying the day of the week or the day of the month when
DST comes into effect. The value depends on the value of start_week. If
start_week is not equal to 0, this is the day of the week when DST comes
into effect. It ranges from 0 through 6 inclusive, with 0 corresponding to
Sunday and 6 corresponding to Saturday. If start_week equals 0, start_day
is the day of the month (for the current year) when DST comes into effect. It
ranges from 1 through to the last day of the month inclusive. The last day of
the month is 31 for January, March, May, July, August, October, and
December. It is 30 for April, June, September, and November. For February,
it is 28 on non-leap years and 29 on leap years. If DST is not applicable to
a locale, start_day is set to 0, which is also the default.

end_day
An integer specifying the day of the week or the day of the month when
DST ceases to be in effect. The specifications are similar to those for
start_day.

start_time
An integer specifying the number of seconds after 12:00 midnight, local
standard time, when DST comes into effect. For example, if DST is to start
at 2:00 am, start_time is assigned the value 7200; for 12:00 am (midnight),
start_time is 0; for 1:00 am, it is 3600.

end_time
An integer specifying the number of seconds after 12 midnight, local
standard time, when DST ceases to be in effect. The specifications are
similar to those for start_time.

shift An integer specifying the DST time shift, expressed in seconds. The default
is 3600, for 1 hour.

694 OS/390 V2R10.0 C/C++ Programming Guide

uctname
A string specifying the name to be used for Coordinated Universal Time. If
this keyword is not specified, the uctname will default to "UTC".

Here is an example of how to define the LC_TOD category:

LC_SYNTAX Category
The LC_SYNTAX category defines the variant characters from the portable character
set. LC_SYNTAX is an IBM-specific extension. This category can be queried by the C
library function getsyntx() to determine the encoding of a variant character if
needed.

Attention: Customizing the LC_SYNTAX category is not recommended. You should
use the LC_SYNTAX values obtained from the charmap file when you use the localedef
utility.

The operands for the characters in the LC_SYNTAX category accept the single byte
character specification in the form of a symbolic name, the character itself, or the
decimal, octal, or hexadecimal constant. The characters must be specified in the
LC_CTYPE category as a punct character. The values for the LC_SYNTAX characters
must be unique. If symbolic names are used to define the encoding, only the
symbolic names listed for each character should be used.

The code points for the LC_SYNTAX characters are set to the code points specified.
Otherwise, they default to the code points for the respective characters from the
charmap file, if the file is present, or to the code points of the respective characters
in the IBM-1047 code page.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If you specify this keyword, no other keyword
should be present.

If the locale is not found, an error is reported and no locale output is
created. The copy keyword cannot specify a locale that also specifies the
copy keyword for the same category.

escape_char /
comment-char %

%%%%%%%%%%%%%
LC_TOD
%%%%%%%%%%%%%
% the time zone difference is 8hrs; the name of the daylight saving
% time is PDT, and it starts on the first Sunday of April at 2&00AM
% and ends on the second Sunday of October at 2&00AM
timezone_difference +480
timezone_name "<P><S><T>"
daylight_name "<P><D><T>"
start_month 4
end_month 10
start_week 1
end_week 2
start_day 1
end_day 30
start_time 7200
end_time 3600
shift 3600
END LC_TOD

Chapter 47. Building a Locale 695

backslash
Specifies a string that defines the value used to represent the backslash
character. If this keyword is not specified, the value from the charmap file for
the character <backslash>, <reverse-solidus>, or <SM07> is used, if it is
present.

right_brace
Specifies a string that defines the value used to represent the right brace
character. If this keyword is not specified, the value from the charmap file for
the character <right-brace>, <right-curly-bracket>, or <SM14> is used, if it
is present.

left_brace
Specifies a string that defines the value used to represent the left brace
character. If this keyword is not specified, the value from the charmap file for
the character <left-brace>, <left-curly-bracket>, or <SM11> is used, if it
is present.

right_bracket
Specifies a string that defines the value used to represent the right bracket
character. If this keyword is not specified, the value from the charmap file for
the character <right-square-bracket>, or <SM08> is used, if it is present.

left_bracket
Specifies a string that defines the value used to represent the left bracket
character. If this keyword is not specified, the value from the charmap file for
the character <left-square-bracket>, or <SM06> is used, if it is present.

circumflex
Specifies a string that defines the value used to represent the circumflex
character. If this keyword is not specified, the value from the charmap file for
the character <circumflex>, <circumflex-accent>, or <SD15> is used, if it is
present.

tilde Specifies a string that defines the value used to represent the tilde
character. If this keyword is not specified, the value from the charmap file for
the character <tilde>, or <SD19> is used, if it is present.

exclamation_mark
Specifies a string that defines the value used to represent the exclamation
mark character. If this keyword is not specified, the value from the charmap
file for the character <exclamation-mark>, or <SP02> is used, if it is present.

number_sign
Specifies a string that defines the value used to represent the number sign
character. If this keyword is not specified, the value from the charmap file for
the character <number-sign>, or <SM01> is used, if it is present.

vertical_line
Specifies a string that defines the value used to represent the vertical line
character. If this keyword is not specified, the value from the charmap file for
the character <vertical-line>, or <SM13> is used, if it is present.

dollar_sign
Specifies a string that defines the value used to represent the dollar sign
character. If this keyword is not specified, the value from the charmap file for
the character <dollar-sign>, or <SC03> is used, if it is present.

commercial_at
Specifies a string that defines the value used to represent the commercial

696 OS/390 V2R10.0 C/C++ Programming Guide

at character. If this keyword is not specified, the value from the charmap file
for the character <commercial-at>, or <SM05> is used, if it is present.

grave_accent
Specifies a string that defines the value used to represent the grave accent
character. If this keyword is not specified, the value from the charmap file for
the character <grave-accent>, or <SD13> is used, if it is present.

Here is an example of how the LC_SYNTAX category is defined:

Using the localedef Utility
The locale objects or locales are generated using the localedef utility. The localedef
utility:

1. Reads the locale definition file

2. Resolves all the character symbolic names to the values of characters defined
in the specified character set definition file, (CHARMAP)

3. Produces a OS/390 C/C++ source file.

4. Compiles the source file using the OS/390 C/C++ compiler and link-edits the
produced text module to produce a locale object.

The locale object can be loaded by the setlocale() function and then accessed by
the OS/390 C/C++ functions that are sensitive to the cultural information, or that
can query the locales. For a list of all the library functions sensitive to locale, see
“Locale-Sensitive Interfaces” on page 662. For detailed information on how to
invoke the localedef utility, see OS/390 C/C++ User’s Guide.

The locale object created by localedef must adhere to certain naming conventions
so that the locale can be used by the system. These conventions are outlined in
“Locale Naming Conventions” on page 698.

XPLINK applications require XPLINK locale objects, and non-XPLINK applications
require non-XPLINK locale objects. localedef creates non-XPLINK locales by
default. The option XPLINK causes the TSO version of localedef to produce an
XPLINK locale object. The EDCXLDEF proc causes the BATCH version of localedef

escape_char /
comment-char %

%%%%%%%%%%%%%
LC_SYNTAX
%%%%%%%%%%%%%

backslash "<backslash>"
right_brace "<right-brace>"
left_brace "<left-brace>"
right_bracket "<right-square-bracket>"
left_bracket "<left-square-bracket>"
circumflex "<circumflex>"
tilde "<tilde>"
exclamation_mark "<exclamation-mark>"
number_sign "<number-sign>"
vertical_line "<vertical-line>"
dollar_sign "<dollar-sign>"
commercial_at "<commercial-at>"
grave_accent "<grave-accent>"

END LC_SYNTAX

Chapter 47. Building a Locale 697

|
|
|

|
|
|
|

to produce an XPLINK locale object. The -X parameter causes the HFS version of
localedef to generate an XPLINK locale object.

The POSIX shell (/bin/sh) is a example of a non-XPLINK application that uses
locales. It needs non-XPLINK locales. If the shell invokes an XPLINK application
that uses locales, the application will need an XPLINK version of the same locale.
Usually, both XPLINK and non-XPLINK versions of a locale are needed whenever
an XPLINK application is invoked from the shell, or when an XPLINK application
invokes the shell or any other non-XPLINK application. The locale object naming
conventions ensure that the run-time library loads the appropriate version of the
locale.

Locale Naming Conventions
The setlocale() library function that selects the active locale maps the descriptive
locale name into the name of the locale object before loading the locale and making
it accessible.

In OS/390 C/C++ programs, the locale modules are referred to by descriptive locale
names. The locale names themselves are not case sensitive. They follow these
conventions:
<Language>-<Territory>.<Codeset>

Where:

Language
is a two-letter uppercase abbreviation for the language name. The
abbreviations come from the ISO 639 standard.

Territory
is a two-letter uppercase abbreviation for the territory name. The
abbreviation comes from the ISO 3166 standard.

Codeset
is the name registered by the MIT X Consortium that identifies the
registration authority that owns the specific encoding.

A modifier may be added to the registered name but is not required. The
modifier is of the form @codeset modifier and identifies the coded
character set as defined by that registration authority.

The Codeset parts are optional. If they are not specified, Codeset defaults to
IBM-nnn, where nnn is the default code page, which is shown in Table 73 on
page 699 below as the current code page. (The modifier portion defaults to
nothing.)

For PDS resident locales, the mapping between the descriptive locale name and
the eight-character name of the locale object is performed as follows:

1. The Language-Territory part is mapped into a two-letter LT code.

2. The Codeset part is mapped into a two-letter CC code.

3. If the @codeset modifier is not specified, the object name is built from the prefix
EDC$ for non-XPLINK locales or CEH$ for XPLINK locales, the two-letter LT code,
and the two-letter CC code.

698 OS/390 V2R10.0 C/C++ Programming Guide

|
|

|
|
|
|
|
|
|
|

|
|
|

4. If the @euro modifier is specified, the object name is built from the prefix EDC@9

for non-XPLINK locales or CEH@ for XPLINK locales, the two-letter LT code and
the two-letter CC code.

For example:

v Non-XPLINK
Fr_BE.IBM-1148 maps to EDC$FBHO
Fr_BE.IBM-1148@euro maps to EDC@FBHO

v XPLINK
Fr_BE.IBM-1148 maps to CEH$FBHO
Fr_BE.IBM-1148@euro maps to CEH@FBHO

For HFS resident locales, the mapping between the descriptive locale name and the
HFS file name is performed as follows:

1. The locale object file name starts out the same as the descriptive name.

2. If the locale object is XPLINK, add a suffix of ″.xplink″ to the end of the object
file name.

For example:

v Non-XPLINK
Fr_BE.IBM-1148 maps to Fr_BE.IBM-1148
Fr_BE.IBM-1148@euro maps to Fr_BE.IBM-1148@euro

v XPLINK
Fr_BE.IBM-1148 maps to Fr_BE.IBM-1148.xplink
Fr_BE.IBM-1148@euro maps to Fr_BE.IBM-1148@euro.xplink

The mapping between Language-Territory and the two-letter LT code is defined in
the LT conversion table EDC$LCNM, built with assembler macros as follows:
EDC$LCNM TITLE 'LOCALE NAME CONVERSION TABLE'
EDC$LCNM CSECT

EDCLOCNM TYPE=ENTRY,LOCALE='DA_DK',CODESET='IBM-1047',CODE='DA'
EDCLOCNM TYPE=ENTRY,LOCALE='DE_BE',CODESET='IBM-1047',CODE='DB'
EDCLOCNM TYPE=ENTRY,LOCALE='DE_CH',CODESET='IBM-1047',CODE='DC'
EDCLOCNM TYPE=ENTRY,LOCALE='DE_DE',CODESET='IBM-1047',CODE='DD'
EDCLOCNM TYPE=ENTRY,LOCALE='JA_JP',CODESET='IBM-939',CODE='EJ'...
EDCLOCNM TYPE=END
END EDC$LCNM

LOCALE specifies the name of Language-Territory, while CODE specifies the
respective LT code.

You can customize this table by adding new LOCALE name mappings. OS/390 C/C++
reserves alphabetic LT codes, but you can use codes containing numeric values for
your own customized names.

The following Language-Territory names and their mappings into LT codes are
provided:

Table 73. Supported Language-Territory Names and LT Codes

Locale Name Language Country Default Codeset 2-Byte LT Code

BG_BG Bulgarian Bulgaria IBM-1025 BG

C IBM-1047 CC

9. The @-sign in the PDS and HFS locale names always has Latin-1/Open Systems encoding. See IBM-1047 CHARMAP.

Chapter 47. Building a Locale 699

|
|
|

|

|

|
|

|

|
|

|
|

|

|
|

|

|

|
|

|

|
|

|
|

|
|
|
|
|
|
||||
|
|

|
|

|
|
|

|
|

||

|||||

|||||

|||||

Table 73. Supported Language-Territory Names and LT Codes (continued)

Locale Name Language Country Default Codeset 2-Byte LT Code

CS_CZ Czech Czech Republic IBM-870 CZ

DA_DK Danish Denmark IBM-1047 DA

DE_CH German Switzerland IBM-1047 DC

DE_DE German Germany IBM-1047 DD

EL_GR Ellinika Greece IBM-875 EL

EN_GB English United Kingdom IBM-1047 EK

EN_JP English Japan IBM-1027 EJ

EN_US English United States IBM-1047 EU

ES_ES Spanish Spain IBM-1047 ES

ET_EE Estonian Estonia IBM-1122 EE

FI_FI Finnish Finland IBM-1047 FI

FR_BE French Belgium IBM-1047 FB

FR_CA French Canada IBM-1047 FC

FR_CH French Switzerland IBM-1047 FS

FR_FR French France IBM-1047 FF

HR_HR Croatian Croatia IBM-870 HR

HU_HU Hungarian Hungary IBM-870 HU

IS_IS Icelandic Iceland IBM-871 IS

IT_IT Italian Italy IBM-1047 IT

JA_JP Japanese Japan IBM-939 JA

KO_KR Korean Korea IBM-933 KR

IW_IL Hebrew Israel IBM-424 IL

LT-LT Lithuanian Lithuania IBM-1112 LT

MK_MK Macedonian Macedonia IBM-1025 MM

NL_BE Dutch Belgium IBM-1047 NB

NL_NL Dutch The Netherlands IBM-1047 NN

NO_NO Norwegian Norway IBM-1047 NO

PL_PL Polish Poland IBM-870 PL

PT_BR Portuguese Brazil IBM-1047 BR

PT_PT Portuguese Portugal IBM-1047 PT

RO_RO Romanian Romania IBM-870 RO

RU_RU Russian Russia IBM-1025 RU

SH_SP Serbian (Latin) Serbia IBM-870 SL

SK_SK Slovak Slovakia IBM-870 SK

SL_SL Slovene Slovenia IBM-870 SI

SQ_AL Albanian Albania IBM-500 SA

SR_SP Serbian (Cyrillic) Serbia IBM-1025 SC

SV_SE Swedish Sweden IBM-1047 SV

TH_TH Thai Thailand IBM-838 TH

TR_TR Turkish Turkey IBM-1026 TR

700 OS/390 V2R10.0 C/C++ Programming Guide

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 73. Supported Language-Territory Names and LT Codes (continued)

Locale Name Language Country Default Codeset 2-Byte LT Code

ZH_CN Simplified
Chinese

China (PRC) IBM-935 ZC

ZH_TW Traditional
Chinese

Taiwan (ROC) IBM-937 ZT

The mapping between Codeset and the two-letter CC code is defined in the CC
conversion table EDCUCSNM. This table is built with assembler macros as follows:
EDCUCSNM TITLE 'CODE SET NAME CONVERSION TABLE'
EDCUCSNM CSECT

EDCCSNAM TYPE=ENTRY,CODESET='IBM-037',CODE='EA'
EDCCSNAM TYPE=ENTRY,CODESET='IBM-273',CODE='EB'
EDCCSNAM TYPE=ENTRY,CODESET='IBM-274',CODE='EC'
EDCCSNAM TYPE=ENTRY,CODESET='IBM-277',CODE='ED'
EDCCSNAM TYPE=ENTRY,CODESET='IBM-278',CODE='EE'

...
EDCCSNAM TYPE=END
END EDCUCSNM

CODESET specifies the name Codeset; CODE specifies the respective CC code.

You can customize this table by adding new CODESET names. The alphabetic codes
in the first byte of each CC name are reserved by IBM for future use, but you can
use codes starting with numeric values for your own customized names.

The following Codeset names and their mappings into CC codes are provided:

Table 74. Supported Codeset Names and CC Codes

Codeset
Primary Country or
Territory 2-Byte CC code

EBCDIC Codesets

IBM-037 USA, Canada, Brazil EA

IBM-273 Germany, Austria EB

IBM-274 Belgium EC

IBM-277 Denmark, Norway EE

IBM-278 Finland, Sweden EF

IBM-280 Italy EG

IBM-282 Portugal EI

IBM-284 Spain, Latin America EJ

IBM-285 United Kingdom EK

IBM-290 Japan (Katakana) EL

IBM-297 France EM

IBM-300 Japanese DBCS EN

IBM-424 Israel FB

IBM-500 International EO

IBM-838 Thailand EP

Chapter 47. Building a Locale 701

|

|||||

||
|
|||

||
|
|||

|

|
|

|
|
|
|
|
|
|
||||
|
|

|

|
|
|

|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 74. Supported Codeset Names and CC Codes (continued)

Codeset
Primary Country or
Territory 2-Byte CC code

IBM-870 Croatia, Czech Republic,
Hungary, Poland, Romania,
Serbia(Latin), Slovakia,
Slovenia

EQ

IBM-871 Iceland ER

IBM-875 Greece ES

IBM-880 Cyrillic ET

IBM-930 Japan Katakana Extended
(combined with DBCS)

EU

IBM-933 Korea GZ

IBM-935 China(PRC) GY

IBM-937 Taiwan (ROC) GW

IBM-939 Japan (latin) Extended
(combined with DBCS)

EV

IBM-1025 Bulgaria, Macedonia, Russia,
Serbia(Cyrillic)

FE

IBM-1026 Turkey EW

IBM-1027 Japan (Latin) Extended EX

IBM-1047 Latin 1/Open Systems EY

IBM-1112 Lithuania GD

IBM-1122 Estonia FD

IBM-1140 USA, Canada, Brazil HA

IBM-1141 Austria, Germany HB

IBM-1142 Denmark, Norway HE

IBM-1143 Finland, Sweden HF

IBM-1144 Italy HG

IBM-1145 Spain, Latin America HJ

IBM-1146 United Kingdom HK

IBM-1147 France HM

IBM-1148 International HO

IBM-1149 Iceland HR

IBM-1364 Korea KZ

IBM-1388 China(PRC) GV

IBM-1390 Japan HU

IBM-1399 Japan HV

The exceptions to the rule above are the following special locale names, which are
already recognized:

v C

v POSIX

v SAA

v S370

702 OS/390 V2R10.0 C/C++ Programming Guide

|

|
|
||

||
|
|
|

|

|||

|||

|||

||
|
|

|||

|||

|||

||
|
|

||
|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

The special names C, POSIX, SAA, and S370 always refer to the built-in locales, which
cannot be modified.

v GERM

v FRAN

v UK

v ITAL

v SPAI

v USA

These names are for locales in the old format, created with assembler macros
rather than with the localedef utility.

You can use the following macros, defined in the locale.h header file, as synonyms
for the special locale names above. The <prefix> in the Compiled locale column is
EDC for non-XPLINK locales and CEH for XPLINK locales.

Macro Locale Compiled locale

LC_C C Not applicable

LC_POSIX POSIX Not applicable

LC_C_GERMANY "GERM" <prefix>$GERM

LC_C_FRANCE "FRAN" <prefix>$FRAN

LC_C_UK "UK" <prefix>$UK

LC_C_ITALY "ITAL" <prefix>$ITAL

LC_C_SPAIN "SPAI" <prefix>$SPAI

LC_C_USA "USA" <prefix>$USA

The predefined name for the built-in locale in the old format is S370.

The rest of the special names refer to the locale objects whose names are built by
prepending the letters EDC$ for non-XPLINK locales or CEH$ for XPLINK locales to
the special name, as for EDC$FRAN.

Chapter 47. Building a Locale 703

|
|
|

||||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|
|
|

704 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 48. Customizing a Locale

This chapter describes how you can create your own locales, based on the locale
definition files supplied by IBM. See “Appendix D. Locales Supplied with OS/390
C/C++” on page 779 for more information on the compiled locales and locale source
files. The information in this chapter applies to the format of locales based on the
localedef utility.

In this example you will build a locale named TEXAN using the charmap file
representing the IBM-1047 encoded character set. The locale is derived from the
locale representing the English language and the cultural conventions of the United
States. We will assume that both non-XPLINK and XPLINK applications will use the
TEXAN locale. Both non-XPLINK and XPLINK versions of the TEXAN locale will be
generated.

1. See “Locale Source Files” on page 782 to determine the source of the locale
you are going to use. In this case, it is the English language in the United
States locale, the source for which is the member EDC$EUEY of the PDS
CEE.SCEELOCX.

2. Copy the member EDC$EUEY from PDS CEE.SCEELOCX to the dataset
hlq.LOCALE.SOURCE which has been pre-allocated with the same attributes as
CEE.SCEELOCX.

3. In your new file, change the locale variables to the desired values. For example,
change
d_t_fmt "%a %b %e %H:%M:%S %Z %Y

to
d_t_fmt "Howdy Pardner %a %b %e %H:%M:%S %Z %Y"

4. This locale’s <Language>-<Territory> value is TEXAN. The <Codeset> value is
IBM-1047. TEXAN is not a valid PDS resident locale name in the runtime library,
because it does not appear in the runtime’s Locale Name Table. You must
modify the table to include the TEXAN locale. Here are the steps to follow.

a. Copy the member EDC$LCNM from PDS CEE.SCEESAMP to the dataset
hlq.LOCALE.TABLE which has been pre-allocated with the same attributes
as CEE.SCEESAMP. The OS/390 C/C++ Library uses this table to map
locale code registry prefixes into two-character codes.

b. For this example, insert a new line into the assembler table before the last
EDCLOCNM TYPE=END entry:
EDCLOCNM TYPE=ENTRY,LOCALE='TEXAN',CODESET='IBM-1047',CODE='1T'

5. Now that your locale name table has been modified, you must make it available
to the system. Assemble the EDC$LCNM member and link-edit it into the
hlq.LOCALE.LOADLIB load library with the member name EDC$LCNM. For our
example, this is done as follows:

//HLASM EXEC PGM=ASMA90
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=CEE.SCEEMAC,DISP=SHR
//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSUT2 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSUT3 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSPUNCH DD DUMMY
//SYSLIN DD DSN=<hlq>.LOCALE.OBJECT(EDC$LCNM),DISP=SHR
//SYSIN DD DSN=<hlq>.LOCALE.TABLE(EDC$LCNM),DISP=SHR
//*

© Copyright IBM Corp. 1996, 2000 705

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

//LKED EXEC EDCL,
// OUTFILE='<hlq>.LOCALE.LOADLIB(EDC$LCNM),DISP=SHR'
//LKED.SYSLIN DD DSN=<hlq>.LOCALE.OBJECT(EDC$LCNM),DISP=SHR

6. Generate the non-XPLINK and XPLINK locale objects into a load library. Note
that XPLINK locale objects must be placed in a PDSE, while non-XPLINK locale
objects may be in either a PDS or PDSE load library.

a. Determine the correct locale object names, using the locale naming
Conventions outlined in “Locale Naming Conventions” on page 698. PDS
resident locale object names are of the form <prefix><LT><CC> .

For this non-XPLINK locale the <prefix> is EDC$, the <LT> code for TEXAN is
1T and the <CC> code for IBM-1047 is EY. The non-XPLINK object name is
therefore EDC$1TEY.

For this XPLINK locale the <prefix> is CEH$. The <LT>and <CC> codes
remain the same. The XPLINK object name is therefore CEH$1TEY.

b. Use localedef to generate the locale objects.

v For non-XPLINK:
//GENLOCNX EXEC PROC=EDCLDEF,
// INFILE='hlq.LOCALE.SOURCE(TEXAN)',
//
OUTFILE='hlq.LOCALE.LOADLIB(EDC$1TEY),DISP=SHR',
// LOPT='CHARMAP(IBM-1047)'

v For XPLINK:
//GENLOCX EXEC PROC=EDCXLDEF,
// INFILE='hlq.LOCALE.SOURCE(TEXAN)',
//
OUTFILE='hlq.LOCALE.PDSE.LOADLIB(CEH$1TEY),DISP=SHR',
// LOPT='CHARMAP(IBM-1047)'

See OS/390 C/C++ User’s Guide for detailed information about the syntax of
the localedef utility.

Note: The TEXAN locale uses one of the IBM supplied CHARMAPs. If you need
to customize a CHARMAP, then you must define its two-letter <CC> code
in the Codeset Name table EDCUCSNM. This is simliar to defining the locale
TEXAN in EDC$LCNM. The two-letter CHARMAP codes beginning with a
number are reserved for customer use. This is the same as the
convention for customer-supplied Locale Name <LT> codes in the Locale
Name table. The <CC> portion of your locale object names would then
change to be the new <CC> value you added to the Codeset Name table.

Using the Customized Locale
Your locale objects must be made available to your program before they can be
used. For PDS and PDSE resident locales, your load library must be included in
your program search order. For HFS resident locales, do one of the following:

v Copy your locales into the system default locale object directory
/usr/lib/nls/locale.

v Update your LOCPATH environment variable to include the directory containing
your locales.

For example, assume that the CBC3GCL1 program has been compiled with XPLINK
into an HFS executable called getlocname. Further assume that you have generated
non-XPLINK and XPLINK HFS resident versions of the TEXAN locale into your
current directory. The following commands make TEXAN available to non-XPLINK
and XPLINK applications:

706 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|
|
|
|

$ ls
TEXAN.IBM-1047 TEXAN.IBM-1047.xplink getlocname
$ export LOCPATH=$PWD
$ export LC_ALL=TEXAN.IBM-1047
$ getlocname
Default NULL locale = C
Default "" locale = /u/marcw/TEXAN.IBM-1047.xplink
$

If getlocname was compiled non-XPLINK then the output would look like the
following:
$ getlocname
Default NULL locale = C
Default "" locale = /u/marcw/TEXAN.IBM-1047
$

The customized locale is now ready to be used in these ways:

v Explicitly referenced by name in OS/390 C/C++ application code that uses
setlocale() calls referring to the locale descriptive name (recommended) such
as:
setlocale(LC_ALL, "TEXAN.IBM-1047");

or by a short internal name (not recommended) such as:
setlocale(LC_ALL, "1TEY");

v Explicitly referenced in the OS/390 C/C++ initialization exit, using customized
setup code in CEEBINT.

v Implicitly specified in each user environment with environment variables.

Note: You cannot customize the built-in locales, C, POSIX, SAA, or S370. The locale
source files EDC$POSX and EDC$SAAC are provided for reference only.

Referring Explicitly to a Customized Locale
Here is a non-XPLINK program with an explicit reference to the TEXAN locale.

Chapter 48. Customizing a Locale 707

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|

CBC3GCL1

Compile the above program. Before you execute it, ensure the load library
containing the non-XPLINK version of the TEXAN locale and updated table is
available. If you compile your program XPLINK, ensure the load library containing
the XPLINK version of the TEXAN locale and updated Locale Name table is
available.

The output should be similar to:
Default locale is S370
Local C datetime is Fri Aug 20 14:58:12 1993
New locale is TEXAN
Texan datetime is Howdy Pardner Fri Aug 20 14:58:12 1993

Note that if the second operand to setlocale() had been NULL, rather than ″″, the
default locale name returned would have been C.
setlocale(LC_ALL,"") returns "S370"
setlocale(LC_ALL,NULL) returns "C"

Note: For setlocale(LC_ALL,""), "S370" is returned unless the locale-related
environment variables are set. See “Chapter 50. Definition of S370 C, SAA
C, and POSIX C Locales” on page 713 for more information about the
definition of the S370 locale.

/* this example shows how to get the local time formatted by the */
/* current locale */

#include <stdio.h>
#include <time.h>
#include <locale.h>

int main(void){
char dest[80];
int ch;
time_t temp;
struct tm *timeptr;
temp = time(NULL);
timeptr = localtime(&temp);
/* Fetch default locale name */
printf("Default empty_str locale is %s\n",setlocale(LC_ALL,""));
ch = strftime(dest,sizeof(dest)-1,

"Local C datetime is %c", timeptr);
printf("%s\n", dest);

/* Set new Texan locale name */
printf("New locale is %s\n", setlocale(LC_ALL,"Texan.IBM-1047"));
ch = strftime(dest,sizeof(dest)-1,

"Texan datetime is %c ", timeptr);
printf("%s\n", dest);

return(0);
}

Figure 218. Referring Explicitly to a Customized Locale

708 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|

Referring Implicitly to a Customized Locale
An installation may require that a global mechanism should be used for all C
programs. The exit CEEBINT may be used for this purpose. Users can insert a
setlocale() call inside the routines referencing the locale required. Here is an
example:

CBC3GCL2

If the above example is compiled and executed with the TEXAN locale, the results
are as follows:

CEEBINT entry. number = 7
Locale = TEXAN.IBM-1047
Default NULL locale = TEXAN.IBM-1047
Default "" locale = S370

The exit CEEBINT may provide a uniform way of restricting the use of customized
locales across an installation. To do this, a system programmer can compile
CEEBINT separately, and link it with the application program that will use it. The
disadvantage to this approach is that CEEBINT must be link-edited into each user
module explicitly. See “Chapter 36. Using Run-Time User Exits” on page 537 for
more information about user exits.

/* this example refers implicitly to a customized locale */

#ifdef __cplusplus
extern "C"{

#else
#pragma linkage(CEEBINT,OS)

#endif

void CEEBINT(int, int, int, int, void**, int, void**);
#pragma map(CEEBINT,"CEEBINT")

#ifdef __cplusplus
}

#endif

#include <locale.h>
#include <stdio.h>

int main(void){
printf("Default NULL locale = %s\n", setlocale(LC_ALL,NULL));
printf("Default \"\" locale = %s\n", setlocale(LC_ALL,""));

}

void CEEBINT(int number, int retcode, int rsncode, int fnccode,
void **a_main, int userwd, void **a_exits)

{ /* user code goes here */
printf("CEEBINT entry. number = %i\n", number);
printf("Locale = %s\n", setlocale(LC_ALL,"Texan.IBM-1047"));
}

Figure 219. Referring Implicitly to a Customized Locale

Chapter 48. Customizing a Locale 709

CBC3GCL3

If you run this program above as is without calling setenv(), you can expect the
following result:
Default NULL locale = C
Default "" locale = S370

On the other hand, if you issue the above setenv() call after main() but before the
first printf() statement, the LC_ALL variable will be set to "TEXAN.IBM-1047" and
you can expect this result instead:
Default NULL locale = C
Default "" locale = TEXAN.IBM-1047

In the example above, the default NULL locale returns C because the value of
LC_ALL does not affect the current locale until the next setlocale(LC_ALL, "") is
done. When this call is made, the LC_ALL environment variable will be used and the
locale will be set to TEXAN.IBM-1047.

For more information about setting environment variables, see “Chapter 33. Using
Environment Variables” on page 471.

The names of the environment variables match the names of the locale categories:

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MONETARY

v LC_NUMERIC

v LC_TIME

v LC_TOD

v LC_SYNTAX

See OS/390 C/C++ Run-Time Library Reference for information about setlocale().

Customizing Your Installation: When OS/390 C/C++ initializes its environment, it
uses the C locale as its default locale. The only values that may be customized
when OS/390 Language Environment is installed are those associated with the
LC_TOD category. Details on this customization are provided in OS/390 Language
Environment Customization.

/* this example can be used with setenv() to specify the name of a */
/* locale */

#include <locale.h>
#include <stdio.h>

int main(void){
printf("Default NULL locale = %s\n", setlocale(LC_ALL,NULL));
printf("Default \"\" locale = %s\n", setlocale(LC_ALL,""));

return(0);
}

Figure 220. Using Environment Variables to Select a Locale

710 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 49. Customizing a Time Zone

You can customize time zone information using the following:

v LC_TOD category of a locale

You can customize the LC_TOD category in a locale to a particular time zone.
The LC_TOD category binds each C/C++ locale to one time zone. For more
information on customizing the LC_TOD category, see “LC_TOD Category” on
page 693 and “Chapter 48. Customizing a Locale” on page 705.

v TZ or _TZ environment variable

In a distributed environment, you might have users in several time zones. You
can use the TZ or _TZ environment variable to set each time zone. The user of
your application can use the ENVAR run-time option with the TZ or _TZ
environment variable to select the appropriate time zone.

For POSIX(ON) programs the TZ environment variable is used. For POSIX(OFF)
programs the _TZ environment variable is used. If neither TZ nor _TZ are
defined, time zone information is obtained from the LC_TOD category of the
current locale.

Using the TZ or _TZ Environment Variable to Specify Time Zone
The C/C++ run-time library assumes times returned by the operating system are
stored using Greenwich Mean Time (GMT) or Universal Time Coordinated (UTC).
This time is referred to as the universal reference time. You can use the TZ or _TZ
environment variable to specify information at run time. The C/C++ run-time library
uses this information to map universal reference times to local times.

The format of the TZ or _TZ environment variable is:
TZ=standardHH[:MM[:SS]]
[daylight[HH[:MM[:SS:]]]
[,startdate[/starttime],enddate[/endtime]]]

The value of the TZ or _TZ environment variable has the following five fields (two
required and three optional):

standard
An alphabetic abbreviation for the local standard time zone (for example, GMT,
EST, MSEZ).

HH[:MM[:SS]]
The time offset westward from the universal reference time. A leading minus
sign (-) means that the local time zone is east of the universal reference time.
An offset of this form must follow standard and can also optionally follow
daylight. An optional colon (:) separates hours from optional minutes and
seconds.

If daylight is specified without a daylight offset, daylight savings time is
assumed to be one hour ahead of the standard time.

[daylight]
The abbreviation for your local daylight savings time zone. If the first and third
fields are identical, or if the third field is missing, daylight savings time
conversion is disabled. The number of hours, minutes, and seconds your local
daylight savings time is offset from UTC when daylight savings time is in effect.
If the daylight savings time abbreviation is specified and the offset omitted, the
offset of one hour is assumed.

© Copyright IBM Corp. 1996, 2000 711

[,startdate[/starttime],enddate[/endtime]]
A rule that identifies the start and end of daylight savings time, specifying when
daylight savings time should be in effect. Both the startdate and enddate must
be present and must either take the form Jn, n, or Mm.n.d where:

v Jn is the Julian day n (1 <= n <=365) and does not account for leap days.

v n is the zero-based Julian day (0 <= n <= 365). Leap days are counted;
therefore, you can refer to February 29th.

v For Mm.n.d, (0 <= n <= 6) of week n of month m of the year (1 <= n <=5, 1
<= m <= 12) where week 5 is the last d day in month m, which may occur in
either the fourth or fifth week. Week 1 is the first week in which the d day
occurs, and day zero is Sunday.

Neither starttime nor endtime are required, and when omitted, their values
default to 02:00:00. If this daylight savings time rule is omitted altogether, the
values in the rule default to the standard American daylight savings time rules
starting at 02:00:00 the first Sunday in April and ending at 02:00:00 the last
Sunday in October.

Relationship Between TZ or _TZ and LC_TOD
The C/C++ run-time library uses time zone information specified by the TZ or _TZ
environment variable to convert universal reference times to local times. When
neither the TZ nor _TZ variable are defined, the C/C++ run-time library uses time
zone information specified by the LC_TOD category of the current locale to map
universal reference times to local times. If LC_TOD in the current locale has not
been customized, the C/C++ run-time library uses the time zone of the system on
which C/C++ is installed. See “Chapter 48. Customizing a Locale” on page 705 for
information about customizing LC_TOD.

Note: The time zone external variables, tzname, timezone, and daylight,
declarations remain feature test protected in time.h. Definition of these
external variables are only known to the C/C++ run-time library if the OS/390
UNIX System Services C/C++ signature CSECT is link edited with your
C/C++ application.

712 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 50. Definition of S370 C, SAA C, and POSIX C
Locales

The default C locales for POSIX SAA, and S370 are pre-built into the run-time library.
The SAA C locale provides compatibility with previous releases of C/370. The POSIX
C locale provides consistency with POSIX requirements and supports the OS/390
UNIX environment.

The POSIX definition of the C locale is described below, with the IBM extensions
LC_SYNTAX and LC_TOD showing their default values.

The SAA and S370 definitions of the C locale are different from the POSIX definition;
consistency with previous releases of OS/390 C/C++ is provided for migration
compatibility. The differences are described in “Differences between SAA C and
POSIX C Locales” on page 719.

The relationship between the POSIX C and SAA C locales is as follows. If you are
running with the run-time option POSIX(OFF):

1. The SAA C locale definition is the default. "C", "SAA", and "S370" are synonyms
for the SAA C locale definition, which is prebuilt into the library.

The source file EDC$SAAC LOCALE is provided for reference, but cannot be used
to alter the definition of this prebuilt locale.

2. Issuing setlocale(category, "") has the following effect:

v Locale-related environment variables are checked to find the name of locales
to use to set the category specified. Querying the locale with
setlocale(category, NULL) returns the name of the locales specified by the
appropriate environment variables.

v If no non-null environment variable is present, then it is the equivalent of
having issued setlocale(category, "S370"). That is, the locale chosen is
the SAA C locale definition, and querying the locale with setlocale(category,
NULL) returns "S370" as the locale name.

3. If no setlocale() function is issued, or setlocale(LC_ALL, "C"), then the locale
chosen is the pre-built SAA C locale, and querying the locale with
setlocale(category, NULL) returns ″C″ as the locale name.

4. For setlocale(LC_ALL,"SAA"), the locale chosen is the pre-built SAA C locale,
and querying the locale with setlocale(category, NULL) returns ″SAA″ as the
locale name.

5. For setlocale(LC_ALL,"S370"), the locale chosen is the pre-built SAA C locale,
and querying the locale with setlocale(category, NULL) returns "S370" as the
locale name.

6. For setlocale(LC_ALL,"POSIX"), the locale chosen is the pre-built POSIX C
locale, and querying the locale with setlocale(category, NULL) returns "POSIX"
as the locale name.

If you are running with the run-time option POSIX(ON):

1. The POSIX C locale definition is the default. "C" and "POSIX" are synonyms for
the POSIX C locale definition, which is pre-built into the library.

The source file EDC$POSX LOCALE is provided for reference, but cannot be used
to alter the definition of this pre-built locale.

2. Issuing setlocale(category, "") has the following effect:

© Copyright IBM Corp. 1996, 2000 713

v Locale-related environment variables are checked to find the name of locales
that can set the category specified. Querying the locale with
setlocale(category, NULL) returns the name of the locale specified by the
appropriate environment variables.

v If no non-null environment variable is present, then the result is equivalent to
having issued setlocale(category,"C"). That is, the locale chosen is the
POSIX C locale definition, and querying the locale with setlocale(category,
NULL) returns "C" as the locale name.

3. If no setlocale() function is issued, or if setlocale(LC_ALL, "C") is used, then
the locale chosen is the pre-built POSIX C locale. Querying the locale with
setlocale(category, NULL) returns ″C″ as the locale name.

4. For setlocale(LC_ALL,"POSIX"), the locale chosen is the pre-built POSIX C
locale, and querying the locale with setlocale(category, NULL) returns "POSIX"
as the locale name.

5. For setlocale(LC_ALL,"SAA"), the locale chosen is the pre-built SAA C locale.
Querying the locale with setlocale(category, NULL) returns ″SAA″ as the
locale name.

6. For setlocale(LC_ALL,"S370"), the locale chosen is the pre-built SAA C locale.
Querying the locale with setlocale(category, NULL) returns "S370" as the
locale name.

The setlocale() function supports locales built using the localedef utility, as well as
locales built using the assembler source and produced by the EDCLOC macro.

The LC_TOD category for the SAA C and POSIX C locales can be customized during
installation of the library by your system programmer. See “Customizing Your
Installation” on page 710 for more information. The supplied default will obtain the
time zone difference from the operating system. However, it will not define the
daylight savings time.

The LC_SYNTAX category for the SAA C and POSIX C locales is set to the IBM-1047
definition of the variant characters.

The other locale categories for the POSIX C locale are as follows.
escape_char /
comment_char %

%%%%%%%%%%%%
LC_CTYPE
%%%%%%%%%%%%

% "alpha" is by default "upper" and "lower"
% "alnum" is by definition "alpha" and "digit"
% "print" is by default "alnum", "punct" and <space> character
% "punct" is by default "alnum" and "punct"

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

digit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>

space <tab>;<newline>;<vertical-tab>;<form-feed>;/
<carriage-return>;<space>

714 OS/390 V2R10.0 C/C++ Programming Guide

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/
<form-feed>;<carriage-return>;/
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;/
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;/
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;/
<IS1>;

punct <exclamation-mark>;<quotation-mark>;<number-sign>;/
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;/
<left-parenthesis>;<right-parenthesis>;<asterisk>;/
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;/
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;/
<greater-than-sign>;<question-mark>;<commercial-at>;/
<left-square-bracket>;<backslash>;<right-square-bracket>;/
<circumflex>;<underscore>;<grave-accent>;/
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;<tilde>

xdigit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>;/
<A>;;<C>;<D>;<E>;<F>;/
<a>;;<c>;<d>;<e>;<f>

blank <space>;/
<tab>

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);/
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);/
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);/
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);/
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);/
(<z>,<Z>)

tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);/
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);/
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);/
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);/
(<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);/
(<Z>,<z>)

END LC_CTYPE

%%%%%%%%%%%%
LC_COLLATE
%%%%%%%%%%%%

order_start
% ASCII Control characters
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>

Chapter 50. Definition of S370 C, SAA C, and POSIX C Locales 715

<CAN>

<SUB>
<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>
<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>

<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>
<M>
<N>
<O>
<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>

716 OS/390 V2R10.0 C/C++ Programming Guide

<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>

<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>
<k>
<l>
<m>
<n>
<o>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end

END LC_COLLATE

%%%%%%%%%%%%
LC_MONETARY
%%%%%%%%%%%%

int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping ""
positive_sign ""
negative_sign ""
int_frac_digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1

END LC_MONETARY

%%%%%%%%%%%%
LC_NUMERIC
%%%%%%%%%%%%

decimal_point "<period>"

Chapter 50. Definition of S370 C, SAA C, and POSIX C Locales 717

thousands_sep ""
grouping ""

END LC_NUMERIC

%%%%%%%%%%%%
LC_TIME
%%%%%%%%%%%%

abday "<S><u><n>";/
"<M><o><n>";/
"<T><u><e>";/
"<W><e><d>";/
"<T><h><u>";/
"<F><r><i>";/
"<S><a><t>"

day "<S><u><n><d><a><y>";/
"<M><o><n><d><a><y>";/
"<T><u><e><s><d><a><y>";/
"<W><e><d><n><e><s><d><a><y>";/
"<T><h><u><r><s><d><a><y>";/
"<F><r><i><d><a><y>";/
"<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";/
"<F><e>";/
"<M><a><r>";/
"<A><p><r>";/
"<M><a><y>";/
"<J><u><n>";/
"<J><u><l>";/
"<A><u><g>";/
"<S><e><p>";/
"<O><c><t>";/
"<N><o><v>";/
"<D><e><c>"

mon "<J><a><n><u><a><r><y>";/
"<F><e><r><u><a><r><y>";/
"<M><a><r><c><h>";/
"<A><p><r><i><l>";/
"<M><a><y>";/
"<J><u><n><e>";/
"<J><u><l><y>";/
"<A><u><g><u><s><t>";/
"<S><e><p><t><e><m><e><r>";/
"<O><c><t><o><e><r>";/
"<N><o><v><e><m><e><r>";/
"<D><e><c><e><m><e><r>"

% equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"

% appropriate date and time representation (%c) "%a %b %e %H:%M:%S %Y"
d_t_fmt "<percent-sign><a><space><percent-sign><space><percent-sign><e>/
<space><percent-sign><H><colon><percent-sign><M>/
<colon><percent-sign><S><space><percent-sign><Y>"

% appropriate date representation (%x) "%m/%d/%y"
d_fmt "<percent-sign><m><slash><percent-sign><d><slash><percent-sign><y>"

% appropriate time representation (%X) "%H:%M:%S"
t_fmt "<percent-sign><M><colon><percent-sign><M><colon><percent-sign><S>"

% appropriate 12-hour time representation (%r) "%I:%M:%S %p"
t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon><percent-sign><S>/
<space><percent-sign><p>"

END LC_TIME

718 OS/390 V2R10.0 C/C++ Programming Guide

%%%%%%%%%%%%
LC_MESSAGES
%%%%%%%%%%%%

yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"

END LC_MESSAGES

Differences between SAA C and POSIX C Locales
In fact, there are three built-in locales, S370 C, SAA C, and POSIX C. The default
locale at your site depends on the system that is running the application. Issuing
setlocale(LC_ALL,"") sets the default, based on the current environment. Issuing
setlocale(LC_ALL,"SAA") sets the SAA C locale, even when you are running with
the POSIX(ON) run-time option. Likewise, setlocale(LC_ALL,"POSIX") sets the
POSIX locale.

If you are running in a C locale, one way you can determine whether the SAA C or
the POSIX locale is in effect is to check whether the cent sign (¢ at X'4A') is defined
as a punctuation character. Under the default POSIX support, the cent sign is not
part of the POSIX portable character set. The following code illustrates how to
perform this test:

CBC3GDL1
Under the SAA or System/370 default locales, the lowercase letters collate before

the uppercase letters, whereas under the POSIX definition, the lowercase letters
collate after the uppercase letters. The locale "" is the same locale as the one
obtained from setlocale(LC_ALL,""). For more detail on these special environment
variables, see “Chapter 33. Using Environment Variables” on page 471.

Other differences between the SAA C locale and the POSIX C locale are as follows:

<mb_cur_max> The POSIX C locale is built using coded character
set IBM-1047, with <mb_cur_max> as 1.

The SAA C locale is built using coded character set
IBM-1047, with <mb_cur_max> as 4.

/* this example shows how to determine whether the SAA C or POSIX */
/* locale is in effect */

#include <stdio.h>
#include <ctype.h>

int main(void)
{

if (ispunct(0x4A)) {
printf(" cent sign is punct\n");
printf(" current locale is SAA- or S370-like\n");

}
else {

printf(" cent sign is not punct\n");
printf(" default locale is POSIX-like\n");

}

return(0);
}

Figure 221. Determining Which Locale is in Effect

Chapter 50. Definition of S370 C, SAA C, and POSIX C Locales 719

The cent sign In the default POSIX support, the cent sign (¢) is
not part of the POSIX portable character set, but in
the SAA locale it is defined as a punctuation
character.

Collation weight by case In the POSIX definition, the lowercase letters collate
after the uppercase letters, whereas in the SAA or
System/370 default locales, the lowercase letters
collate before the uppercase letters.

LC_CTYPE category The SAA C locale has all the EBCDIC control
characters defined in the 'cntrl' class. The POSIX
C locale has only the ASCII control characters in the
'cntrl' class.

The SAA C locale includes ¢ (the cent character)
and ¦ (the broken vertical line) as 'punct'
characters. The POSIX C locale does not group
these characters as 'punct' characters.

LC_COLLATE category The default collation for the SAA C locale is the
EBCDIC sequence. The POSIX C locale uses the
ASCII collation sequence; the first 128 ASCII
characters are defined in the collation sequence,
and the remaining EBCDIC characters are at the
end of the collating sequence.

LC_TIME category The SAA C locale uses the date and time format
(d_t_fmt) as "%Y/%M/%D %X", whereas the POSIX C
locale uses "%a %b %d %H/%M/%S %Y".

The SAA C locale uses the strings "am" and "pm",
whereas the POSIX C locale uses "AM" and "PM".

720 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 51. Code Set Conversion Utilities

This chapter describes the code set conversion utilities supported by the OS/390
C/C++ compiler. These utilities are as follows:

genxlt utility
Generates a translation table for use by the iconv utility and iconv()
functions.

iconv utility
Converts a file from one code set encoding to another.

iconv() functions
Perform code set translation. These functions are iconv_open(), iconv(),
and iconv_close(). They are used by the iconv utility and may be called
from any OS/390 C/C++ program requiring code set translation.

See OS/390 C/C++ User’s Guide for descriptions of the genxlt and iconv utilities,
and OS/390 C/C++ Run-Time Library Reference for descriptions of the iconv()
functions.

The genxlt Utility
The genxlt utility reads a source translation file from InputFile, writes the compiled
version to OutputFile, and then generates the translation load module. The source
translation file provides the conversion specification from fromCodeSet to toCodeSet.
The source translation file contains directives that are acted upon by the genxlt
utility to produce the compiled version of the translation table.

The name of the conversion programs have the following naming conventions:

v The name starts with a four letter prefix. For non-XPLINK converters, the prefix is
EDCU. For XPLINK converters, the prefix is CEHU.

v The prefix is followed by the two-letter CC code that corresponds to the
CodesetRegistry.CodesetEncoding name of the fromCodeSet defined in the
Table 74 on page 701.

v The first CC code is followed by the two-letter CC code than corresponds to the
CodesetRegistry.CodesetEncoding name of the toCodeSet defined in the Table 74
on page 701.

To generate your own conversions, you must modify the codeset name table
EDCUCSNM with the macros described in “Locale Naming Conventions” on page 698.
For descriptions of the genxlt and iconv utilities, refer to OS/390 C/C++ User’s
Guide.

The iconv Utility
The iconv utility reads characters from the input file, converts them from
fromCodeSet encoding to toCodeSet encoding, and writes them to the output file.

The conversion is performed by the code conversion functions of the run-time
library. They are described in “Code Conversion Functions” on page 722. The tables
used are determined by the CC codes of the fromCodeSet and toCodeSet appended
to the four-character prefix. The prefix is EDCU for non-XPLINK converters, and CEHU
for XPLINK converters. See OS/390 C/C++ User’s Guide for descriptions of the

© Copyright IBM Corp. 1996, 2000 721

|
|

|
|
|
|
|

genxlt and iconv utilities. For a description of iconv as a shell command refer to
OS/390 UNIX System Services Command Reference.

Code Conversion Functions
The iconv_open(), iconv(), and iconv_close() library functions can be called from
C or C++ source to initialize and perform the characters conversions from one
character set encoding to another.

Code Set Converters Supplied
There is a set of code set converters that are provided in the National Language
Resources component of OS/390 Language Environment. Consult your system
programmer to see whether this component has been installed on your system.

The converters are as follows:
Round Trip Conversions(RTC) or Customized
Round Trip Conversions(C-RTC), which means round trip with exceptions.

Conversions:
Latin-1 EBCDIC to/from Latin-1 EBCDIC: RTC
Non-Latin-1 EBCDIC to/from Latin-1 EBCDIC: RTC
Latin-1 ASCII to/from Latin-1 EBCDIC: C-RTC
Non_latin-1 ASCII to/from Latin-1 EBCDIC: C-RTC

Example of Customized Round Trip Conversions(C-RTC) is
IBM-850 to/from IBM-1047 conversion.

Customized Round Trip Conversion

IBM-850 IBM-1047
Code Point Code Point

0A <-> 15
DA -> 3F
0A <- 25

The code set converters provided as programs are shown in Table 75. The GENXLT
source for the code set converters are shipped in the CEE.SCEEGXLT dataset.

The <prefix> in the Program Name column is EDCU for non-XPLINK converters and
CEHU for XPLINK converters.

Table 75. Coded Character Set Conversion Table

FromCode ToCode GENXLT Source Program Name

IBM-037 IBM-500 Yes <prefix>EAEO

IBM-037 IBM-850 Yes <prefix>EAAA

IBM-037 IBM-1047 Yes <prefix>EAEY

IBM-037 ISO8859-1 Yes <prefix>EAI1

IBM-273 IBM-500 Yes <prefix>EBEO

IBM-273 IBM-850 Yes <prefix>EBAA

IBM-273 IBM-1047 Yes <prefix>EBEY

IBM-273 ISO8859-1 Yes <prefix>EBI1

IBM-274 IBM-500 Yes <prefix>ECEO

722 OS/390 V2R10.0 C/C++ Programming Guide

|
|

|
|

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 75. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-274 IBM-1047 Yes <prefix>ECEY

IBM-274 IBM-1148 Yes <prefix>ECHO

IBM-274 ISO8859-1 Yes <prefix>ECI1

IBM-275 IBM-500 Yes <prefix>EDEO

IBM-275 IBM-1047 Yes <prefix>EDEY

IBM-275 IBM-1148 Yes <prefix>EDHO

IBM-275 ISO8859-1 Yes <prefix>EDI1

IBM-277 IBM-500 Yes <prefix>EEEO

IBM-277 IBM-850 Yes <prefix>EEAA

IBM-277 IBM-1047 Yes <prefix>EEEY

IBM-277 ISO8859-1 Yes <prefix>EEI1

IBM-278 IBM-500 Yes <prefix>EFEO

IBM-278 IBM-850 Yes <prefix>EFAA

IBM-278 IBM-1047 Yes <prefix>EFEY

IBM-278 ISO8859-1 Yes <prefix>EFI1

IBM-280 IBM-500 Yes <prefix>EGEO

IBM-280 IBM-850 Yes <prefix>EGAA

IBM-280 IBM-1047 Yes <prefix>EGEY

IBM-280 ISO8859-1 Yes <prefix>EGI1

IBM-281 IBM-500 Yes <prefix>EHEO

IBM-281 IBM-1047 Yes <prefix>EHEY

IBM-281 IBM-1148 Yes <prefix>EHHO

IBM-281 ISO8859-1 Yes <prefix>EHI1

IBM-282 IBM-500 Yes <prefix>EIEO

IBM-282 IBM-1047 Yes <prefix>EIEY

IBM-282 IBM-1148 Yes <prefix>EIHO

IBM-282 ISO8859-1 Yes <prefix>EII1

IBM-284 IBM-500 Yes <prefix>EJEO

IBM-284 IBM-850 Yes <prefix>EJAA

IBM-284 IBM-1047 Yes <prefix>EJEY

IBM-284 ISO8859-1 Yes <prefix>EJI1

IBM-285 IBM-500 Yes <prefix>EKEO

IBM-285 IBM-850 Yes <prefix>EKAA

IBM-285 IBM-1047 Yes <prefix>EKEY

IBM-285 ISO8859-1 Yes <prefix>EKI1

IBM-290 IBM-500 Yes <prefix>ELEO

IBM-290 IBM-1027 Yes <prefix>ELEX

IBM-290 IBM-1047 Yes <prefix>ELEY

IBM-290 IBM-1148 Yes <prefix>ELHO

IBM-290 ISO8859-1 Yes <prefix>ELI1

Chapter 51. Code Set Conversion Utilities 723

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 75. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-297 IBM-500 Yes <prefix>EMEO

IBM-297 IBM-850 Yes <prefix>EMAA

IBM-297 IBM-1047 Yes <prefix>EMEY

IBM-297 ISO8859-1 Yes <prefix>EMI1

IBM-500 IBM-037 Yes <prefix>EOEA

IBM-500 IBM-273 Yes <prefix>EOEB

IBM-500 IBM-274 Yes <prefix>EOEC

IBM-500 IBM-275 Yes <prefix>EOED

IBM-500 IBM-277 Yes <prefix>EOEE

IBM-500 IBM-278 Yes <prefix>EOEF

IBM-500 IBM-280 Yes <prefix>EOEG

IBM-500 IBM-281 Yes <prefix>EOEH

IBM-500 IBM-282 Yes <prefix>EOEI

IBM-500 IBM-284 Yes <prefix>EOEJ

IBM-500 IBM-285 Yes <prefix>EOEK

IBM-500 IBM-290 Yes <prefix>EOEL

IBM-500 IBM-297 Yes <prefix>EOEM

IBM-500 IBM-850 Yes <prefix>EOAA

IBM-500 IBM-871 Yes <prefix>EOER

IBM-500 IBM-1027 Yes <prefix>EOEX

IBM-500 IBM-1047 Yes <prefix>EOEY

IBM-500 IBM-1140 Yes <prefix>EOHA

IBM-500 IBM-1141 Yes <prefix>EOHB

IBM-500 IBM-1142 Yes <prefix>EOHE

IBM-500 IBM-1143 Yes <prefix>EOHF

IBM-500 IBM-1144 Yes <prefix>EOHG

IBM-500 IBM-1145 Yes <prefix>EOHJ

IBM-500 IBM-1146 Yes <prefix>EOHK

IBM-500 IBM-1147 Yes <prefix>EOHM

IBM-500 IBM-1149 Yes <prefix>EOHR

IBM-500 ISO8859-1 Yes <prefix>EOI1

IBM-833 IBM-1047 Yes <prefix>GPEY

IBM-836 IBM-1047 Yes <prefix>GLEY

IBM-850 IBM-037 Yes <prefix>AAEA

IBM-850 IBM-273 Yes <prefix>AAEB

IBM-850 IBM-277 Yes <prefix>AAEE

IBM-850 IBM-278 Yes <prefix>AAEF

IBM-850 IBM-280 Yes <prefix>AAEG

IBM-850 IBM-284 Yes <prefix>AAEJ

IBM-850 IBM-285 Yes <prefix>AAEK

724 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 75. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-850 IBM-297 Yes <prefix>AAEM

IBM-850 IBM-500 Yes <prefix>AAEO

IBM-850 IBM-871 Yes <prefix>AAER

IBM-850 IBM-1047 Yes <prefix>AAEY

IBM-850 IBM-1140 Yes <prefix>AAHA

IBM-850 IBM-1141 Yes <prefix>AAHB

IBM-850 IBM-1142 Yes <prefix>AAHE

IBM-850 IBM-1143 Yes <prefix>AAHF

IBM-850 IBM-1144 Yes <prefix>AAHG

IBM-850 IBM-1145 Yes <prefix>AAHJ

IBM-850 IBM-1146 Yes <prefix>AAHK

IBM-850 IBM-1147 Yes <prefix>AAHM

IBM-850 IBM-1148 Yes <prefix>AAHO

IBM-850 IBM-1149 Yes <prefix>AAHR

IBM-871 IBM-500 Yes <prefix>EREO

IBM-871 IBM-850 Yes <prefix>ERAA

IBM-871 IBM-1047 Yes <prefix>EREY

IBM-871 ISO8859-1 Yes <prefix>ERI1

IBM-875 IBM-1047 Yes <prefix>ESEY

IBM-875 ISO8859-7 Yes <prefix>ESI7

IBM-930 IBM-1047 Yes <prefix>EUEY

IBM-933 IBM-1047 Yes <prefix>GZEY

IBM-933 ISO8859-1 Yes <prefix>GZI1

IBM-935 IBM-1047 Yes <prefix>GYEY

IBM-937 IBM-1047 Yes <prefix>GWEY

IBM-939 IBM-1047 Yes <prefix>EVEY

IBM-1026 IBM-1047 Yes <prefix>EWEY

IBM-1026 IBM-1254 Yes <prefix>EWDI

IBM-1026 ISO8859-9 Yes <prefix>EWI9

IBM-1027 IBM-290 Yes <prefix>EXEL

IBM-1027 IBM-500 Yes <prefix>EXEO

IBM-1027 IBM-1047 Yes <prefix>EXEY

IBM-1027 IBM-1148 Yes <prefix>EXHO

IBM-1027 ISO8859-1 Yes <prefix>EXI1

IBM-1047 IBM-037 Yes <prefix>EYEA

IBM-1047 IBM-273 Yes <prefix>EYEB

IBM-1047 IBM-274 Yes <prefix>EYEC

IBM-1047 IBM-275 Yes <prefix>EYED

IBM-1047 IBM-277 Yes <prefix>EYEE

IBM-1047 IBM-278 Yes <prefix>EYEF

Chapter 51. Code Set Conversion Utilities 725

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 75. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-1047 IBM-280 Yes <prefix>EYEG

IBM-1047 IBM-281 Yes <prefix>EYEH

IBM-1047 IBM-282 Yes <prefix>EYEI

IBM-1047 IBM-284 Yes <prefix>EYEJ

IBM-1047 IBM-285 Yes <prefix>EYEK

IBM-1047 IBM-290 Yes <prefix>EYEL

IBM-1047 IBM-297 Yes <prefix>EYEM

IBM-1047 IBM-500 Yes <prefix>EYEO

IBM-1047 IBM-833 Yes <prefix>EYGP

IBM-1047 IBM-836 Yes <prefix>EYGL

IBM-1047 IBM-850 Yes <prefix>EYAA

IBM-1047 IBM-871 Yes <prefix>EYER

IBM-1047 IBM-875 Yes <prefix>EYES

IBM-1047 IBM-930 Yes <prefix>EYEU

IBM-1047 IBM-933 Yes <prefix>EYGZ

IBM-1047 IBM-935 Yes <prefix>EYGY

IBM-1047 IBM-937 Yes <prefix>EYGW

IBM-1047 IBM-939 Yes <prefix>EYEV

IBM-1047 IBM-1026 Yes <prefix>EYEW

IBM-1047 IBM-1027 Yes <prefix>EYEX

IBM-1047 IBM-1140 Yes <prefix>EYHA

IBM-1047 IBM-1141 Yes <prefix>EYHB

IBM-1047 IBM-1142 Yes <prefix>EYHE

IBM-1047 IBM-1143 Yes <prefix>EYHF

IBM-1047 IBM-1144 Yes <prefix>EYHG

IBM-1047 IBM-1145 Yes <prefix>EYHJ

IBM-1047 IBM-1146 Yes <prefix>EYHK

IBM-1047 IBM-1147 Yes <prefix>EYHM

IBM-1047 IBM-1148 Yes <prefix>EYHO

IBM-1047 IBM-1149 Yes <prefix>EYHR

IBM-1047 ISO8859-1 Yes <prefix>EYI1

IBM-1140 IBM-500 Yes <prefix>HAEO

IBM-1140 IBM-850 Yes <prefix>HAAA

IBM-1140 IBM-1047 Yes <prefix>HAEY

IBM-1140 IBM-1148 Yes <prefix>HAHO

IBM-1140 ISO8859-1 Yes <prefix>HAI1

IBM-1141 IBM-500 Yes <prefix>HBEO

IBM-1141 IBM-850 Yes <prefix>HBAA

IBM-1141 IBM-1047 Yes <prefix>HBEY

IBM-1141 IBM-1148 Yes <prefix>HBHO

726 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 75. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-1141 ISO8859-1 Yes <prefix>HBI1

IBM-1142 IBM-500 Yes <prefix>HEEO

IBM-1142 IBM-850 Yes <prefix>HEAA

IBM-1142 IBM-1047 Yes <prefix>HEEY

IBM-1142 IBM-1148 Yes <prefix>HEHO

IBM-1142 ISO8859-1 Yes <prefix>HEI1

IBM-1143 IBM-500 Yes <prefix>HFEO

IBM-1143 IBM-850 Yes <prefix>HFAA

IBM-1143 IBM-1047 Yes <prefix>HFEY

IBM-1143 IBM-1148 Yes <prefix>HFHO

IBM-1143 ISO8859-1 Yes <prefix>HFI1

IBM-1144 IBM-500 Yes <prefix>HGEO

IBM-1144 IBM-850 Yes <prefix>HGAA

IBM-1144 IBM-1047 Yes <prefix>HGEY

IBM-1144 IBM-1148 Yes <prefix>HGHO

IBM-1144 ISO8859-1 Yes <prefix>HGI1

IBM-1145 IBM-500 Yes <prefix>HJEO

IBM-1145 IBM-850 Yes <prefix>HJAA

IBM-1145 IBM-1047 Yes <prefix>HJEY

IBM-1145 IBM-1148 Yes <prefix>HJHO

IBM-1145 ISO8859-1 Yes <prefix>HJI1

IBM-1146 IBM-500 Yes <prefix>HKEO

IBM-1146 IBM-850 Yes <prefix>HKAA

IBM-1146 IBM-1047 Yes <prefix>HKEY

IBM-1146 IBM-1148 Yes <prefix>HKHO

IBM-1146 ISO8859-1 Yes <prefix>HKI1

IBM-1147 IBM-500 Yes <prefix>HMEO

IBM-1147 IBM-850 Yes <prefix>HMAA

IBM-1147 IBM-1047 Yes <prefix>HMEY

IBM-1147 IBM-1148 Yes <prefix>HMHO

IBM-1147 ISO8859-1 Yes <prefix>HMI1

IBM-1148 IBM-274 Yes <prefix>HOEC

IBM-1148 IBM-275 Yes <prefix>HOED

IBM-1148 IBM-281 Yes <prefix>HOEH

IBM-1148 IBM-282 Yes <prefix>HOEI

IBM-1148 IBM-290 Yes <prefix>HOEL

IBM-1148 IBM-850 Yes <prefix>HOAA

IBM-1148 IBM-1027 Yes <prefix>HOEX

IBM-1148 IBM-1047 Yes <prefix>HOEY

IBM-1148 IBM-1140 Yes <prefix>HOHA

Chapter 51. Code Set Conversion Utilities 727

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 75. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-1148 IBM-1141 Yes <prefix>HOHB

IBM-1148 IBM-1142 Yes <prefix>HOHE

IBM-1148 IBM-1143 Yes <prefix>HOHF

IBM-1148 IBM-1144 Yes <prefix>HOHG

IBM-1148 IBM-1145 Yes <prefix>HOHJ

IBM-1148 IBM-1146 Yes <prefix>HOHK

IBM-1148 IBM-1147 Yes <prefix>HOHM

IBM-1148 IBM-1149 Yes <prefix>HOHR

IBM-1148 ISO8859-1 Yes <prefix>HOI1

IBM-1149 IBM-500 Yes <prefix>HREO

IBM-1149 IBM-850 Yes <prefix>HRAA

IBM-1149 IBM-1047 Yes <prefix>HREY

IBM-1149 IBM-1148 Yes <prefix>HRHO

IBM-1149 ISO8859-1 Yes <prefix>HRI1

IBM-1254 IBM-1026 Yes <prefix>DIEW

ISO8859-1 IBM-037 Yes <prefix>I1EA

ISO8859-1 IBM-273 Yes <prefix>I1EB

ISO8859-1 IBM-274 Yes <prefix>I1EC

ISO8859-1 IBM-275 Yes <prefix>I1ED

ISO8859-1 IBM-277 Yes <prefix>I1EE

ISO8859-1 IBM-278 Yes <prefix>I1EF

ISO8859-1 IBM-280 Yes <prefix>I1EG

ISO8859-1 IBM-281 Yes <prefix>I1EH

ISO8859-1 IBM-282 Yes <prefix>I1EI

ISO8859-1 IBM-284 Yes <prefix>I1EJ

ISO8859-1 IBM-285 Yes <prefix>I1EK

ISO8859-1 IBM-290 Yes <prefix>I1EL

ISO8859-1 IBM-297 Yes <prefix>I1EM

ISO8859-1 IBM-500 Yes <prefix>I1EO

ISO8859-1 IBM-871 Yes <prefix>I1ER

ISO8859-1 IBM-933 Yes <prefix>I1GZ

ISO8859-1 IBM-1027 Yes <prefix>I1EX

ISO8859-1 IBM-1047 Yes <prefix>I1EY

ISO8859-1 IBM-1140 Yes <prefix>I1HA

ISO8859-1 IBM-1141 Yes <prefix>I1HB

ISO8859-1 IBM-1142 Yes <prefix>I1HE

ISO8859-1 IBM-1143 Yes <prefix>I1HF

ISO8859-1 IBM-1144 Yes <prefix>I1HG

ISO8859-1 IBM-1145 Yes <prefix>I1HJ

ISO8859-1 IBM-1146 Yes <prefix>I1HK

728 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 75. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

ISO8859-1 IBM-1147 Yes <prefix>I1HM

ISO8859-1 IBM-1148 Yes <prefix>I1HO

ISO8859-1 IBM-1149 Yes <prefix>I1HR

ISO8859-7 IBM-875 Yes <prefix>I7ES

ISO8859-9 IBM-1026 Yes <prefix>I9EW

The following code set converters are also supplied:

v Converters used by the code set converters between the codesets IBM-930,
IBM-932, IBM-932C, IBM-939, IBM-2022-JP, IBM-5052, IBM-eucJC, and
IBM-eucJP.

v Direct converters to convert to and from UCS-2 and UTF-8.

Notes:

1. Specify IBM-932C or IBM-eucJC as the iconv_open() source or target code set
name to set up for conversion of POSIX data encoded by IBM-932 or
IBM-eucJP to or from a host code set encoding of the data such as IBM-930 or
IBM-939.

Examples of POSIX data are C/C++ source and shell scripts. The data includes
characters from the POSIX character set. The names IBM-932C and IBM-eucJC
indicate that the <yen> and <overline> characters in POSIX data encoded by
IBM-932 or IBM-eucJP map to the <backslash> and <tilde> characters,
respectively, when the data is converted to or from host encodings.

Table 76. Additional Coded Character Set Conversions

FromCode ToCode GENXLT source Program Name

IBM-037 UCS-2 No <prefix>EAU2

IBM-037 UTF-8 No <prefix>EAF8

IBM-273 UCS-2 No <prefix>EBU2

IBM-273 UTF-8 No <prefix>EBF8

IBM-274 UCS-2 No <prefix>ECU2

IBM-274 UTF-8 No <prefix>ECF8

IBM-275 UCS-2 No <prefix>EDU2

IBM-275 UTF-8 No <prefix>EDF8

IBM-277 UCS-2 No <prefix>EEU2

IBM-277 UTF-8 No <prefix>EEF8

IBM-278 UCS-2 No <prefix>EFU2

IBM-278 UTF-8 No <prefix>EFF8

IBM-280 UCS-2 No <prefix>EGU2

IBM-280 UTF-8 No <prefix>EGF8

IBM-282 UCS-2 No <prefix>EIU2

IBM-282 UTF-8 No <prefix>EIF8

IBM-284 UCS-2 No <prefix>EJU2

IBM-284 UTF-8 No <prefix>EJF8

IBM-285 UCS-2 No <prefix>EKU2

Chapter 51. Code Set Conversion Utilities 729

|

||||

||||

||||

||||

||||

||||
|

|

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

IBM-285 UTF-8 No <prefix>EKF8

IBM-290 IBM-932 Yes <prefix>ELAB

IBM-290 IBM-932C Yes <prefix>ELAG

IBM-290 IBM-eucJC No <prefix>ELAH

IBM-290 IBM-eucJP No <prefix>ELAC

IBM-290 UCS-2 No <prefix>ELU2

IBM-290 UTF-8 No <prefix>ELF8

IBM-297 UCS-2 No <prefix>EMU2

IBM-297 UTF-8 No <prefix>EMF8

IBM-300 IBM-eucJP No <prefix>ENAC

IBM-300 IBM-eucJC No <prefix>ENAH

IBM-300 IBM-932 No <prefix>ENAB

IBM-300 IBM-932C No <prefix>ENAG

IBM-300 UCS-2 No <prefix>ENU2

IBM-300 UTF-8 No <prefix>ENF8

IBM-420 UCS-2 No <prefix>FFU2

IBM-420 UTF-8 No <prefix>FFF8

IBM-424 UCS-2 No <prefix>FBU2

IBM-424 UTF-8 No <prefix>FBF8

IBM-500 UCS-2 No <prefix>EOU2

IBM-500 UTF-8 No <prefix>EOF8

IBM-813 UCS-2 No <prefix>I7U2

IBM-813 UTF-8 No <prefix>I7F8

IBM-819 UCS-2 No <prefix>I1U2

IBM-819 UTF-8 No <prefix>I1F8

IBM-833 UCS-2 No <prefix>GPU2

IBM-833 UTF-8 No <prefix>GPF8

IBM-834 UCS-2 No <prefix>GQU2

IBM-834 UTF-8 No <prefix>GQF8

IBM-835 UCS-2 No <prefix>GOU2

IBM-835 UTF-8 No <prefix>GOF8

IBM-836 UCS-2 No <prefix>GLU2

IBM-836 UTF-8 No <prefix>GLF8

IBM-837 UCS-2 No <prefix>GMU2

IBM-837 UTF-8 No <prefix>GMF8

IBM-838 UCS-2 No <prefix>EPU2

IBM-838 UTF-8 No <prefix>EPF8

IBM-850 UCS-2 No <prefix>AAU2

IBM-850 UTF-8 No <prefix>AAF8

IBM-852 UCS-2 No <prefix>CBU2

730 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

IBM-852 UTF-8 No <prefix>CBF8

IBM-855 UCS-2 No <prefix>CEU2

IBM-855 UTF-8 No <prefix>CEF8

IBM-856 UCS-2 No <prefix>CHU2

IBM-856 UTF-8 No <prefix>CHF8

IBM-858 UCS-2 No <prefix>AIU2

IBM-858 UTF-8 No <prefix>AIF8

IBM-861 UCS-2 No <prefix>CAU2

IBM-861 UTF-8 No <prefix>CAF8

IBM-862 UCS-2 No <prefix>BHU2

IBM-862 UTF-8 No <prefix>BHF8

IBM-864 UCS-2 No <prefix>CFU2

IBM-864 UTF-8 No <prefix>CFF8

IBM-866 UCS-2 No <prefix>BEU2

IBM-866 UTF-8 No <prefix>BEF8

IBM-869 UCS-2 No <prefix>CGU2

IBM-869 UTF-8 No <prefix>CGF8

IBM-870 UCS-2 No <prefix>EQU2

IBM-870 UTF-8 No <prefix>EQF8

IBM-871 UCS-2 No <prefix>ERU2

IBM-871 UTF-8 No <prefix>ERF8

IBM-874 UCS-2 No <prefix>BUU2

IBM-874 UTF-8 No <prefix>BUF8

IBM-875 UCS-2 No <prefix>ESU2

IBM-875 UTF-8 No <prefix>ESF8

IBM-880 UCS-2 No <prefix>ETU2

IBM-880 UTF-8 No <prefix>ETF8

IBM-904 UCS-2 No <prefix>CNU2

IBM-904 UTF-8 No <prefix>CNF8

IBM-912 UCS-2 No <prefix>I2U2

IBM-912 UTF-8 No <prefix>I2F8

IBM-914 UCS-2 No <prefix>I4U2

IBM-914 UTF-8 No <prefix>I4F8

IBM-915 UCS-2 No <prefix>I5U2

IBM-915 UTF-8 No <prefix>I5F8

IBM-916 UCS-2 No <prefix>I8U2

IBM-916 UTF-8 No <prefix>I8F8

IBM-920 UCS-2 No <prefix>I9U2

IBM-920 UTF-8 No <prefix>I9F8

IBM-921 UCS-2 No <prefix>BDU2

Chapter 51. Code Set Conversion Utilities 731

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

IBM-921 UTF-8 No <prefix>BDF8

IBM-922 UCS-2 No <prefix>ADU2

IBM-922 UTF-8 No <prefix>ADF8

IBM-927 UCS-2 No <prefix>COU2

IBM-927 UTF-8 No <prefix>COF8

IBM-930 IBM-932 No <prefix>EUAB

IBM-930 IBM-932C No <prefix>EUAG

IBM-930 IBM-956 No <prefix>EUJB

IBM-930 IBM-957 No <prefix>EUJC

IBM-930 IBM-958 No <prefix>EUJD

IBM-930 IBM-959 No <prefix>EUJE

IBM-930 IBM-2022-JP No <prefix>EUJA

IBM-930 IBM-5052 No <prefix>EUJF

IBM-930 IBM-5053 No <prefix>EUJG

IBM-930 IBM-5054 No <prefix>EUJH

IBM-930 IBM-5055 No <prefix>EUJI

IBM-930 IBM-eucJP No <prefix>EUAC

IBM-930 IBM-eucJC No <prefix>EUAH

IBM-930 UCS-2 No <prefix>EUU2

IBM-930 UTF-8 No <prefix>EUF8

IBM-932 IBM-290 Yes <prefix>ABEL

IBM-932 IBM-300 No <prefix>ABEN

IBM-932C IBM-300 No <prefix>AGEN

IBM-932 IBM-930 No <prefix>ABEU

IBM-932C IBM-930 No <prefix>AGEU

IBM-932 IBM-939 No <prefix>ABEV

IBM-932C IBM-939 No <prefix>AGEV

IBM-932C IBM-290 Yes <prefix>AGEL

IBM-932 IBM-1027 Yes <prefix>ABEX

IBM-932C IBM-1027 Yes <prefix>AGEX

IBM-932C IBM-1047 Yes <prefix>AGEY

IBM-933 UCS-2 No <prefix>GZU2

IBM-933 UTF-8 No <prefix>GZF8

IBM-935 UCS-2 No <prefix>GYU2

IBM-935 UTF-8 No <prefix>GYF8

IBM-937 UCS-2 No <prefix>GWU2

IBM-937 UTF-8 No <prefix>GWF8

IBM-939 IBM-932 No <prefix>EVAB

IBM-939 IBM-932C Yes <prefix>EVAG

IBM-939 IBM-956 No <prefix>EVJB

732 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

IBM-939 IBM-957 No <prefix>EVJC

IBM-939 IBM-958 No <prefix>EVJD

IBM-939 IBM-959 No <prefix>EVJE

IBM-939 IBM-1047 Yes <prefix>EVEY

IBM-939 IBM-2022-JP No <prefix>EVJA

IBM-939 IBM-5052 No <prefix>EVJF

IBM-939 IBM-5053 No <prefix>EVJG

IBM-939 IBM-5054 No <prefix>EVJH

IBM-939 IBM-5055 No <prefix>EVJI

IBM-939 IBM-eucJP No <prefix>EVAC

IBM-939 IBM-eucJC No <prefix>EVAH

IBM-939 UCS-2 No <prefix>EVU2

IBM-939 UTF-8 No <prefix>EVF8

IBM-942 UCS-2 No <prefix>ABU2

IBM-942 UTF-8 No <prefix>ABF8

IBM-943 UCS-2 No <prefix>AJU2

IBM-943 UTF-8 No <prefix>AJF8

IBM-946 UCS-2 No <prefix>DYU2

IBM-946 UTF-8 No <prefix>DYF8

IBM-948 UCS-2 No <prefix>CWU2

IBM-948 UTF-8 No <prefix>CWF8

IBM-949 UCS-2 No <prefix>CZU2

IBM-949 UTF-8 No <prefix>CZF8

IBM-950 UCS-2 No <prefix>DWU2

IBM-950 UTF-8 No <prefix>DWF8

IBM-951 UCS-2 No <prefix>CQU2

IBM-951 UTF-8 No <prefix>CQF8

IBM-956 IBM-930 No <prefix>JBEU

IBM-956 IBM-939 No <prefix>JBEV

IBM-957 IBM-930 No <prefix>JCEU

IBM-957 IBM-939 No <prefix>JCEV

IBM-958 IBM-930 No <prefix>JDEU

IBM-958 IBM-939 No <prefix>JDEV

IBM-959 IBM-930 No <prefix>JEEU

IBM-959 IBM-939 No <prefix>JEEV

IBM-964 UCS-2 No <prefix>BWU2

IBM-964 UTF-8 No <prefix>BWF8

IBM-970 UCS-2 No <prefix>BZU2

IBM-970 UTF-8 No <prefix>BZF8

IBM-1025 UCS-2 No <prefix>FEU2

Chapter 51. Code Set Conversion Utilities 733

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

IBM-1025 UTF-8 No <prefix>FEF8

IBM-1026 UTF-8 No <prefix>EWF8

IBM-1026 UCS-2 No <prefix>EWU2

IBM-1027 IBM-932 Yes <prefix>EXAB

IBM-1027 IBM-932C Yes <prefix>EXAG

IBM-1027 IBM-eucJC No <prefix>EXAH

IBM-1027 IBM-eucJP No <prefix>EXAC

IBM-1027 UCS-2 No <prefix>EXU2

IBM-1027 UTF-8 No <prefix>EXF8

IBM-1046 UCS-2 No <prefix>AFU2

IBM-1046 UTF-8 No <prefix>AFF8

IBM-1047 IBM-930 Yes <prefix>EYEU

IBM-1047 IBM-939 Yes <prefix>EYEV

IBM-1047 UCS-2 No <prefix>EYU2

IBM-1047 UTF-8 No <prefix>EYF8

IBM-1088 UCS-2 No <prefix>CPU2

IBM-1088 UTF-8 No <prefix>CPF8

IBM-1089 UCS-2 No <prefix>I6U2

IBM-1089 UTF-8 No <prefix>I6F8

IBM-1112 UCS-2 No <prefix>GDU2

IBM-1112 UTF-8 No <prefix>GDF8

IBM-1115 UCS-2 No <prefix>CLU2

IBM-1115 UTF-8 No <prefix>CLF8

IBM-1122 UCS-2 No <prefix>FDU2

IBM-1122 UTF-8 No <prefix>FDF8

IBM-1140 UCS-2 No <prefix>HAU2

IBM-1140 UTF-8 No <prefix>HAF8

IBM-1141 UCS-2 No <prefix>HBU2

IBM-1141 UTF-8 No <prefix>HBF8

IBM-1142 UCS-2 No <prefix>HEU2

IBM-1142 UTF-8 No <prefix>HEF8

IBM-1143 UCS-2 No <prefix>HFU2

IBM-1143 UTF-8 No <prefix>HFF8

IBM-1144 UCS-2 No <prefix>HGU2

IBM-1144 UTF-8 No <prefix>HGF8

IBM-1145 UCS-2 No <prefix>HJU2

IBM-1145 UTF-8 No <prefix>HJF8

IBM-1146 UCS-2 No <prefix>HKU2

IBM-1146 UTF-8 No <prefix>HKF8

IBM-1147 UCS-2 No <prefix>HMU2

734 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

IBM-1147 UTF-8 No <prefix>HMF8

IBM-1148 UCS-2 No <prefix>HOU2

IBM-1148 UTF-8 No <prefix>HOF8

IBM-1149 UCS-2 No <prefix>HRU2

IBM-1149 UTF-8 No <prefix>HRF8

IBM-1250 UCS-2 No <prefix>DBU2

IBM-1250 UTF-8 No <prefix>DBF8

IBM-1251 UCS-2 No <prefix>DEU2

IBM-1251 UTF-8 No <prefix>DEF8

IBM-1252 UCS-2 No <prefix>DAU2

IBM-1252 UTF-8 No <prefix>DAF8

IBM-1253 UCS-2 No <prefix>DGU2

IBM-1253 UTF-8 No <prefix>DGF8

IBM-1254 UCS-2 No <prefix>DIU2

IBM-1254 UTF-8 No <prefix>DIF8

IBM-1255 UCS-2 No <prefix>DHU2

IBM-1255 UTF-8 No <prefix>DHF8

IBM-1256 UCS-2 No <prefix>DFU2

IBM-1256 UTF-8 No <prefix>DFF8

IBM-1363 UCS-2 No <prefix>LZU2

IBM-1363 UTF-8 No <prefix>LZF8

IBM-1364 UCS-2 No <prefix>KZU2

IBM-1364 UTF-8 No <prefix>KZF8

IBM-1380 UCS-2 No <prefix>CMU2

IBM-1380 UTF-8 No <prefix>CMF8

IBM-1381 UCS-2 No <prefix>CYU2

IBM-1381 UTF-8 No <prefix>CYF8

IBM-1383 UCS-2 No <prefix>BYU2

IBM-1383 UTF-8 No <prefix>BYF8

IBM-1386 UCS-2 No <prefix>CVU2

IBM-1386 UTF-8 No <prefix>CVF8

IBM-1388 UCS-2 No <prefix>GVU2

IBM-1388 UTF-8 No <prefix>GVF8

IBM-1390 UCS-2 No <prefix>HUU2

IBM-1390 UTF-8 No <prefix>HUF8

IBM-1399 UCS-2 No <prefix>HVU2

IBM-1399 UTF-8 No <prefix>HVF8

IBM-2022-JP IBM-930 No <prefix>JAEU

IBM-2022-JP IBM-939 No <prefix>JAEV

IBM33722 UCS-2 No <prefix>ACU2

Chapter 51. Code Set Conversion Utilities 735

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

IBM33722 UTF-8 No <prefix>ACF8

IBM-5052 IBM-930 No <prefix>JFEU

IBM-5052 IBM-939 No <prefix>JFEV

IBM-5053 IBM-930 No <prefix>JGEU

IBM-5053 IBM-939 No <prefix>JGEV

IBM-5054 IBM-930 No <prefix>JHEU

IBM-5054 IBM-939 No <prefix>JHEV

IBM-5055 IBM-930 No <prefix>JIEU

IBM-5055 IBM-939 No <prefix>JIEV

IBM-eucJC IBM-290 Yes <prefix>AHEL

IBM-eucJC IBM-1027 No <prefix>AHEX

IBM-eucJP IBM-290 No <prefix>ACEL

IBM-eucJP IBM-300 No <prefix>ACEN

IBM-eucJC IBM-300 No <prefix>AHEN

IBM-eucJP IBM-930 No <prefix>ACEU

IBM-eucJC IBM-930 No <prefix>AHEU

IBM-eucJP IBM-939 No <prefix>ACEV

IBM-eucJC IBM-939 No <prefix>AHEV

IBM-eucJP IBM-1027 No <prefix>ACEX

UCS-2 IBM-037 No <prefix>U2EA

UCS-2 IBM-273 No <prefix>U2EB

UCS-2 IBM-274 No <prefix>U2EC

UCS-2 IBM-275 No <prefix>U2ED

UCS-2 IBM-277 No <prefix>U2EE

UCS-2 IBM-278 No <prefix>U2EF

UCS-2 IBM-280 No <prefix>U2EG

UCS-2 IBM-282 No <prefix>U2EI

UCS-2 IBM-284 No <prefix>U2EJ

UCS-2 IBM-285 No <prefix>U2EK

UCS-2 IBM-290 No <prefix>U2EL

UCS-2 IBM-297 No <prefix>U2EM

UCS-2 IBM-300 No <prefix>U2EN

UCS-2 IBM-420 No <prefix>U2FF

UCS-2 IBM-424 No <prefix>U2FB

UCS-2 IBM-500 No <prefix>U2EO

UCS-2 IBM-813 No <prefix>U2I7

UCS-2 IBM-819 No <prefix>U2I1

UCS-2 IBM-833 No <prefix>U2GP

UCS-2 IBM-834 No <prefix>U2GQ

UCS-2 IBM-835 No <prefix>U2GO

736 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

UCS-2 IBM-836 No <prefix>U2GL

UCS-2 IBM-837 No <prefix>U2GM

UCS-2 IBM-838 No <prefix>U2EP

UCS-2 IBM-850 No <prefix>U2AA

UCS-2 IBM-852 No <prefix>U2CB

UCS-2 IBM-855 No <prefix>U2CE

UCS-2 IBM-856 No <prefix>U2CH

UCS-2 IBM-858 No <prefix>U2AI

UCS-2 IBM-861 No <prefix>U2CA

UCS-2 IBM-862 No <prefix>U2BH

UCS-2 IBM-864 No <prefix>U2CF

UCS-2 IBM-866 No <prefix>U2BE

UCS-2 IBM-869 No <prefix>U2CG

UCS-2 IBM-870 No <prefix>U2EQ

UCS-2 IBM-871 No <prefix>U2ER

UCS-2 IBM-874 No <prefix>U2BU

UCS-2 IBM-875 No <prefix>U2ES

UCS-2 IBM-880 No <prefix>U2ET

UCS-2 IBM-904 No <prefix>U2CN

UCS-2 IBM-912 No <prefix>U2I2

UCS-2 IBM-914 No <prefix>U2I4

UCS-2 IBM-915 No <prefix>U2I5

UCS-2 IBM-916 No <prefix>U2I8

UCS-2 IBM-920 No <prefix>U2I9

UCS-2 IBM-921 No <prefix>U2BD

UCS-2 IBM-922 No <prefix>U2AD

UCS-2 IBM-927 No <prefix>U2CO

UCS-2 IBM-930 No <prefix>U2EU

UCS-2 IBM-933 No <prefix>U2GZ

UCS-2 IBM-935 No <prefix>U2GY

UCS-2 IBM-937 No <prefix>U2GW

UCS-2 IBM-939 No <prefix>U2EV

UCS-2 IBM-942 No <prefix>U2AB

UCS-2 IBM-943 No <prefix>U2AJ

UCS-2 IBM-946 No <prefix>U2DY

UCS-2 IBM-948 No <prefix>U2CW

UCS-2 IBM-949 No <prefix>U2CZ

UCS-2 IBM-950 No <prefix>U2DW

UCS-2 IBM-951 No <prefix>U2CQ

UCS-2 IBM-964 No <prefix>U2BW

Chapter 51. Code Set Conversion Utilities 737

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

UCS-2 IBM-970 No <prefix>U2BZ

UCS-2 IBM-1025 No <prefix>U2FE

UCS-2 IBM-1026 No <prefix>U2EW

UCS-2 IBM-1027 No <prefix>U2EX

UCS-2 IBM-1046 No <prefix>U2AF

UCS-2 IBM-1047 No <prefix>U2EY

UCS-2 IBM-1088 No <prefix>U2CP

UCS-2 IBM-1089 No <prefix>U2I6

UCS-2 IBM-1112 No <prefix>U2GD

UCS-2 IBM-1115 No <prefix>U2CL

UCS-2 IBM-1122 No <prefix>U2FD

UCS-2 IBM-1140 No <prefix>U2HA

UCS-2 IBM-1141 No <prefix>U2HB

UCS-2 IBM-1142 No <prefix>U2HE

UCS-2 IBM-1143 No <prefix>U2HF

UCS-2 IBM-1144 No <prefix>U2HG

UCS-2 IBM-1145 No <prefix>U2HJ

UCS-2 IBM-1146 No <prefix>U2HK

UCS-2 IBM-1147 No <prefix>U2HM

UCS-2 IBM-1148 No <prefix>U2HO

UCS-2 IBM-1149 No <prefix>U2HR

UCS-2 IBM-1250 No <prefix>U2DB

UCS-2 IBM-1251 No <prefix>U2DE

UCS-2 IBM-1252 No <prefix>U2DA

UCS-2 IBM-1253 No <prefix>U2DG

UCS-2 IBM-1254 No <prefix>U2DI

UCS-2 IBM-1255 No <prefix>U2DH

UCS-2 IBM-1256 No <prefix>U2DF

UCS-2 IBM-1363 No <prefix>U2LZ

UCS-2 IBM-1364 No <prefix>U2KZ

UCS-2 IBM-1380 No <prefix>U2CM

UCS-2 IBM-1381 No <prefix>U2CY

UCS-2 IBM-1383 No <prefix>U2BY

UCS-2 IBM-1386 No <prefix>U2CV

UCS-2 IBM-1388 No <prefix>U2GV

UCS-2 IBM-1390 No <prefix>U2HU

UCS-2 IBM-1399 No <prefix>U2HV

UCS-2 IBM33722 No <prefix>U2AC

UTF-8 IBM-037 No <prefix>F8EA

UTF-8 IBM-273 No <prefix>F8EB

738 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

UTF-8 IBM-274 No <prefix>F8EC

UTF-8 IBM-275 No <prefix>F8ED

UTF-8 IBM-277 No <prefix>F8EE

UTF-8 IBM-278 No <prefix>F8EF

UTF-8 IBM-280 No <prefix>F8EG

UTF-8 IBM-282 No <prefix>F8EI

UTF-8 IBM-284 No <prefix>F8EJ

UTF-8 IBM-285 No <prefix>F8EK

UTF-8 IBM-290 No <prefix>F8EL

UTF-8 IBM-297 No <prefix>F8EM

UTF-8 IBM-300 No <prefix>F8EN

UTF-8 IBM-420 No <prefix>F8FF

UTF-8 IBM-424 No <prefix>F8FB

UTF-8 IBM-500 No <prefix>F8EO

UTF-8 IBM-813 No <prefix>F8I7

UTF-8 IBM-819 No <prefix>F8I1

UTF-8 IBM-833 No <prefix>F8GP

UTF-8 IBM-834 No <prefix>F8GQ

UTF-8 IBM-835 No <prefix>F8GO

UTF-8 IBM-836 No <prefix>F8GL

UTF-8 IBM-837 No <prefix>F8GM

UTF-8 IBM-838 No <prefix>F8EP

UTF-8 IBM-850 No <prefix>F8AA

UTF-8 IBM-852 No <prefix>F8CB

UTF-8 IBM-855 No <prefix>F8CE

UTF-8 IBM-856 No <prefix>F8CH

UTF-8 IBM-858 No <prefix>F8AI

UTF-8 IBM-861 No <prefix>F8CA

UTF-8 IBM-862 No <prefix>F8BH

UTF-8 IBM-864 No <prefix>F8CF

UTF-8 IBM-866 No <prefix>F8BE

UTF-8 IBM-869 No <prefix>F8CG

UTF-8 IBM-870 No <prefix>F8EQ

UTF-8 IBM-871 No <prefix>F8ER

UTF-8 IBM-874 No <prefix>F8BU

UTF-8 IBM-875 No <prefix>F8ES

UTF-8 IBM-880 No <prefix>F8ET

UTF-8 IBM-904 No <prefix>F8CN

UTF-8 IBM-912 No <prefix>F8I2

UTF-8 IBM-914 No <prefix>F8I4

Chapter 51. Code Set Conversion Utilities 739

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

UTF-8 IBM-915 No <prefix>F8I5

UTF-8 IBM-916 No <prefix>F8I8

UTF-8 IBM-920 No <prefix>F8I9

UTF-8 IBM-921 No <prefix>F8BD

UTF-8 IBM-922 No <prefix>F8AD

UTF-8 IBM-927 No <prefix>F8CO

UTF-8 IBM-930 No <prefix>F8EU

UTF-8 IBM-933 No <prefix>F8GZ

UTF-8 IBM-935 No <prefix>F8GY

UTF-8 IBM-937 No <prefix>F8GW

UTF-8 IBM-939 No <prefix>F8EV

UTF-8 IBM-942 No <prefix>F8AB

UTF-8 IBM-943 No <prefix>F8AJ

UTF-8 IBM-946 No <prefix>F8DY

UTF-8 IBM-948 No <prefix>F8CW

UTF-8 IBM-949 No <prefix>F8CZ

UTF-8 IBM-950 No <prefix>F8DW

UTF-8 IBM-951 No <prefix>F8CQ

UTF-8 IBM-964 No <prefix>F8BW

UTF-8 IBM-970 No <prefix>F8BZ

UTF-8 IBM-1025 No <prefix>F8FE

UTF-8 IBM-1026 No <prefix>F8EW

UTF-8 IBM-1027 No <prefix>F8EX

UTF-8 IBM-1046 No <prefix>F8AF

UTF-8 IBM-1047 No <prefix>F8EY

UTF-8 IBM-1088 No <prefix>F8CP

UTF-8 IBM-1089 No <prefix>F8I6

UTF-8 IBM-1112 No <prefix>F8GD

UTF-8 IBM-1115 No <prefix>F8CL

UTF-8 IBM-1122 No <prefix>F8FD

UTF-8 IBM-1140 No <prefix>F8HA

UTF-8 IBM-1141 No <prefix>F8HB

UTF-8 IBM-1142 No <prefix>F8HE

UTF-8 IBM-1143 No <prefix>F8HF

UTF-8 IBM-1144 No <prefix>F8HG

UTF-8 IBM-1145 No <prefix>F8HJ

UTF-8 IBM-1146 No <prefix>F8HK

UTF-8 IBM-1147 No <prefix>F8HM

UTF-8 IBM-1148 No <prefix>F8HO

UTF-8 IBM-1149 No <prefix>F8HR

740 OS/390 V2R10.0 C/C++ Programming Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Additional Coded Character Set Conversions (continued)

FromCode ToCode GENXLT source Program Name

UTF-8 IBM-1250 No <prefix>F8DB

UTF-8 IBM-1251 No <prefix>F8DE

UTF-8 IBM-1252 No <prefix>F8DA

UTF-8 IBM-1253 No <prefix>F8DG

UTF-8 IBM-1254 No <prefix>F8DI

UTF-8 IBM-1255 No <prefix>F8DH

UTF-8 IBM-1256 No <prefix>F8DF

UTF-8 IBM-1363 No <prefix>F8LZ

UTF-8 IBM-1364 No <prefix>F8KZ

UTF-8 IBM-1380 No <prefix>F8CM

UTF-8 IBM-1381 No <prefix>F8CY

UTF-8 IBM-1383 No <prefix>F8BY

UTF-8 IBM-1386 No <prefix>F8CV

UTF-8 IBM-1388 No <prefix>F8GV

UTF-8 IBM-1390 No <prefix>F8HU

UTF-8 IBM-1399 No <prefix>F8HV

UTF-8 IBM33722 No <prefix>F8AC

Universal Coded Character Set Converters
You can use the name UCS-2 to request setup for conversion to and from the
Universal Two-Octet Coded Character Set, UCS-2, specified in ISO/IEC
International Standard 10646–1. For example, iconv_open("UCS-2", "IBM-1047")
requests setup for conversion from IBM-1047 character encoding to UCS-2
character encoding.

You can also use the name UTF-8 to request setup for conversion to and from
Transform Format 8, UTF-8, specified in Unicode Standard, Version 2.1,
Appendices A-7 and A-8. For example, iconv_open("UTF-8", "IBM-1047") requests
setup for conversion from IBM-1047 character encoding to UTF-8 character
encoding.

Source for UCS-2 converters resides in an OS/390 C/C++ dataset named
installation-prefix.SCEEUMAP, where the installation prefix for C/C++ datasets
default to CEE. UCS-2 source is also installed in the hierarchical file system (HFS)
directory /usr/lib/nls/locale/ucmap.

The uconvdef command, which is documented in OS/390 UNIX System Services
Command Reference, produces uconvTable binary files required by uconv_open()
from UCS-2 source files. Table 77 on page 742 lists coded character sets for which
OS/390 C/C++ provides UCS-2 source and uconvTable binaries. The uconvTable
binaries reside in an OS/390 C/C++ dataset named installation-prefix.SCEEUTBL.
The same as for the UCS-2 source dataset, the default value of the
installation-prefix is CEE.

Chapter 51. Code Set Conversion Utilities 741

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|

Notes:

1. If your installation uses an installation-prefix different from CEE for OS/390
C/C++ datasets, you must use the environment variable _ICONV_UCS2_PREFIX to
specify the value of your installation-prefix before using iconv_open() to set up
UCS-2 converters. Otherwise, iconv_open() cannot find your OS/390 C/C++
uconvTable binary dataset. One way to do this is to use the ENVAR runtime
option when you start your application. For example, ENVAR(...,
_ICONV_UCS2_PREFIX=OUR.PREFIX, ...) has iconv_open() search for uconvTable
binaries it requires in the dataset OUR.PREFIX.SCEEUTBL.

2. The uconvTable binaries are also installed in the HFS directory named
/usr/lib/nls/locale/uconvTable. The iconv_open()function searches for
uconvTable binaries in the HFS before looking in the OS/390 C/C++ UCS-2
dataset.

3. You can use the LOCPATH environment variable to give iconv_open() a
colon-separated list of pathname prefixes to use instead of /usr/lib/nls/locale/ to
find uconvTable directories in your HFS

4. UCS-2 source and binaries found in installation-prefix.SCEEUMAP and
installation-prefix.SCEEUTBL datasets (or corresponding HFS directories),
respectively, pertain to conversions to and from UTF-8 as well as UCS-2.

Members in the OS/390 C/C++ UCS-2 source and uconvTable binary datasets have
names of the form EDCUUccU; where cc is the CC-id associated with a particular
coded character set name. Table 77 shows the CC-id and member name
associated with each coded character set name for which OS/390 C/C++ provides
source and a uconvTable binary in UCS-2 datasets.

Table 77. UCS-2 Converters

Codeset Name CC-id UCS-2 source

IBM-850 AA EDCUUAAU

IBM-932 AB EDCUUABU

IBM-eucJP AC EDCUUACU

IBM33722 AC EDCUUACU

IBM-922 AD EDCUUADU

IBM-1046 AF EDCUUAFU

IBM-858 AI EDCUUAIU

IBM-943 AJ EDCUUAJU

IBM-921 BD EDCUUBDU

IBM-866 BE EDCUUBEU

IBM-862 BH EDCUUBHU

IBM-874 BU EDCUUBUU

IBM-eucTW BW EDCUUBWU

IBM-964 BW EDCUUBWU

IBM-1383 BY EDCUUBYU

IBM-eucKR BZ EDCUUBZU

IBM-970 BZ EDCUUBZU

IBM-861 CA EDCUUCAU

IBM-852 CB EDCUUCBU

IBM-8550 CE EDCUUCEU

742 OS/390 V2R10.0 C/C++ Programming Guide

|||

Table 77. UCS-2 Converters (continued)

Codeset Name CC-id UCS-2 source

IBM-864 CF EDCUUCFU

IBM-869 CG EDCUUCGU

IBM-856 CH EDCUUCHU

IBM-1115 CL EDCUUCLU

IBM-1380 CM EDCUUCMU

IBM-904 CN EDCUUCNU

IBM-927 CO EDCUUCOU

IBM-1088 CP EDCUUCPU

IBM-951 CQ EDCUUCQU

IBM-942 CR EDCUUCRU

IBM-1386 CV EDCUUCVU

IBM-948 CW EDCUUCWU

IBM-1381 CY EDCUUCYU

IBM-949 CZ EDCUUCZU

IBM-1252 DA EDCUUDAU

IBM-1250 DB EDCUUDBU

IBM-1251 DE EDCUUDEU

IBM-1256 DF EDCUUDFU

IBM-1253 DG EDCUUDGU

IBM-1255 DH EDCUUDHU

IBM-950 DW EDCUUDWU

IBM-1254 DI EDCUUDIU

IBM-946 DY EDCUUDYU

IBM-037 EA EDCUUEAU

IBM-273 EB EDCUUEBU

IBM-274 EC EDCUUECU

IBM-275 ED EDCUUEDU

IBM-277 EE EDCUUEEU

IBM-278 EF EDCUUEFU

IBM-280 EG EDCUUEGU

IBM-282 EI EDCUUEIU

IBM-284 EJ EDCUUEJU

IBM-285 EK EDCUUEKU

IBM-290 EL EDCUUELU

IBM-297 EM EDCUUEMU

IBM-300 EN EDCUUENU

IBM-500 EO EDCUUEOU

IBM-838 EP EDCUUEPU

IBM-870 EQ EDCUUEQU

IBM-871 ER EDCUUERU

Chapter 51. Code Set Conversion Utilities 743

|||

Table 77. UCS-2 Converters (continued)

Codeset Name CC-id UCS-2 source

IBM-880 ET EDCUUETU

IBM-930 EU EDCUUEUU

IBM-939 EV EDCUUEVU

IBM-1026 EW EDCUUEWU

IBM-1027 EX EDCUUEXU

IBM-1047 EY EDCUUEYU

IBM-424 FB EDCUUFBU

IBM-1122 FD EDCUUFDU

IBM-1025 FE EDCUUFEU

IBM-420 FF EDCUUFFU

IBM-1112 GD EDCUUGDU

IBM-836 GL EDCUUGLU

IBM-837 GM EDCUUGMU

IBM-835 GO EDCUUGOU

IBM-833 GP EDCUUGPU

IBM-834 GQ EDCUUGQU

IBM-1388 GV EDCUUGVU

IBM-937 GW EDCUUGWU

IBM-935 GY EDCUUGYU

IBM-933 GZ EDCUUGZU

IBM-1140 HA EDCUUHAU

IBM-1141 HB EDCUUHBU

IBM-1142 HE EDCUUHEU

IBM-1143 HF EDCUUHFU

IBM-1144 HG EDCUUHGU

IBM-1145 HJ EDCUUHJU

IBM-1146 HK EDCUUHKU

IBM-1147 HM EDCUUHMU

IBM-1148 HO EDCUUHOU

IBM-1149 HR EDCUUHRU

IBM-1390 HU EDCUUHUU

IBM-1399 HV EDCUUHVU

ISO8859-1 I1 EDCUUI1U

IBM-819 I1 EDCUUI1U

ISO8859-2 I2 EDCUUI2U

IBM-912 I2 EDCUUI2U

ISO8859-4 I4 EDCUUI4U

IBM-914 I4 EDCUUI4U

ISO8859-5 I5 EDCUUI5U

IBM-915 I5 EDCUUI5U

744 OS/390 V2R10.0 C/C++ Programming Guide

|||

|||

Table 77. UCS-2 Converters (continued)

Codeset Name CC-id UCS-2 source

ISO8859-6 I6 EDCUUI6U

IBM-1089 I6 EDCUUI6U

ISO8859-7 I7 EDCUUI7U

IBM-813 I7 EDCUUI7U

ISO8859-8 I8 EDCUUI8U

IBM-916 I8 EDCUUI8U

ISO8859-9 I9 EDCUUI9U

IBM-920 I9 EDCUUI9U

IBM-1364 KZ EDCUUKZU

IBM-1363 LZ EDCUULZU

Codeset Conversion Using UCS-2
OS/390 C/C++ iconv supports use of UCS-2 as an intermediate code set for
conversion of characters encoded in one code set to another. The _ICONV_UCS2
environment variable instructs iconv_open("Y", "X") whether or not to set up
indirect conversion from code set X to code set Y using UCS-2 as an intermediate
code set. Values iconv_open() recognizes for _ICONV_UCS2 are:

1 Set up indirect conversion using UCS-2 first. The indirect conversions will
use direct unicode converters if available, if not, iconv_open() will
fopen/fread uconvTable binaries. If set up of indirect conversion fails,
iconv_open() will try to set up direct conversion.

2 Set up direct conversion first. If this fails, try to set up indirect conversion
using UCS-2. The indirect conversions will use direct unicode converters if
available, if not, iconv_open() will fopen/fread uconvTable binaries.This is
the default.

3 Set up direct conversion first. If this fails, try to set up indirect conversion
using UCS-2. The indirect conversions will use direct unicode converters, if
direct unicode converters are unavailable, the iconv_open() request fails.

N Never set up indirect conversion using UCS-2. If a direct converter cannot
be found, the iconv_open() request fails.

D Never set up indirect conversion using UCS-2. If a direct converter cannot
be found, the iconv_open() request fails.

O Only set up indirect conversion using UCS-2. iconv_open() will fopen/fread
uconvTable binaries. Direct unicode converters will not be used. If required
unconvTable binaries cannot be found, the iconv_open() request fails..

U Only set up indirect conversion using UCS-2. The indirect conversions will
use direct unicode converters if available, if not, iconv_open() will
fopen/fread uconvTable binaries.

Notes:

1. If the value of the _ICONV_UCS2 environment variable allows iconv_open("Y",
"X") to use UCS-2 as an intermediate code set when it cannot find a direct
converter from X to Y, iconv_open() will attempt to do so even if X and Y are
not compatible code sets. That is , even if character sets encoded by X and Y
are not the same, iconv_open() will set up conversion from X to UCS-2 to Y.

Chapter 51. Code Set Conversion Utilities 745

|||

|||

|
|
|
|

|
|
|
|

||
|
|

||
|

|
|
|

||
|
|

2. The application must specify compatible source and target code set names on
various iconv_open() requests. For example, this can be accomplished by using
a code set registry such as is used by DCE to prevent iconv setup for
conversion from incompatible code sets.

UCMAP Source Format
A UCMAP source file defines UCS-2 (Unicode) conversion mappings for input to the
uconvdef command. Conversion mapping values are defined using UCS-2 symbolic
character names followed by character encoding (code point) values for the
multibyte code set. For example:

<U0020>
\x20 represents the mapping between the <U0020> UCS-2 symbolic
character name for the space character and the \x20 hexadecimal code
point for the space character in ASCII.

In addition to the code set mappings, directives are interpreted by the uconvdef
command to produce the compiled table. These directives must precede the code
set mapping section. They consist of the following keywords surrounded by <>
(angle brackets), starting in column 1, followed by white space and the value to be
assigned to the symbol:

<comment_char>
Character used to denote start of escape sequence. Default escape
character is <number_sign> (#). In ucmap, source shipped by C/370
<percent_sign> (%) is specified for <comment_char>.

<escape_char>
Character used to denote start of escape sequence. Default escape
character is <backslash> (\). In ucmap source shipped by C/370 <slash> (/)
is specified for <escape_char>.

<code_set_name>
The name of the coded character set, enclosed in quotation marks(″), for
which the character set description file is defined.

<mb_cur_max>
The maximum number of bytes in a multibyte character. The default value is
1.

<mb_cur_min>
An unsigned positive integer value that defines the minumum number of
bytes in a character for the encoded character set. The value is less than or
equal to <mb_cur_max>. If not specified, the minimum number is equal to
<mb_cur_max>.

<char_name_mask>
A quoted string consisting of format specifiers for the UCS-2 symbolic
names. This must be a value of AXXXX, indicating an alphabetic character
followed by 4 hexadecimal digits. Also, the alphabetic character must be a
U, and the hexadecimal digits must represent the UCS-2 code point for the
character. An example of a symbolic character name based on this mask is
<U0020> Unicode space character.

<uconv_class>
Specifies the type of the code set. It must be one of the following:

SBCS Single-byte encoding

DBCS Stateless double-byte, single-byte, or mixed encodings

746 OS/390 V2R10.0 C/C++ Programming Guide

EBCDIC_STATEFUL
Stateful double-byte, single-byte, or mixed encodings

MBCS Stateless multibyte encoding

This type is used to direct uconvdef on the type of table to build. It is also stored in
the table to indicate the type of processing algorithm in the UCS conversion
methods.

<locale>
Specifies the default locale name to be used if locale information is needed.

<subchar>
Specifies the encoding of the default substitute character in the multibyte
code set.

The mapping definition section consists of a sequence of mapping definition lines
preceded by a CHARMAP declaration and terminated by an END CHARMAP
declaration. Empty lines and lines containing <comment_char> in the first column
are ignored.

Symbolic character names in mapping lines must follow the pattern specified in the
<char_name_mask>, except for the reserved symbolic name, <unassigned>, that
indicates the associated code points are unassigned.

Each noncomment line of the character set mapping definition must be in one of the
following formats:

1. ″%s%s%s/n″, <symbolic_name>, <encoding>, <comments>

<U3004> \x81\x57

This format defines a single symbolic character name and a corresponding
encoding.

The encoding part is expressed as one or more concatenated decimal,
hexadecimal, or octal constants in the following formats:

v ″%cd%d″,<escape_char>, <decimal byte value>

v ″%cx%x″,<escape_char>,<hexadecimal byte value>

v ″%c%o″,<escape_char>,<octal byte value>

Decimal constants are represented by two or more decimal digits preceded by
the escape character and the lowercase letter d, as in \d97 or \d143.
Hexadecimal constants are represented by two or more hexadecimal digits
preceded by an escape character and the lowercase letter x, as in \x61 or \x8f.
Octal constants are represented by two or more octal digits preceded by an
escape character.

Each constant represents a single—byte value. When constants are
concatenated for multibyte character values, the last value specifies the least
significant octet and preceding constants specify successively more significant
octets.

2. ″%s...%s %s %s/n″,<symbolic-
name>,<symbolic_name>,<encoding><comments>

For example:

<U3003><U3006> \x81\x56

Chapter 51. Code Set Conversion Utilities 747

This format defines a range of symbolic character names and corresponding
encodings. The range is interpreted as a series of symbolic names formed from
the alphabetic prefix and all the values in the range defined by the numeric
suffixes.

The listed encoding value is assigned to the first symbolic name, and
subsequent symbolic names in the range are assigned corresponding
incremental values. For example, the line:
<U3003>...<U3006> \x81\x56

is interpreted as:
<U3003> \x81\x56
<U3004> \x81\x57
<U3005> \x81\x58
<U3006> \x81\x59

3. ″<unassigned>″%s...%s %s/n″,<encoding>,<comments>

This format defines a range of one or more unassigned encodings. For
example, the line
<unassigned> \x9b...\x9c

is interpreted as:
<unassigned> \x9b <unassigned> \x9c

748 OS/390 V2R10.0 C/C++ Programming Guide

Chapter 52. Coded Character Set Considerations with Locale
Functions

Each EBCDIC coded character set consists of a mapping of all the available glyphs
to their respective hex encodings and unique Graphic Character Global Identifiers
(GCGIDs). GCGIDs are unique identifiers assigned to each character in the
Unicode standard. A glyph is the printed appearance of a character. Each coded
character set serves one linguistic environment.

There is wide variation among coded character sets: many glyphs do not appear in
all coded character sets, and hexadecimal encodings for some glyphs differ from
one coded character set to another. You may have trouble when you export a file
from a system running in one coded character set to a system running in another.
For example, a left bracket ([) entered under the APL-293 or Open Systems
IBM-1047 coded character set will appear as the capitalized Y-acute (Ý). This
occurs in such common coded character sets as International 500, France 297,
Germany 273, and US or Canada 037.

OS/390 C/C++ contains the following extensions to prevent such problems:

v The pragma filetag directive allows you to specify the coded character set that
was used when entering the source files. See “The pragma filetag Directive” on
page 757 for details on this pragma.

v The compiler option locale enables you to tell the compiler what locale to use at
compile time. See “Converting Coded Character Sets at Compile Time” on
page 757 for details on this compiler option.

v The compiler option CONVLIT enables you to change the assumed code page for
string literals. See page 758 for details on this compiler option.

These facilities cause the compiler to respect your code page. Thus, you can enter
source code with what appears to you to be the correct characters, and the
compiler will recognize those characters.

The rest of this chapter discusses other ways to work efficiently in different locales.

Variant Character Detail
The POSIX Portable Character Set (PPCS) identifies the core set of 128 characters
that are needed to write code and to run applications. Of these, 13 characters are
variant among the EBCDIC coded character sets.

“Mappings of 13 PPCS Variant Characters” on page 750 lists these 13 characters. It
also displays their appearance when the Open Systems coded character set
IBM-1047 hexadecimal values are entered on systems where different Country
Extended Coded Character Sets are installed. These hex values are the ones
expected by OS/390 C/C++, and are consistent with the use of the APL-293 coded
character set. Table 79 on page 750 lists the hexadecimal values assigned across
some of the EBCDIC coded character sets for the 13 variant characters from the
PPCS. “Appendix C. OS/390 C/C++ Code Point Mappings” on page 777 gives more
information about the mapping of glyphs. “Appendix A. POSIX Character Set” on
page 767 lists the full PPCS.

© Copyright IBM Corp. 1996, 2000 749

Mappings of 13 PPCS Variant Characters
Table 78. Mappings of 13 PPCS Variant Characters

Character

Open
Systems
Hex Value
(Default)

Open
Systems
IBM-1047
view

APL
IBM-293
view

Inter-
national
IBM-500
view

France
IBM-297
view

Germany
IBM-273
view

US/Can
IBM-037
view

left bracket AD [[Ý Ý Ý Ý

right bracket BD]] ü ˜ ü }

left brace C0 { { { é ä {

right brace D0 } } } è ü }

backslash E0 \ \ \ ç Ö \

circumflex 5F | ¬ | | | ¬

tilde A1 ˜ ˜ ˜ ü . ß ˜

exclamation mark 5A ! !] § Ü !

pound (number) sign 7B # # # £ # #

vertical bar 4F | | ! ! ! |

accent grave 79 v v v µ v v

dollar sign 5B $ $ $ $ $ $

commercial ″at″ 7C @ @ @ á § @

Two tables are available to show the full code—point mappings for Open Systems
coded character set IBM-1047 (Figure 230 on page 777) and for the APL coded
character set IBM-293 (Figure 231 on page 778). Upon examination of those coded
character sets, you will notice that coded character set 1047 is a ″Latinized″ coded
character set IBM-293. All the APL code points have been replaced by Latin 1 code
points, allowing a one-to-one mapping among coded character set IBM-1047 and all
other coded character sets in the Latin 1 group.

Although the official current coded character set for OS/390 C/C++ is now coded
character set IBM-1047 (Open Systems), the coded character set IBM-293 syntax
points are still valid. Those points are the ones with syntactic relevance to the
OS/390 C/C++ compiler. Refer to “Mappings of 13 PPCS Variant Characters” and
“Mappings of Hex Encoding of 13 PPCS Variant Characters” for more information.

Mappings of Hex Encoding of 13 PPCS Variant Characters
Table 79. Mappings of Hex Encoding of 13 PPCS Variant Characters

Character
Name Glyph GCGID

Open
Systems
IBM-
1047
view

APL
IBM-293
view

Inter-
national
500
view

France
297
view

Germany
273
view

US/Canada
037
view

left bracket [SM060000 AD AD 4A 90 63 BA

right
bracket

] SM080000 BD BD 5A B5 FC BB

left brace { SM110000 C0 C0 C0 51 43 C0

right brace } SM140000 D0 D0 D0 54 DC D0

backslash \ SM070000 E0 E0 E0 48 EC E0

750 OS/390 V2R10.0 C/C++ Programming Guide

Table 79. Mappings of Hex Encoding of 13 PPCS Variant Characters (continued)

Character
Name Glyph GCGID

Open
Systems
IBM-
1047
view

APL
IBM-293
view

Inter-
national
500
view

France
297
view

Germany
273
view

US/Canada
037
view

circumflex | SD150000 5F 5F 5F 5F 5F B0

tilde ˜ SD190000 A1 A1 A1 BD 59 A1

exclamation
mark

! SP020000 5A 5A 4F 4F 4F 5A

pound
(number)
sign

SM010000 7B 7B 7B B1 7B 7B

vertical bar | SM130000 4F 4F BB BB BB 4F

accent
grave

v SD130000 79 79 79 A0 79 79

dollar sign $ SC030000 5B 5B 5B 5B 5B 5B

commercial
″at″

@ SM050000 7C 7C 7C 44 B5 7C

Alternate Code Points
All syntactic code points that were supported in previous versions of OS/390 C/C++
will continue to be supported if you are compiling with the nolocale option.

To be compatible, the vertical bar character is represented by the following two
encodings, providing you are not using a locale compiler option or the nolocale
option:

v X'4F'

v X'6A'

If you do specify the locale option, each of these characters is represented by a
unique value specified in the LC_SYNTAX category of the selected locale.

Coding without Locale Support
To avoid using the locale of the compiler, use a hybrid coded character set. A hybrid
piece of code is in the local coded character set but the syntax is written as if it
were in coded character set IBM-1047.

Using a Hybrid Coded Character Set
You can continue coding in the local coded character set, writing the syntax as if it
were in coded character set IBM-1047. This solution uses the existing behavior of
the compiler, but this method is not ideal for the following reasons:

v The code can be difficult to read and may not even look like C code anymore.

v There may be ambiguities in the code.

v Exporting code to another site can be difficult because the mapping between the
hybrid characters used and the target coded character set may not be exact.

The following example illustrates these difficulties.

Chapter 52. Coded Character Set Considerations with Locale Functions 751

CBC3GCC1:

The code points in “CBC3GCC1”, which have different glyphs in character code set
IBM-273 and APL-293, appear in “CBC3GCC1”, and are described below:

�1� This is the code point for the { character. In coded character set 273, this is
the character ä.

/* this has strings in codepage 273 with APL 293 syntax, and is a */
/* pre-locale source file for a user in Germany */
#define MAX_NAMES 20
#define MAX_NAME_LEN 80
#define STR(num) #num
#define SCAN_FORMAT(len) "%"STR(len)"s %"STR(len)"s"

struct NameList ä �1�
char firstÝMAX_NAME_LEN+1}; �2� �3�
char surnameÝMAX_NAME_LEN+1}; �2� �3�

ü; �4�
int compareNames(const void *elem1, const void *elem2) ä �1�

struct NameList *name1 = (struct NameList *) elem1;
struct NameList *name2 = (struct NameList *) elem2;
int surnameComp = strcoll(name1->surname,

name2->surname);
int firstComp = strcoll(name1->first,

name2->first);

return(surnameComp ? surnameComp : firstComp);
ü �4�

main() ä �1�

int i, rc, numEntries;
struct NameList curName;
struct NameList nameListÝMAX_NAMES}; �2� �3�

printf("Bitte geben Sie die Namen ein, "
"im Format <Familienname> <Vorname> "
"(Maximum %d Namen!)Ön", �8� �5�
MAX_NAMES);

for (i=0; i<MAX_NAMES; ++i) ä �1�
printf("Name (oder EOF wenn fertig):Ön"); �5�
rc = scanf(SCAN_FORMAT(MAX_NAME_LEN),

curName.surname, curName.first);
if (rc Ü= 2) ä �6� �1�

break;
ü �4�
nameListÝi} = curName; �2� �3�

ü �4�
numEntries = i+1;
qsort(nameList, numEntries, sizeof(struct NameList),

compareNames);
for (i=0; i<numEntries; ++i) ä �1�

printf("Name %d:<%s, %s>Ön", i+1, �5�
nameListÝi}.surname, �2� �3�
nameListÝi}.first); �2� �3�

ü �4�
i != (MAX_NAMES << sizeof(int)/2); �7�
return(i);

ü �4�

Figure 222. Hybrid Coded Character Set Example

752 OS/390 V2R10.0 C/C++ Programming Guide

�2� This is the code point for the [character. In coded character set 273, this is
the character Ý.

�3� This is the code point for the] character. In coded character set 273, this is
the character }.

�4� This is the code point for the } character. In coded character set 273, this is
the character ü.

�5� This is the code point for the \ character. In coded character set 273, this is
the character Ö.

�6� This is the code point for the ! character. In coded character set 273, this is
the character Ü.

�7� This is the code point for the | character. In coded character set 273, this is
the character !. This particular code point mapping is unfortunate because
the | character and the ! character are both valid C syntax characters. Note
that the ! character used in the printf() call at �8� will appear as ! on a
terminal displaying in coded character set 273.

Writing Code Using a Hybrid Coded Character Set: “CBC3GCC1” on page 752
illustrates some of the problems with hybrid files. To write this code would require
the following steps:

1. Looking up each variant character in coded character set IBM-1047 to find out
what the compiler expects. For example, OS/390 C/C++ expects the character [
to have a byte value of X'AD'.

2. Determining which glyph is at X'AD' in her own coded character set so that she
can code that character in her application.

3. Always using the appropriate substitution. For example, to obtain a needed [in
Germany, one would look up X'AD' in the German IBM-273 coded character set,
and find the character Ý.

Converting Existing Work
This section describes some issues in conversion and presents some conversions.
We assume that existing source code and libraries cannot be quickly converted
from mixed coded character sets to a common coded character set. A staged
approach is suggested.

v Code your new source in one coded character set, preferably IBM-1047. Tag all
new source files to make them more portable by putting the pragma filetag
directive at the top of each one.

v If you need to interact with existing code, compile your new code using the locale
in which the existing code was written.

v If you want to write code in a coded character set that does not have a
one-to-one mapping to coded character set IBM-1047 (that is, a coded character
set that is not Latin-1), create your own conversion table and compile it with the
genxlt utility. Use your own conversion table with the iconv utility to convert your
source code to coded character set IBM-1047.

Converting Hybrid Code
Existing code that was written in a hybrid coded character set will continue to be
accepted.

“Appendix G. Converting Code from Coded Character Set IBM-1047” on page 801
shows you a program you can use to convert the hybrid code to another coded
character set.

Chapter 52. Coded Character Set Considerations with Locale Functions 753

Writing Source Code in Coded Character Set IBM-1047
There are two reasons why you write source in coded character set IBM-1047.

First, even though OS/390 C/C++ provides support for multiple coded character
sets, other tools may not do so. Tools such as CICS and DB2 may not support
source code in any coded character set other than the default coded character set,
IBM-1047. If you are using these tools, and you write your code in a code page
other than IBM-1047, you will need to use the OS/390 C/C++ iconv utility to convert
your code to coded character set IBM-1047 before you can use the tool.

Second, older versions of the C/370 product do not support source in coded
character sets other than IBM-1047. This makes it difficult to share code with a site
using an older compiler.

Exporting Source Code to Other Sites
This section deals with the exporting of code from one Latin-1 coded character set
to another. That is, it deals with how to write code that will be run in a locale that
uses a different coded character set than the one used to write the source.

The simplest way to export code is to use the iconv() utility to convert each source
file, header file, and data file to the target coded character set, then to send all files
to the target location for compilation. You should ensure that your code runs with
the same locale that it was compiled under before you try running it with any other
locales.

1. Use the pragma filetag directive to tag each source file, header file, and data file.

2. Use message files for all external strings, such as prompts, help screens, and
error messages, to write truly portable code, Convert these strings to the run
time coded character set in your application code.

3. Use the setlocale() function so that the library functions are sensitive to the
run time coded character set.

Be sure that locale-sensitive information, such as decimal points, are displayed
appropriately. Use either nl_langinfo() or localeconv() to obtain this
information.

The setlocale() function does not change the CEE functions under the OS/390
Language Environment in such areas as date, time, currency, and time zones.
Internationalization is specific to OS/390 C/C++ applications. Also, the OS/390
Language Environment CEE callable services do not change the OS/390 C/C++
locales. For a list of these callable services, see the OS/390 Language
Environment Programming Guide.

4. Compile with the locale specifying coded character set IBM-1047.

If you specify locale(″locale-name″), your code will run correctly with libraries
running in the same coded character set. However, if you compile with a different
locale than you run under, you have to ensure that your code has no internal data,
and also that all libraries you use are run time locale sensitive. Consider the
following code fragment:
int main() {

setlocale(LC_ALL, "");

...
rc = scanf("%[1234567890abcdefABCDEF]", hexNum);

...
}

754 OS/390 V2R10.0 C/C++ Programming Guide

For example, if you compile with locale("De_DE.IBM-273"), the square brackets are
converted to the hex values X'63' and X'FC'. If the default locale you then run under
is not ″De_DE.IBM-273″, but instead ″En_US.IBM-1047″, and you have not used
setlocale(), the square brackets will be interpreted as Ä and Ü, and the call to
scanf() will not do what you intended.

If you only need to run your code locally or export it to a site that has your locale
environment, you can solve this problem by coding:
int main() {

setlocale(LC_ALL, __LOCALE__);

...
rc = scanf("%[1234567890abcdefABCDEF]", hexNum);

...
}

This ensures that your code runs with the same locale it was compiled under.
Library functions such as printf(), scanf(), strfmon(), and regcomp() are
sensitive to the current coded character set. The __LOCALE__ macro is described in
“Using Predefined Macros” on page 760.

If you are generating code to export to a site that may not have your locale
environment, you should write your code in IBM-1047.

Coded Character Set Independence in Developing Applications
To work effectively with the locale functionality, you may need to use functions,
macros, and tools. Here is a summary of the compile-edit work flow, showing what
functions you can use where.

Source Set up

Compiler Runtime

Converter

Listings and output files

2

3

1

4

6

5

Figure 223. Compile-Edit, Related to Locale Function

Chapter 52. Coded Character Set Considerations with Locale Functions 755

The highlighted numbers refer to the following functions:

�1� Setup. The localedef information (see overview in “Chapter 48.
Customizing a Locale” on page 705 and details in “Locale Source Files” on
page 673).

�2� Coded character set of source, header files, and data.

The complier must support the coded character set used to create a source
file so that it will recognize the variant C syntax characters correctly.

v The pragma filetag directive identifies the coded character set of the
source file as well as the library or user’s include files (for an overview
see “The pragma filetag Directive” on page 757)

v Predefined macros __LOCALE__, __FILETAG__, and __CODESET__ (for an
overview see “Using Predefined Macros” on page 760)

v The function setlocale()

�3� Coded character set conversion utilities and functions. The coded
character set of a file, or a stream of data, can be converted to another
coded character set using the utilities genxlt and iconv (for an overview
see “Chapter 51. Code Set Conversion Utilities” on page 721; for details see
the OS/390 C/C++ User’s Guide), as well as the functions in the run time
library.

�4� Coded character set conversion at compile time is determined by the
compile-time locale and supported by the compile-time options, locale and
nolocale (for an overview see “Converting Coded Character Sets at
Compile Time” on page 757; for details see the OS/390 C/C++ User’s
Guide).

�5� Run time environment. During run time, the setlocale() function has an
effect on run time functions, such as printf(), scanf(), and regcomp(),
which use variant characters.

�6� Listings and output files. The coded character set used to create or to
convert source files may affect listings, preprocessed source code, object
modules, and SYSEVENT files (for an overview see “Working With Listings
and Output Files” on page 762). Your application can, however, include logic
using the following to minimize the impact:

v __LOCALE__, __FILETAG__, and __CODESET__ macros

v Locale functions such as setlocale()

Coded Character Set of Source Code and Header Files
There are four types of locale-related changes that you can make in your source
code:

1. You can tag your source code and other associated files with the pragma filetag
directive to specify the coded character set that was used while entering the file.
Next, run compiles, being sure that all variant characters in your file are correct.

2. You can use the three new macros: __LOCALE__, __FILETAG__, and __CODESET__.
These OS/390 C/C++ macros expand to provide information about the pragma
filetag directive of the current source, and the locale and target coded character
set used by the compiler at compile time. See the chapter ″Predefined Macros″
in the OS/390 C/C++ Language Reference for more information.

3. You can use the setlocale() function to set the run-time locale to be the same
as the locale used to compile the application. This can be used when your
application contains dependencies on the coded character set, as it would when

756 OS/390 V2R10.0 C/C++ Programming Guide

comparing constants with external data. Using the macros forces the run-time
locale to be the same as the one used to compile your code.

4. You can use the #pragma convlit suspend and resume to exclude portions of you
code from string literal conversion. See the OS/390 C/C++ User’s Guide for
more details on the CONVLIT compiler option and theOS/390 C/C++ Language
Reference for more details on this #pragma.

The pragma filetag Directive
By using the pragma filetag directive, you may write your programs in any
convenient supported coded character set (see “Appendix D. Locales Supplied with
OS/390 C/C++” on page 779 for a list of coded character set names). The pragma
filetag directive instructs the OS/390 C/C++ compiler how to “read” the source. As
long as you tag the source files, the header files, and all data files (including
messages) with the pragma filetag directive, you keep the information about the
coded character set used to create each source file in the source file itself. This
information can be helpful when moving source files to systems with different coded
character sets. Here is the syntax:

%% ??=pragma filetag (″ code page name ″) %&

Here is an example tag that uses the German coded character set IBM-273:
??=pragma filetag("IBM-273")

Because the # character is variant in different coded character sets, you must use
the trigraph ??= instead for the pragma filetag directive.

The pragma filetag directive specifies the coded character set in which the source or
data was entered. The coded character set specified in the pragma filetag directive
is in effect for the entire source file, but not for any other source file. This also
applies to header files and data files.

The pragma filetag directive may appear at most once per file. It must appear before
the first statement in a program. If encountered elsewhere, a warning appears and
the directive does not change. Comments that contain variant characters and
appear before the directive do not translate.

Attention: If you use the iconv utility on a file tagged with the ??= pragma filetag
directive, you must update the file manually to change the filetag to the correct
converted coded character set. iconv does not update the pragma in source files.

Converting Coded Character Sets at Compile Time
The compile option locale enables you to tell the compiler what locale to use at
compile time; specifically, in what coded character set to generate output. The
output affected consists of:

v Preprocessed source code

v Listings

v Object Module

The syntax is:

Chapter 52. Coded Character Set Considerations with Locale Functions 757

%% locale (″ LOCALE ″)
NOLOCALE

%&

Further detail on this option is available in the OS/390 C/C++ Language Reference.

You can also control the conversion of string literals in your code by using the
compiler option CONVLIT.

The syntax is:

%% CONVLIT (″ codepage ″)
NOCONVLIT

%&

CONVLIT provides a means for changing the assumed code page for character string
literals. For example, if you write your code and use string literals on an ASCII client
machine and then upload to an EBCDIC Server, such as MVS, your string literals
would be converted to EBCDIC. However, if you were to specify the following when
you compiled your code, your string literals would be converted to an ASCII code
page:
CONVLIT(ISO8859-1)

Consider the following example:
/* header.h */
char *text="Hello World";

/* test.c */
#pragma convlit(suspend)
#pragma comment (user, "A user comment")

#include <stdio.h>
#include "header.h"
#pragma convlit(resume)

main (){
char *text2 ="Hi There!";

}

When this program is compiled with the CONVLIT (ISO8859-1) option, the string
″Hello World″ will not be converted while the string ″Hi there″ will be converted to
an ASCII string.

Further detail on this option is available in the OS/390 C/C++ User’s Guide.

Examples
To compile a sample file, userid.SORTNAME.C, enter:

CC 'userid.SORTNAME.C' (LOCALE("De_DE.IBM-273")

The compiler recognizes "De_DE.IBM-273" as a valid locale and automatically
converts the source code to coded character set IBM-273, for its own use. The
compiler would then generate listings in the German coded character set 273.

Here are the input files that are affected:

v The primary source file

758 OS/390 V2R10.0 C/C++ Programming Guide

v Library header files

v User header files

To generate a preprocessed file that can be sent to other sites, that use different
coded character sets, enter:
CC 'userid.SORTNAME.C' (LOCALE("De_DE.IBM-273") PPONLY

The compiler will insert the pragma filetag directive at the start of the preprocessed
file, using the coded character set specified in the locale option. In this example,
??=pragma filetag("IBM-273") is inserted.

Since the preprocessed file has been tagged, it can be compiled using the OS/390
C/C++ compiler at any site, regardless of the locale used.

Usage
If no pragma filetag directive was specified for the source file, and the locale
compile-time option is used, no conversion is performed. The compiler assumes
that the file is in the correct target coded character set already.

The locale-name is a string that represents the locale you want to compile source
with; this will determine the characteristics of output, including the coded character
set used for variant characters in the source. Usually, a locale-name consists of two
components: the territory name and the coded character set. For example, the
German locale for coded character set 273 is De_DE.IBM-273. The territory name is
De_DE and the coded character set is IBM-273. To determine the coded character set
of a given locale, use the function nl_langinfo(CODESET).

The special locale-name "" gives you the default locale, which can be set using
environment variables. The locale name "C" specifies the C default locale. Full
details about the C locale are found in “Chapter 50. Definition of S370 C, SAA C,
and POSIX C Locales” on page 713.

The default option setting is nolocale. It instructs the compiler to do no conversion
of text for input or for output. With nolocale, no conversion is performed on source
files being read. A warning message is issued if a pragma filetag directive is
encountered.

You can create your own locales by using the localedef utility. See “Locale Source
Files” on page 673 for details.

Summary of Source and Compile Use
The following list shows the results from different combinations of the pragma filetag
directive and the locale compiler option.

locale option specified
In this case, the compiler does the following:

v Converts the source code from the coded character set specified with the
pragma filetag directive to the code set specified by the locale option.

v If no pragma filetag directive is specified, the compiler assumes the
source is in the same coded character set as specified by the locale, and
does not perform any conversion.

v Converts compiler error messages from coded character set IBM-1047 to
the coded character set specified in the locale option.

v Generates compiler output in the same coded character set as that of the
locale specified in the locale option.

Chapter 52. Coded Character Set Considerations with Locale Functions 759

v Inserts the pragma filetag directive, using the coded character set
specified in the locale option, at the start of the preprocessor file, if
PPONLY is specified.

nolocale option specified
In this case, the compiler does the following:

v Does not convert text in the input or output file, and uses the default
coded character set IBM-1047 to interpret syntactic characters.

v If a pragma filetag directive is specified, the compiler suppresses the
pragma filetag directive in the preprocessor file. The compiler issues
warnings if the pragma filetag directive specifies a coded character set
other than IBM-1047, and uses IBM-1047 anyway.

Using Predefined Macros
There are three macros for OS/390 C/C++ that relate to locale.

__LOCALE__
This macro expands to a string literal representing the locale of the locale
compile option. This macro can be used to set the run time locale to be the
same as the compiled locale:
main() {

setlocale(LC_ALL, __LOCALE__);

...
}

The value of this macro is defined per compilation. If no locale compile option
was supplied, the macro is undefined.

__FILETAG__
This macro expands to a string literal representing the character coded
character set of the pragma filetag directive associated with the current file. For
example, to convert to the coded character set specified by the locale option
from the coded character set specified by the pragma filetag directive, you would
use the iconv_open() function:
iconv_open(__FILETAG__,variable);

The value of this macro is defined per source file. If no pragma filetag directive
is present, the macro is undefined.

__CODESET__
This macro expands to a string literal representing the character coded
character set of the locale compile option. If a value was not supplied at
compilation, the macro is undefined.

760 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GCC2:

The following illustration shows the values that these macros will take on,
emphasizing that for __FILETAG__, a value is assigned for each source file, but for
__LOCALE__ and __CODESET__, a value is assigned for a compilation.

#include <iconv.h>
#include <string.h>
#include <stdio.h>

/* The following function could be in a header file */
#ifdef __CODESET__

static int convstr(iconv_t convInfo, char *in, int inSize,
char *out, int outSize) {

return(iconv(convInfo, in, inSize, out, outSize))
}

#else
static int convstr(iconv_t convInfo, char *in, int inSize,

char *out, int outSize) {
memcpy(out, in, outSize > inSize ? inSize : outSize);
return(outSize > inSize ? -1 : 0);

}
#endif

iconv_t convInfo;

int main() {
#ifdef __CODESET__

char *run-timeCodeSet;
setlocale(LC_ALL, ""); /* set locale to default locale */
run-timeCodeSet = nl_langinfo(CODESET);
convInfo = iconv_open(run-timeCodeSet, __CODESET__);

#endif
char intro[] = "Welcome to my variant world!\n";
char nlIntro[sizeof(intro)];
convstr(convInfo, intro, sizeof(intro),

nlIntro, sizeof(nlIntro));
puts(nlIntro); /* string will print appropriately */

#ifdef __CODESET__
iconv_close(convInfo);

#endif

return(0);
}

Figure 224. Example of __CODESET__ macro

Chapter 52. Coded Character Set Considerations with Locale Functions 761

Using a Predefined Locale
You can change the run time localeto any one of the other predefined locales listed
in Table 80 on page 779 To use a defined locale, refer to it by its setlocale()
parameter.

To define a new locale, copy the source file provided, edit it, and assemble it (see
“Chapter 48. Customizing a Locale” on page 705).

Working With Listings and Output Files
The compiler respects the locale specified by the locale compile option in
generating the listing. If the nolocale compile option is in effect, no locale
information is used and no conversion is performed on any of the output files.

The output files affected are:

v Object Modules

v Preprocessed source code

v Listings

Assuming: Compiled source file with LOCALE("De_DE.IBM-273")

PRIMARY SOURCE FILE

#include <stdio.h>
.
.
.
.
.
.
.

#include "usrfile1.h"
.
.
.
.

#include "usrfile2.h"
.

STDIO.H

USRFILE1.H

USRFILE2.H

??=pragma filetag("IBM-1047")
...........

...........

??=pragma filetag("IBM-273")
...........

For the entire compilation: __LOCALE__ = "De_DE.IBM273"
__CODESET__ = "IBM-273"

In STDIO.H: __FILETAG__ = "IBM-1047"

In USRFILE1.H: __FILETAG__ is undefined

In USRFILE@.H: __FILETAG__ = "IBM-273"

Figure 225. Values of Macros __FILETAG__, __LOCALE__, and __CODESET__

762 OS/390 V2R10.0 C/C++ Programming Guide

Object Modules
If the locale option is specified, the object module is generated in the coded
character set of your current locale. Otherwise, the object module is generated in
the coded character set IBM-1047.

Code will run correctly if the run time locale is the same as the locale of the object
module.

If the object was generated with a different locale from the one you run under, you
must ensure that your code can run under different locales. Refer to “Chapter 48.
Customizing a Locale” on page 705 for more information.

For information about exporting code to other sites, see “Exporting Source Code to
Other Sites” on page 754.

You can use the compile option locale to ensure that listings are sensitive to a
specified locale. For example, here is the result from compiling the source file HELLO
with:
c89 -o hello -Wc,so,locale\("De_DE.IBM-273"\),xplink,goff hello.c

In the listing above, notice the locale-specific information:

15647A01 V2 R10 OS/390 C ./hello.c �1�14.04.00 14:20:56 Page 1

* * * * * P R O L O G * * * * *

Compile Time Library : 220A0000
Command options:

Program name. : ./hello.c
Compiler options. : *NOGONUMBER *NOALIAS *NODECK *RENT *TERMINAL *NOUPCONV *SOURCE *NOLIST

: *NOXREF *NOAGGR *NOPPONLY *NOEXPMAC *NOSHOWINC *NOOFFSET *MEMORY *NOSSCOMM
: *LONGNAME *START *EXECOPS *ARGPARSE *NOEXPORTAL *NODLL(NOCALLBACKANY)
: *NOLIBANSI *NOWSIZEOF *REDIR *ANSIALIAS *NODIGRAPH *NOROCONST *NOROSTRING
: *TUNE(3) *ARCH(2) *SPILL(128) *MAXMEM(2097152) *NOCOMPACT
: *TARGET(LE,CURRENT) *FLAG(W) *NOTEST(SYM,BLOCK,LINE,PATH,HOOK) *NOOPTIMIZE
: *NOINLINE(AUTO,REPORT,100,1000) *NESTINC(255)
: *NOCHECKOUT(NOPPTRACE,PPCHECK,GOTO,ACCURACY,PARM,NOENUM,
: NOEXTERN,TRUNC,INIT,NOPORT,GENERAL,CAST)
: *FLOAT(HEX,FOLD,NOAFP) *STRICT *NOIGNERRNO *NOINITAUTO
: *NOCOMPRESS *NOSTRICT_INDUCTION *AGGRCOPY(NOOVERLAP)
: *NOCSECT
: *NOEVENTS
: *OBJECT(./hello.o)
: *NOGENPCH
: *NOUSEPCH
: *NOOPTFILE
: *NOSERVICE
: *OE
: *NOIPA
: *SEARCH(//'TSCTEST.CEE210.SCEEH.NET.H', //'TSCTEST.CEE210.SCEEH.H',
: //'TSCTEST.CEE210.SCEEH.NETINET.H', //'TSCTEST.CEE210.SCEEH.+')
: *NOLSEARCH
: *LOCALE *HALT(16) *PLIST(HOST)
: *NOCONVLIT
: *GOFF
: *XPLINK(NOBACKCHAIN,NOSTOREARGS,GUARD,OSCALL(NOSTACK))
: DEFINE(errno=(*__errno()))
: DEFINE(_OPEN_DEFAULT=1)

Version Macros. : __COMPILER_VER__=0x220A0000 __LIBREL__=0x220A0000 __TARGET_LIB__=0x220A0000
Language level. : *ANSI
Source margins. :
Varying length. : 1 - 32760
Fixed length. : 1 - 32760

Sequence columns. :
Varying length. : none
Fixed length. : none

Locale Name : DE_DE.IBM-273�2�
Code Set. : IBM-273

* * * * * E N D O F P R O L O G * * * * *
15647A01 V2 R10 OS/390 C ./hello.c 14.04.00 14:20:56 Page 2

* * * * * S O U R C E * * * * *

LINE STMT SEQNBR INCNO
...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+..

1 |??=pragma filetag("IBM-1047") | 1
2 |#include <stdio.h> | 2
3 | | 3
4 |void main() ä �3� | 4
5 1 | printf("helloÖn");�3� | 5
6 |ü�3� | 6

* * * * * E N D O F S O U R C E * * * * *

Figure 226. Example of Output When Locale Option Used

Chapter 52. Coded Character Set Considerations with Locale Functions 763

�1� The date at the top right. The format of the date in the listing is that
specified by the locale.

�2� The name of the locale and the code set.

�3� Code points for the }, /, and { characters.

Considerations With Other Products and Tools

Note: Any software tool that scans source code or compiler listings is affected by
the introduction of the locale functionality. Tools that read or generate source
code now need to recognize the pragma filetag directive. Tools that read
listings need to recognize the coded character set in the title header.

Since the following tools scan source code, they may be affected:

v The Debug Tool does not support code written in any coded character set other
than IBM-1047.

v Translators such as CICS and DB2 read source files and generate new source
files. If they do not, then follow these steps:

1. Convert the source file to coded character set IBM-1047 using the iconv
utility.

2. Remove the pragma filetag directive from the source file, or change it to
??=pragma filetag("IBM-1047"). Run the source that is in the IBM-1047
coded character set through the appropriate translator, if needed.

764 OS/390 V2R10.0 C/C++ Programming Guide

||

Part 8. Appendixes

© Copyright IBM Corp. 1996, 2000 765

766 OS/390 V2R10.0 C/C++ Programming Guide

Appendix A. POSIX Character Set

POSIX 1003.2, section 2.4, specifies the characters that are in the portable
character set. The following table lists the characters in the portable character set
with their symbolic name, the GCGID, and the graphic symbol for the character.
Some of the characters (the hyphen, for example) also have alternate symbolic
names.

The input files for the localedef utility, the charmap file and the locale definition file,
are coded using the characters in the portable character set.

Symbolic Name Alternate Name Character

<NUL>

<alert> <SE08>

<backspace> <SE09>

<tab> <SE10>

<newline> <SE11>

<vertical-tab> <SE12>

<form-feed> <SE13>

<carriage-return> <SE14>

<space> <SP01>

<exclamation-mark> <SP02> !

<quotation-mark> <SP04> "

<number-sign> <SM01> #

<dollar-sign> <SC03> $

<percent-sign> <SM02> %

<ampersand> <SM03> &

<apostrophe> <SP05> '

<left-parenthesis> <SP06> (

<right-parenthesis> <SP07>)

<asterisk< <SM04> *

<plus-sign> <SA01> +

<comma> <SP08> ,

<hyphen> <SP10> -

<hyphen-minus> <SP10> -

<period> <SP11> .

<slash> <SP12> /

<zero> <ND10> 0

<one> <ND01> 1

<two> <ND02> 2

<three> <ND03> 3

<four> <ND04> 4

<five> <ND05> 5

<six> <ND06> 6

© Copyright IBM Corp. 1996, 2000 767

Symbolic Name Alternate Name Character

<seven> <ND07> 7

<eight> <ND08> 8

<nine> <ND09> 9

<colon> <SP13> :

<semicolon> <SP14> ;

<less-than-sign> <SA03> <

<equals-sign> <SA04> =

<greater-than-sign> <SA05> >

<question-mark> <SP15> ?

<commercial-at> <SM05> @

<A> <LA02> A

 <LB02> B

<C> <LC02> C

<D> <LD02> D

<E> <LE02> E

<F> <LF02> F

<G> <LG02> G

<H> <LH02> H

<I> <LI02> I

<J> <LJ02> J

<K> <LK02> K

<L> <LL02> L

<M> <SM02> M

<N> <LN02> N

<O> <LO02> O

<P> <LP02> P

<Q> <LQ02> Q

<R> <LR02> R

<S> <LS02> S

<T> <LT02> T

<U> <LU02> U

<V> <LV02> V

<W> <LW02> W

<X> <LX02> X

<Y> <LY02> Y

<Z> <LZ02> Z

<left-square-bracket> <SM06> [

<backslash> <SM07> \

<reverse-solidus> <SM07> \

<right-square-bracket> <SM08>]

<circumflex> <SD15> |

768 OS/390 V2R10.0 C/C++ Programming Guide

Symbolic Name Alternate Name Character

<circumflex-accent> <SD15> |

<underscore> <SP09> _

<low-line> <SP09> _

<grave-accent> <SD13> v

<a> <LA01> a

 <LB01> b

<c> <LC01> c

<d> <LD01> d

<e> <LE01> e

<f> <LF01> f

<g> <LG01> g

<h> <LH01> h

<i> <LI01> i

<j> <LJ01> j

<k> <LK01> k

<l> <LL01> l

<m> <LM01> m

<n> <LN01> n

<o> <LO01> o

<p> <LP01> p

<q> <LQ01> q

<r> <LR01> r

<s> <LS01> s

<t> <LT01> t

<u> <LU01> u

<v> <LU01> v

<w> <LW01> w

<x> <LX01> x

<y> <LY01> y

<z> <LZ01> z

<left-brace> <SM11> {

<left-curly-bracket> <SM11> {

<vertical-line> <SM13> |

<right-brace> <SM14> }

<right-curly-bracket> <SM14> }

<tilde> <SD19> ˜

With OS/390 C/C++, the localedef utility uses code page IBM-1047 as the definition
of the code points for the characters in the Portable Character Set. Therefore the
default values for the escape-char and comment-char are the code points from the
IBM-1047 code page.

Appendix A. POSIX Character Set 769

There are some coded character sets, such as the Japanese Katakana coded
character set 290, that have code points for the lowercase characters different from
the code points for the lowercase characters in the set IBM-1047. A charmap file or
locale definition file cannot be coded using these coded character sets.

770 OS/390 V2R10.0 C/C++ Programming Guide

Appendix B. Mapping Variant Characters for OS/390 C/C++

This appendix describes how you can enter and display the variant characters.
These characters include square brackets ([]) and the caret character (|) for the
host environment. If you use a programmable workstation or a 3270 terminal, you
can follow the documented procedures to map the keys on your keyboard.
Remapping will send the correct variant character hexadecimal values to the host
system for the OS/390 C/C++ compiler.

�1� See the OS/390 C/C++ User’s Guide for more information on this utility. �2�See
“Displaying Square Brackets When Using ISPF” on page 774 for more information
on variant characters.

Note: If you are running a programmable workstation by using host emulation
software, apply your host emulation software’s keyboard by remapping first.
If this allows correct hexadecimal values for the variant characters sent to
the host, then you have completed the task.

Displaying Hexadecimal Values
To ensure that your current keys generate correct hexadecimal values for the
OS/390 C/C++ compiler and its library, use the following program to show the
hexadecimal values on the display. This program displays the hexadecimal values
for the variant characters that your current setup uses, and the values that the
compiler and library expect.

Note: See the appropriate section of the OS/390 C/C++ User’s Guide for
information on the LOCALE|NOLOCALE option and the list of IBM-supported
locales available for use at compile time or run time. The default C locale is
encoded in code page IBM-1047; therefore the default encoding of variant
characters is as in IBM-1047.

Example
The sample program reads the ten characters from the input file MYFILE.DAT and
displays the character values in hexadecimal notation. The program also queries

Compile and run sample program
in Displaying Hexadecimal Values.
View hexadecimal values for the
variant characters.

Keyed in hex values match those
used by the compiler.

Use iconv() to convert your source coded
character set to IBM-1047 which the compiler
recognizes by default.

Use EDIT session to correct variant characters.

NO

YES
Done

Apply one
of the

following: 1

2

Figure 227. Variant Characters

© Copyright IBM Corp. 1996, 2000 771

the current compile time locale for the character values that compiler would expect.
These ten variant characters are selected because they are syntactically important
to the OS/390 C/C++ compiler. You must type them in MYFILE.DAT in this order on a
single line, without spaces between them:
v backslash \
v right square bracket]
v left square bracket [
v right brace }
v left brace {
v circumflex |
v tilde ˜
v exclamation mark !
v number sign #
v vertical line |

You can use the sample program to display the character values and then reset
your environment. This will generate the codes as shown in the column EXPECTED
BY COMPILER. After re-editing your input file, you can run this program again. Consult
your system programmer for the coded character set that your installation uses. If
you are running under TSO, the data file containing the ten variant characters is
TSOid.myfile.dat. Assign this file to SYSIN and run the program.

CBC3GMV1

/* this example will display hexadecimal values for the variant */
/* characters */

#include <stdio.h>
#include <locale.h>
#include <variant.h>
#include <stdlib.h>

Figure 228. Example of Displaying Hexadecimal Values (Part 1 of 2)

772 OS/390 V2R10.0 C/C++ Programming Guide

void read_user_data(char *, int);

void main() {
char *user_char, *compiler_char;

struct variant *compiler_var_char;
int num_var_char, index;
char *code_set;
char *char_names[]={"backslash",

"right bracket",
"left bracket",
"right brace",
"left_brace",
"circumflex",
"tilde",
"exclamation mark",
"number sign",
"vertical line"};

num_var_char=sizeof(char_names)/sizeof(char *);
if ((user_char=(char*)calloc(num_var_char, 1)) == NULL)
{

printf("Error: Unable to allocate the storage\n");
exit(99);

}

read_user_data(user_char, num_var_char);
/* managed to read the users' characters from the file */

code_set="default IBM-1047";
compiler_char="\xe0\xbd\xad\xd0\xc0\x5f\xa1\x5a\x7b\x4f";

/* standard compiler code page */

printf("Compiler and library code page is : %s\n\n", code_set);
printf(" Variant character values:\n");
printf(" %16s expected by compiler your current\n", "");
for (index=0; index<num_var_char; index++)

printf(" %16s : %X %X\n",
char_names[index], compiler_char[index], user_char[index]);

exit(0);
}

void read_user_data(char* char_array, int num_var_char)
{

FILE *stream;
int num;

if (stream = fopen ("myfile.dat", "rb"))
if(!(num = fread(char_array, 1, num_var_char, stream)))
{

printf("Error: Unable to read from the file\n");
exit(99);

}
else { ;}

else
{

printf("Error: Unable to open the file\n");
exit(99);

}
fclose(stream);
return;

}

Figure 228. Example of Displaying Hexadecimal Values (Part 2 of 2)

Appendix B. Mapping Variant Characters for OS/390 C/C++ 773

After executing this program, use the procedures described above to ensure that
your special characters on the keyboard generate the hexadecimal values expected
by the OS/390 C/C++ compiler.

Using pragma Filetag To Specify Code Page in C
Add the following pragma filetag in the source and header file to specify that the
code page encodes the file:
??=ifdef __COMPILER_VER__

??=pragma filetag ("codepage")
??=endif

codepage is the codepage in which the source code is written.

Note: If you are running standard 3270 emulation in the U.S., your workstation
software most likely uses code page 37. You can then use this alternative by
specifying IBM-037 as codepage.

Displaying Square Brackets When Using ISPF
When your workstation is sending correct hexadecimal values for the square
brackets to the host system, you may still find that they are not correctly displayed
by the ISPF editor when you key them in. The following sample ISPF macro can be
used to view the [and] characters in text, trigraph, or hex form. You can then
toggle between the three settings. Include this macro in a regular CLIST library that
is concatenated to the ddname SYSPROC.

774 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GMV2

Using The CBC3GMV2 Macro
Follow these steps to use the CBC3GMV2 macro:
1. Remap your host emulation software keyboard. If this does not enable correct

display of [and] on ISPF, try this macro.
2. Start ISPF to edit the C or C++ source file.

/* this ISPF macro can be used to display square brackets in different
/* formats

PROC 0
ISREDIT MACRO

SET RP = &STR())
/* Symbolic values for 6 C language symbols.
/* 1. left bracket, ebcdic hex value
/* 2. right bracket, ebcdic hex value
/* 3. left bracket, trigraph
/* 4. right bracket, trigraph
/* 5. left bracket, square
/* 6. right bracket, square
SET LBRACKET_HEX = X'AD'
SET RBRACKET_HEX = X'BD'
SET LBRACKET_TRI = &STR(??(
SET RBRACKET_TRI = &STR(??&RP)
SET LBRACKET_SQR = X'BA' /* LBRACKET_SQR = HEX BA */
SET RBRACKET_SQR = X'BB' /* RBRACKET_SQR = HEX BB */

ISREDIT FIND &LBRACKET_HEX ALL NX
ISREDIT (N1) = FIND_COUNTS
ISREDIT FIND &RBRACKET_HEX ALL NX
ISREDIT (N2) = FIND_COUNTS
IF (&N1 ¬= &N2) THEN WRITEUNBALANCED HEX BRACKETS
IF (&N1 > 0) THEN DO

ISREDIT CHANGE &LBRACKET_HEX &LBRACKET_TRI ALL NX
ISREDIT CHANGE &RBRACKET_HEX &RBRACKET_TRI ALL NX
EXIT

END

ISREDIT FIND &LBRACKET_TRI ALL NX
ISREDIT (N1) = FIND_COUNTS
ISREDIT FIND &RBRACKET_TRI ALL NX
ISREDIT (N2) = FIND_COUNTS
IF (&N1 ¬= &N2) THEN WRITEUNBALANCED TRIGRAPH
IF (&N1 > 0) THEN DO

ISREDIT CHANGE &LBRACKET_TRI &LBRACKET_SQR ALL NX
ISREDIT CHANGE &RBRACKET_TRI &RBRACKET_SQR ALL NX
EXIT

END

ISREDIT FIND &LBRACKET_SQR ALL NX
ISREDIT (N1) = FIND_COUNTS
ISREDIT FIND &RBRACKET_SQR ALL NX
ISREDIT (N2) = FIND_COUNTS
IF (&N1 ¬= &N2) THEN WRITEUNBALANCED SQUARE BRACKETS
IF (&N1 > 0) THEN DO

ISREDIT CHANGE &LBRACKET_SQR &LBRACKET_HEX ALL NX
ISREDIT CHANGE &RBRACKET_SQR &RBRACKET_HEX ALL NX
EXIT

END

Figure 229. Sample ISPF Macro for Displaying Square Brackets

Appendix B. Mapping Variant Characters for OS/390 C/C++ 775

3. Run the CBC3GMV2 macro before editing to convert the compiler recognizable
hexadecimal values of the square brackets to trigraphs.

4. Run the CBC3GMV2 macro again to convert the trigraphs to displayable
characters.

5. Edit your C or C++ source code.
6. Run the CBC3GMV2 macro again to convert the displayable characters back to

original hexadecimal values.
7. Save and File the C source file.

Procedure for Mapping on 3279
Follow this procedure if you are using a 3279-S3G-1 with ISPF, OS/390 batch, or
TSO. You should have the APL keys on your keyboards.

v Go to ISPF 0.1 and set the terminal type to 3278A.

v Edit the file which has the square brackets.

When you want to enter brackets [or] , press ALT APLon, enter the square
brackets and then ALT APLoff. You get = X'AD', and = X'BD', which is what
OS/390 C/C++ expects for square brackets.

776 OS/390 V2R10.0 C/C++ Programming Guide

Appendix C. OS/390 C/C++ Code Point Mappings

The tables below show the code point mappings for Latin-1/Open Systems coded
character set 1047 (Figure 230) and for the APL coded character set 293
(Figure 231 on page 778).

Code Page 01047

Figure 230. Coded Character Set for Latin 1/Open Systems

© Copyright IBM Corp. 1996, 2000 777

Code Page 00293

Figure 231. Coded Character Set for APL

778 OS/390 V2R10.0 C/C++ Programming Guide

Appendix D. Locales Supplied with OS/390 C/C++

The following tables list the compiled locales and locale source files supported by
default with the OS/390 C/C++ product. All of these locale files are provided with
the National Language Resources feature of OS/390 Language Environment.

Starting with OS/390 V1R3, the compiled locales are built using the locale source
files stored in the CEE.SCEELOCX partitioned dataset. The CEE.SCEELOCX locale source
files were created in support of the XPG4 standard. The previous locale source files
(pre-XPG4) are in the CEE.SCEELOCL partitioned dataset. We include the pre-XPG4
source for customers who want to run in a non-POSIX locale environment.

Note: In the HFS, the locale source files are in /usr/lib/nls/localedef and the
binaries are in /usr/lib/nls/locale (we do not ship the pre-XPG4 source or
binaries in the HFS).

Compiled Locales
The following table lists each setlocale() parameter and its corresponding
language, country, codeset, and actual program name. The S370 C, POSIX C and SAA
C locales do not have locale modules associated with them. They are built-in locales
that cannot be modified, and are always present. Their names cannot be changed.
These locales are based on the coded character set IBM-1047. The new versions
of the POSIX C and SAA C locales can be provided, but to refer to them, you must
specify the full name of the requested locale, including the CodesetRegistry-
CodesetEncoding names. For example,
"SAA.IBM-037"

refers to the SAA C locale built from the coded character set IBM-037.

Note: Not all locales listed in the following table are fully enabled. The compiler
cannot compile source that is coded in Ja_JP.IBM-290, Ja_JP.IBM-930, or
Tr_TR.IBM-1026.

The <prefix> in the Load module name column is EDC for non-XPLINK locales and
CEH for XPLINK locales.

Table 80. Compiled locales supplied with OS/390 C/C++

Locale name as in
setlocale() argument Language Country Codeset

Load module
name

Bg_BG.IBM-1025 Bulgarian Bulgaria IBM-1025 <prefix>$BGFE

Cs_CZ.IBM-870 Czech Czech Republic IBM-870 <prefix>$CZEQ

Da_DK.IBM-277 Danish Denmark IBM-277 <prefix>$DAEE

Da_DK.IBM-1047 Danish Denmark IBM-1047 <prefix>$DAEY

Da_DK.IBM-1142 Danish Denmark IBM-1142 <prefix>$DAHE

Da_DK.IBM-1142@euro Danish Denmark IBM-1142 <prefix>@DAHE

De_CH.IBM-500 German Switzerland IBM-500 <prefix>$DCEO

De_CH.IBM-1047 German Switzerland IBM-1047 <prefix>$DCEY

De_CH.IBM-1148 German Switzerland IBM-1148 <prefix>$DCHO

De_CH.IBM-1148@euro German Switzerland IBM-1148 <prefix>@DCHO

© Copyright IBM Corp. 1996, 2000 779

|
|

||

|
||||
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 80. Compiled locales supplied with OS/390 C/C++ (continued)

Locale name as in
setlocale() argument Language Country Codeset

Load module
name

De_DE.IBM-273 German Germany IBM-273 <prefix>$DDEB

De_DE.IBM-1047 German Germany IBM-1047 <prefix>$DDEY

De_DE.IBM-1141 German Germany IBM-1141 <prefix>$DDHB

De_DE.IBM-1141@euro German Germany IBM-1141 <prefix>@DDHB

El_GR.IBM-875 Ellinika Greece IBM-875 <prefix>$ELES

En_GB.IBM-285 English United Kingdom IBM-285 <prefix>$EKEK

En_GB.IBM-1047 English United Kingdom IBM-1047 <prefix>$EKEY

En_GB.IBM-1146 English United Kingdom IBM-1146 <prefix>$EKHK

En_GB.IBM-1146@euro English United Kingdom IBM-1146 <prefix>@EKHK

En_JP.IBM-1027 English Japan IBM-1027 <prefix>$EJEX

En_US.IBM-037 English United States IBM-037 <prefix>$EUEA

En_US.IBM-1047 English United States IBM-1047 <prefix>$EUEY

En_US.IBM-1140 English United States IBM-1140 <prefix>$EUHA

En_US.IBM-1140@euro English United States IBM-1140 <prefix>@EUHA

Es_ES.IBM-284 Spanish Spain IBM-284 <prefix>$ESEJ

Es_ES.IBM-1047 Spanish Spain IBM-1047 <prefix>$ESEY

Es_ES.IBM-1145 Spanish Spain IBM-1145 <prefix>$ESHJ

Es_ES.IBM-1145@euro Spanish Spain IBM-1145 <prefix>@ESHJ

Et_EE.IBM-1122 Estonian Estonia IBM-1122 <prefix>$EEFD

Fi_FI.IBM-278 Finnish Finland IBM-278 <prefix>$FIEF

Fi_FI.IBM-1047 Finnish Finland IBM-1047 <prefix>$FIEY

Fi_FI.IBM-1143 Finnish Finland IBM-1143 <prefix>$FIHF

Fi_FI.IBM-1143@euro Finnish Finland IBM-1143 <prefix>@FIHF

Fr_BE.IBM-500 French Belgium IBM-500 <prefix>$FBEO

Fr_BE.IBM-1047 French Belgium IBM-1047 <prefix>$FBEY

Fr_BE.IBM-1148 French Belgium IBM-1148 <prefix>$FBHO

Fr_BE.IBM-1148@euro French Belgium IBM-1148 <prefix>@FBHO

Fr_CA.IBM-037 French Canada IBM-037 <prefix>$FCEA

Fr_CA.IBM-1047 French Canada IBM-1047 <prefix>$FCEY

Fr_CA.IBM-1140 French Canada IBM-1140 <prefix>$FCHA

Fr_CA.IBM-1140@euro French Canada IBM-1140 <prefix>@FCHA

Fr_CH.IBM-500 French Switzerland IBM-500 <prefix>$FSEO

Fr_CH.IBM-1047 French Switzerland IBM-1047 <prefix>$FSEY

Fr_CH.IBM-1148 French Switzerland IBM-1148 <prefix>$FSHO

Fr_CH.IBM-1148@euro French Switzerland IBM-1148 <prefix>@FSHO

Fr_FR.IBM-297 French France IBM-297 <prefix>$FFEM

Fr_FR.IBM-1047 French France IBM-1047 <prefix>$FFEY

Fr.FR.IBM-1147 French France IBM-1147 <prefix>$FFHM

Fr.FR.IBM-1147@euro French France IBM-1147 <prefix>@FFHM

780 OS/390 V2R10.0 C/C++ Programming Guide

|

|
||||
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 80. Compiled locales supplied with OS/390 C/C++ (continued)

Locale name as in
setlocale() argument Language Country Codeset

Load module
name

Hr_HR.IBM-870 Croatian Croatia IBM-870 <prefix>$HREQ

Hu_HU.IBM-870 Hungarian Hungary IBM-870 <prefix>$HUEQ

Is_IS.IBM-871 Icelandic Iceland IBM-871 <prefix>$ISER

Is_IS.IBM-1047 Iceland Iceland IBM-1047 <prefix>$ISEY

Is_IS.IBM-1149 Icelandic Iceland IBM-1149 <prefix>$ISHR

Is_IS.IBM-1149@euro Icelandic Iceland IBM-1149 <prefix>@ISHR

It_IT.IBM-280 Italian Italy IBM-280 <prefix>$ITEG

It_IT.IBM-1047 Italian Italy IBM-1047 <prefix>$ITEY

It_IT.IBM-1144 Italian Italy IBM-1144 <prefix>$ITHG

It_IT.IBM-1144@euro Italian Italy IBM-1144 <prefix>@ITHG

Iw_IL.IBM-424 Hebrew Israel IBM-424 <prefix>$ILFB

Ja_JP.IBM-290 Japanese Japan IBM-290 <prefix>$JAEL

Ja_JP.IBM-930 Japanese Japan IBM-930 <prefix>$JAEU

Ja_JP.IBM-939 Japanese Japan IBM-939 <prefix>$JAEV

Ja_JP.IBM-1027 Japanese Japan IBM-1027 <prefix>$JAEX

Ja_JP.IBM-1390 Japanese Japan IBM-1390 <prefix>$JAHU

Ja_JP.IBM-1399 Japanese Japan IBM-1399 <prefix>$JAHV

Ko_KR.IBM-933 Korean Korea IBM-933 <prefix>$KRGZ

Ko_KR.IBM-1364 Korean Korea IBM-1364 <prefix>$KRKZ

Lt_LT.IBM-1112 Lithuanian Lithuania IBM-1112 <prefix>$LTGD

Mk_MK.IBM-1025 Macedonian Macedonia IBM-1025 <prefix>$MMFE

Nl_BE.IBM-500 Dutch Belgium IBM-500 <prefix>$NBEO

Nl_BE.IBM-1047 Dutch Belgium IBM-1047 <prefix>$NBEY

Nl_BE.IBM-1148 Dutch Belgium IBM-1148 <prefix>$NBHO

Nl_BE.IBM-1148@euro Dutch Belgium IBM-1148 <prefix>@NBHO

Nl_NL.IBM-037 Dutch The Netherlands IBM-037 <prefix>$NNEA

Nl_NL.IBM-1047 Dutch Netherlands IBM-1047 <prefix>$NNEY

Nl_NL.IBM-1140 Dutch Netherlands IBM-1140 <prefix>$NNHA

Nl_NL.IBM-1140@euro Dutch Netherlands IBM-1140 <prefix>@NNHA

No_NO.IBM-277 Norwegian Norway IBM-277 <prefix>$NOEE

No_NO.IBM-1047 Norwegian Norway IBM-1047 <prefix>$NOEY

No_NO.IBM-1142 Norwegian Norway IBM-1142 <prefix>$NOHE

No_NO.IBM-1142@euro Norwegian Norway IBM-1142 <prefix>@NOHE

Pl_PL.IBM-870 Polish Poland IBM-870 <prefix>$PLEQ

Pt_BR.IBM-037 Portuguese Brazil IBM-037 <prefix>$BREA

Pt_BR.IBM-1047 Portuguese Brazil IBM-1047 <prefix>$BREY

Pt_BR.IBM-1140 Portuguese Belgium IBM-1140 <prefix>$BRHA

Pt_BR.IBM-1140@euro Portuguese Belgium IBM-1140 <prefix>@BRHA

Pt_PT.IBM-037 Portuguese Portugal IBM-037 <prefix>$PTEA

Appendix D. Locales Supplied with OS/390 C/C++ 781

|

|
||||
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 80. Compiled locales supplied with OS/390 C/C++ (continued)

Locale name as in
setlocale() argument Language Country Codeset

Load module
name

Pt_PT.IBM-1047 Portuguese Portugal IBM-1047 <prefix>$PTEY

Pt_PT.IBM-1140 Portuguese Portugal IBM-1140 <prefix>$PTHA

Pt_PT.IBM-1140@euro Portuguese Portugal IBM-1140 <prefix>@PTHA

Ro_RO.IBM-870 Romanian Romania IBM-870 <prefix>$ROEQ

Ru_RU.IBM-1025 Russian Russia IBM-1025 <prefix>$RUFE

Sh_SP.IBM-870 Serbian
(Latin)

Serbia IBM-870 <prefix>$SLEQ

Sk_SK.IBM-870 Slovak Slovakia IBM-870 <prefix>$SKEQ

Sl_SL.IBM-870 Slovene Slovenia IBM-870 <prefix>$SIEQ

Sq_AL.IBM-500 Albanian Albania IBM-500 <prefix>$SAEO

Sq_AL.IBM-1047 Albanian Albania IBM-1047 <prefix>$SAEY

Sq_AL.IBM-1148 Albanian Albania IBM-1148 <prefix>$SAHO

Sq_AL.IBM-1148@euro Albanian Albania IBM-1148 <prefix>@SAHO

Sr_SP.IBM-1025 Serbian
(Cyrillic)

Serbia IBM-1025 <prefix>$SCFE

Sv_SE.IBM-278 Swedish Sweden IBM-278 <prefix>$SVEF

Sv_SE.IBM-1047 Swedish Sweden IBM-1047 <prefix>$SVEY

Sv_SE.IBM-1143 Swedish Sweden IBM-1143 <prefix>$SVHF

Sv_SE.IBM-1143@euro Swedish Sweden IBM-1143 <prefix>@SVHF

th_TH.IBM-838 Thai Thailand IBM-838 <prefix>$THEP

Tr_TR.IBM-1026 Turkish Turkey IBM-1026 <prefix>$TREW

Zh_CN.IBM-935 Simplified
Chinese

China (PRC) IBM-935 <prefix>$ZCGY

Zh_CN.IBM-1388 Simplified
Chinese

China (PRC) IBM-1388 <prefix>$ZCGV

Zh_TW.IBM-937 Traditional
Chinese

Taiwan (ROC) IBM-937 <prefix>$ZTGW

Locale Source Files
The locale source files are supplied to enable you to build locales in coded
character sets other than those supplied. The locale sources supplied are listed in
the following table.

The “Applicable Codesets” column indicates which charmap files can be used with
the source files to build the locales. The values in this column indicate the following:

All The locale source contains only the portable character set and can be used
to build a locale with any of the supplied charmap files.

Latin-1
The locale source contains characters from the Latin-1 character set, and
can be used to build a locale from any of the supplied Latin-1 charmap files.
See “Appendix E. Charmap Files Supplied with OS/390 C/C++” on
page 787 for a list of Latin-1 charmap files.

782 OS/390 V2R10.0 C/C++ Programming Guide

|

|
||||
|
|

|||||

|||||

|||||

|||||

|||||

||
|
|||

|||||

|||||

|||||

|||||

|||||

|||||

||
|
|||

|||||

|||||

|||||

|||||

|||||

|||||

||
|
|||

||
|
|||

||
|
|||

|

|

Other The locale source is specific to the specified coded character set, and can
only be used to build a locale with the specified charmap file.

Table 81. Locale source files supplied with OS/390 C/C++

Language Country Source name Applicable
Codesets

POSIX (built-in) EDC$POSX All

SAA (built-in) EDC$SAAC Latin-1

Bulgarian Bulgaria EDC$BGFE IBM-1025

Portuguese Brazil EDC$BREY Latin-1

Portuguese Brazil EDC$BRHA IBM-1140

Portuguese Brazil EDC@BRHA IBM-1140

Czech Czech Republic EDC$CZEQ IBM-870

Danish Denmark EDC$DAEY Latin-1

Danish Denmark EDC$DAHE IBM-1142

Danish Denmark EDC@DAHE IBM-1142

German Switzerland EDC$DCEY Latin-1

German Switzerland EDC$DCHO IBM-1148

German Switzerland EDC@DCHO IBM-1148

German Germany EDC$DDEY Latin-1

German Germany EDC$DDHB IBM-1141

German Germany EDC@DDHB IBM-1141

Estonian Estonia EDC$EEFD IBM-1122

English Japan EDC$EJEX IBM-1027

English United Kingdom EDC$EKEY Latin-1

English United Kingdom EDC$EKHK IBM-1146

English United Kingdom EDC@EKHK IBM-1146

Ellinika Greece EDC$ELES IBM-875

Spanish Spain EDC$ESEY Latin-1

Spanish Spain EDC$ESHJ IBM-1145

Spanish Spain EDC@ESHJ IBM-1145

English United States EDC$EUEY Latin-1

English United States EDC$EUHA IBM-1140

English United States EDC@EUHA IBM-1140

French Belgium EDC$FBEY Latin-1

French Belgium EDC$FBHO IBM-1148

French Belgium EDC@FBHO IBM-1148

French Canada EDC$FCEY Latin-1

French Canada EDC$FCHA IBM-1140

French Canada EDC@FCHA IBM-1140

French France EDC$FFEY Latin-1

French France EDC$FFHM IBM-1147

French France EDC@FFHM IBM-1147

Appendix D. Locales Supplied with OS/390 C/C++ 783

Table 81. Locale source files supplied with OS/390 C/C++ (continued)

Language Country Source name Applicable
Codesets

Finnish Finland EDC$FIEY Latin-1

Finnish Finland EDC$FIHF IBM-1143

Finnish Finland EDC@FIHF IBM-1143

French Switzerland EDC$FSEY Latin-1

French Switzerland EDC$FSHO IBM-1148

French Switzerland EDC@FSHO IBM-1148

Croatian Croatia EDC$HREQ IBM-870

Hungarian Hungary EDC$HUEQ IBM-870

Hebrew Israel EDC$ILFB IBM-424

Iceland Iceland EDC$ISEY Latin-1

Iceland Iceland EDC$ISHR IBM-1149

Iceland Iceland EDC@ISHR IBM-1149

Italian Italy EDC$ITEY Latin-1

Italian Italy EDC$ITHG IBM-1144

Italian Italy EDC@ITHG IBM-1144

Japanese Japan EDC$JAEL IBM-290

Japanese Japan EDC$JAEU IBM-930

Japanese Japan EDC$JAEV IBM-939

Japanese Japan EDC$JAEX IBM-1027

Japanese Japan EDC$JAHU IBM-1390

Japanese Japan EDC$JAHV IBM-1399

Korean Korea EDC$KRGZ IBM-933

Korean Korea EDC$KRKZ IBM-1364

Lithuanian Lithuania EDC$LTGD IBM-1112

Macedonian Macedonia EDC$MMFE IBM-1025

Dutch Belgium EDC$NBEY Latin-1

Dutch Belgium EDC$NBHO IBM-1148

Dutch Belgium EDC@NBHO IBM-1148

Dutch Netherlands EDC$NNEY Latin-1

Dutch Netherlands EDC$NNHA IBM-1140

Dutch Netherlands EDC@NNHA IBM-1140

Norwegian Norway EDC$NOEY Latin-1

Norwegian Norway EDC$NOHE IBM-1142

Norwegian Norway EDC@NOHE IBM-1142

Polish Poland EDC$PLEQ IBM-870

Portuguese Portugal EDC$PTEY Latin-1

Portuguese Portugal EDC$PTHA IBM-1140

Portuguese Portugal EDC@PTHA IBM-1140

Romanian Romania EDC$ROEQ IBM-870

784 OS/390 V2R10.0 C/C++ Programming Guide

||||

||||

||||

Table 81. Locale source files supplied with OS/390 C/C++ (continued)

Language Country Source name Applicable
Codesets

Russian Russia EDC$RUFE IBM-1025

Albanian Albania EDC$SAEY Latin-1

Albanian Albania EDC$SAHO IBM-1148

Albanian Albania EDC@SAHO IBM-1148

Serbian (Cyrillic) Serbia EDC$SCFE IBM-1025

Slovene Slovenia EDC$SIEQ IBM-870

Slovak Slovakia EDC$SKEQ IBM-870

Serbian (Latin) Serbia EDC$SLEQ IBM-870

Swedish Sweden EDC$SVEY Latin-1

Swedish Sweden EDC$SVHF IBM-1143

Swedish Sweden EDC@SVHF IBM-1143

Thai Thailand EDC$THEP IBM-838

Turkish Turkey EDC$TREW IBM-1026

Simplified Chinese China (PRC) EDC$ZCGY IBM-935

Simplified Chinese China (PRC) EDC$ZCGV IBM-1388

Traditional Chinese Taiwan (ROC) EDC$ZTGW IBM-937

Appendix D. Locales Supplied with OS/390 C/C++ 785

786 OS/390 V2R10.0 C/C++ Programming Guide

Appendix E. Charmap Files Supplied with OS/390 C/C++

All the locales supplied were built using the appropriate charmap file that represents
the coded character sets described by the CodesetRegistry-CodesetEncoding
element of the locale name.

All of these charmap files are provided with the National Language Resources
feature of OS/390 Language Environment. Consult your system programmer to
determine whether they have been installed.

Under MVS, the charmap files are provided in a separate partitioned data set,
CEE.SCEECMAP. The − sign is converted to the @ character.

The following table lists the coded character set name, which is the same as the
name of the corresponding charmap file, and the national language each code set
represents.

The column marked Latin-1 indicates whether the charmap file is for a coded
character set that contains the Latin-1 character set.

Table 82. Coded character set names and corresponding national languages

Codeset Primary Country/Territory Latin-1

IBM-037 USA, Canada, Brazil Yes

IBM-273 Germany, Austria Yes

IBM-274 Belgium Yes

IBM-277 Denmark, Norway Yes

IBM-278 Finland, Sweden Yes

IBM-280 Italy Yes

IBM-281 Japan (Latin-1) Yes

IBM-282 Portugal Yes

IBM-284 Spain, Latin America Yes

IBM-285 United Kingdom Yes

IBM-290 Japan (Katakana) No

IBM-297 France Yes

IBM-424 Israel No

IBM-500 International Yes

IBM-838 Thailand No

IBM-870 Croatia, Czech Republic,
Hungary, Poland, Romania,
Serbia (Latin), Slovakia,
Slovenia

No

IBM-871 Iceland Yes

IBM-875 Greece No

IBM-930 Japan (Katakana, combined
with DBCS)

No

IBM-933 Korea No

IBM-935 China (PRC) No

© Copyright IBM Corp. 1996, 2000 787

Table 82. Coded character set names and corresponding national languages (continued)

Codeset Primary Country/Territory Latin-1

IBM-937 Taiwan (ROC) No

IBM-939 Japan (Latin, combined with
DBCS)

No

IBM-1025 Bulgaria, Macedonia, Russia,
Serbia (Cyrillic)

No

IBM-1026 Turkey No

IBM-1027 Japan (Latin) extended No

IBM-1047 Latin 1/Open Systems Yes

IBM-1112 Lithuania No

IBM-1122 Estonia No

IBM-1140 USA, Canada, Brazil Yes

IBM-1141 Germany, Austria Yes

IBM-1142 Denmark, Norway Yes

IBM-1143 Finland, Sweden Yes

IBM-1144 Italy Yes

IBM-1145 Spain, Latin America Yes

IBM-1146 United Kingdom Yes

IBM-1147 France Yes

IBM-1148 International Yes

IBM-1149 Iceland Yes

IBM-1364 Korea No

IBM-1388 China (PRC) No

IBM-1390 Japan No

IBM-1399 Japan No

Only the charmap files for IBM-930, IBM-933, IBM-935, IBM-937, IBM-939 and
IBM-1388 specify <mb_cur_max> as 4 and include the definition of the double-byte
characters. All other charmap files define the single-byte character sets, and specify
the <mb_cur_max> as 1.

Note: The SAA C locale is built with the charmap IBM-1047, but has <mb_cur_max>
set to 4 to maintain compatibility with old releases of C/370.

Any of these charmaps that represent the same character set, even though they
represent different encoding of the same character sets, can be used with any
locale source that uses the same character set, to build a new locale and charmap
combination. See “Chapter 47. Building a Locale” on page 665 for information about
building your own locales.

788 OS/390 V2R10.0 C/C++ Programming Guide

|||

|||

|||

Appendix F. Examples of Charmap and Locale Definition
Source

Following are examples of the charmap source and locale definition source files.

Charmap File
This example shows the charmap file for the encoded character set IBM-1047.

Charmap File
<code_set_name> "IBM-1047"
<mb_cur_max> 1
<mb_cur_min> 1
<escape_char> /
<comment_char> %

CHARMAP
<NUL> /x00
<SOH> /x01
<STX> /x02
<ETX> /x03
<SEL> /x04
<tab> /x05
<HT> /x05
<RNL> /x06
 /x07
<GE> /x08
<SPS> /x09
<RPT> /x0a
<vertical-tab> /x0b
<VT> /x0b
<form-feed> /x0c
<FF> /x0c
<carriage-return> /x0d
<CR> /x0d
<SO> /x0e
<SI> /x0f
<DLE> /x10
<DC1> /x11
<DC2> /x12
<DC3> /x13
<RES> /x14
<newline> /x15
<backspace> /x16
<BS> /x16
<POC> /x17
<CAN> /x18
 /x19
<UBS> /x1a
<CU1> /x1b
<IFS> /x1c % file separator
<IS4> /x1c
<FS> /x1c
<IGS> /x1d % group separator
<IS3> /x1d
<GS> /x1d
<IRS> /x1e % record separator
<IS2> /x1e
<RS> /x1e
<IUS> /x1f % unit separator
<IS1> /x1f
<US> /x1f
<ITB> /x1f

© Copyright IBM Corp. 1996, 2000 789

<DS> /x20
<SOS> /x21
<FS> /x22 % field separator
<WUS> /x23
<BYP> /x24
<LF> /x25
<ETB> /x26
<ESC> /x27
<SA> /x28
<SFE> /x29
<SM> /x2a
<CSP> /x2b
<MFA> /x2c
<ENQ> /x2d
<ACK> /x2e
<alert> /x2f
<BEL> /x2f
<SYN> /x32
<IR> /x33
<PP> /x34
<TRN> /x35
<NBS> /x36
<EOT> /x37
<SBS> /x38
<IT> /x39
<RFF> /x3a
<CU3> /x3b
<DC4> /x3c
<NAK> /x3d
<SUB> /x3f
<space> /x40
<SP01> /x40
<RSP> /x41
<SP30> /x41
<a-circumflex> /x42
<LA15> /x42
<a-diaeresis> /x43
<LA17> /x43
<a-grave> /x44
<LA13> /x44
<a-acute> /x45
<LA11> /x45
<a-tilde> /x46
<LA19> /x46
<a-ring> /x47
<LA27> /x47
<c-cedilla> /x48
<LC41> /x48
<n-tilde> /x49
<LN19> /x49
<cent> /x4a
<SC04> /x4a
<period> /x4b
<SP11> /x4b
<less-than-sign> /x4c
<SA03> /x4c
<left-parenthesis> /x4d
<SP06> /x4d
<plus-sign> /x4e
<SA01> /x4e
<vertical-line> /x4f
<SM13> /x4f
<ampersand> /x50
<SM03> /x50
<e-acute> /x51
<LE11> /x51
<e-circumflex> /x52

790 OS/390 V2R10.0 C/C++ Programming Guide

<LE15> /x52
<e-diaeresis> /x53
<LE17> /x53
<e-grave> /x54
<LE13> /x54
<i-acute> /x55
<LI11> /x55
<i-circumflex> /x56
<LI15> /x56
<i-diaeresis> /x57
<LI17> /x57
<i-grave> /x58
<LI13> /x58
<s-sharp> /x59
<LS61> /x59
<exclamation-mark> /x5a
<SP02> /x5a
<dollar-sign> /x5b
<SC03> /x5b
<asterisk> /x5c
<SM04> /x5c
<right-parenthesis> /x5d
<SP07> /x5d
<semicolon> /x5e
<SP14> /x5e
<circumflex> /x5f
<circumflex-accent> /x5f
<SD15> /x5f
<hyphen> /x60
<hyphen-minus> /x60
<SP10> /x60
<slash> /x61
<SP12> /x61
<A-circumflex> /x62
<LA16> /x62
<A-diaeresis> /x63
<LA18> /x63
<A-grave> /x64
<LA14> /x64
<A-acute> /x65
<LA12> /x65
<A-tilde> /x66
<LA20> /x66
<A-ring> /x67
<LA28> /x67
<C-cedilla> /x68
<LC42> /x68
<N-tilde> /x69
<LN20> /x69
<broken-bar> /x6a
<SM65> /x6a
<comma> /x6b
<SP08> /x6b
<percent-sign> /x6c
<SM02> /x6c
<underscore> /x6d
<SP09> /x6d
<greater-than-sign> /x6e
<SA05> /x6e
<question-mark> /x6f
<SP15> /x6f
<o-slash> /x70
<LO61> /x70
<E-acute> /x71
<LE12> /x71
<E-circumflex> /x72
<LE16> /x72

Appendix F. Examples of Charmap and Locale Definition Source 791

<E-diaeresis> /x73
<LE18> /x73
<E-grave> /x74
<LE14> /x74
<I-acute> /x75
<LI12> /x75
<I-circumflex> /x76
<LI16> /x76
<I-diaeresis> /x77
<LI18> /x77
<I-grave> /x78
<LI14> /x78
<grave-accent> /x79
<SD13> /x79
<colon> /x7a
<SP13> /x7a
<number-sign> /x7b
<SM01> /x7b
<commercial-at> /x7c
<SM05> /x7c
<apostrophe> /x7d
<SP05> /x7d
<equals-sign> /x7e
<SA04> /x7e
<quotation-mark> /x7f
<SP04> /x7f
<O-slash> /x80
<LO62> /x80
<a> /x81
<LA01> /x81
 /x82
<LB01> /x82
<c> /x83
<LC01> /x83
<d> /x84
<LD01> /x84
<e> /x85
<LE01> /x85
<f> /x86
<LF01> /x86
<g> /x87
<LG01> /x87
<h> /x88
<LH01> /x88
<i> /x89
<LI01> /x89
<left-angle-quotes> /x8a
<guillemot-left> /x8a
<SP17> /x8a
<right-angle-quotes> /x8b
<guillemot-right> /x8b
<SP18> /x8b
<eth> /x8c
<LD63> /x8c
<y-acute> /x8d
<LY11> /x8d
<thorn> /x8e
<LT63> /x8e
<plus-minus> /x8f
<SA02> /x8f
<degree> /x90
<SM19> /x90
<j> /x91
<LJ01> /x91
<k> /x92
<LK01> /x92
<l> /x93

792 OS/390 V2R10.0 C/C++ Programming Guide

<LL01> /x93
<m> /x94
<LM01> /x94
<n> /x95
<LN01> /x95
<o> /x96
<LO01> /x96
<p> /x97
<LP01> /x97
<q> /x98
<LQ01> /x98
<r> /x99
<LR01> /x99
<feminine> /x9a
<SM21> /x9a
<masculine> /x9b
<SM20> /x9b
<ae> /x9c
<LA51> /x9c
<cedilla> /x9d
<SD41> /x9d
<AE> /x9e
<LA52> /x9e
<currency> /x9f
<SC01> /x9f
<mu> /xa0
<SM17> /xa0
<tilde> /xa1
<SD19> /xa1
<s> /xa2
<LS01> /xa2
<t> /xa3
<LT01> /xa3
<u> /xa4
<LU01> /xa4
<v> /xa5
<LV01> /xa5
<w> /xa6
<LW01> /xa6
<x> /xa7
<LX01> /xa7
<y> /xa8
<LY01> /xa8
<z> /xa9
<LZ01> /xa9
<exclamation-down> /xaa
<SP03> /xaa
<question-down> /xab
<SP16> /xab
<Eth> /xac
<LD62> /xac
<left-square-bracket> /xad
<SM06> /xad
<Thorn> /xae
<LT64> /xae
<registered> /xaf
<SM53> /xaf
<not> /xb0
<SM66> /xb0
<sterling> /xb1
<SC02> /xb1
<yen> /xb2
<SC05> /xb2
<dot> /xb3
<SD63> /xb3
<copyright> /xb4
<SM52> /xb4

Appendix F. Examples of Charmap and Locale Definition Source 793

<section> /xb5
<SM24> /xb5
<paragraph> /xb6
<SM25> /xb6
<one-quarter> /xb7
<NF04> /xb7
<one-half> /xb8
<NF01> /xb8
<three-quarters> /xb9
<NF05> /xb9
<Y-acute> /xba
<LY12> /xba
<diaeresis> /xbb
<SD17> /xbb
<macron> /xbc
<SM15> /xbc
<right-square-bracket> /xbd
<SM08> /xbd
<acute> /xbe
<SD11> /xbe
<multiply> /xbf
<SA07> /xbf
<left-brace> /xc0
<left-curly-bracket> /xc0
<SM11> /xc0
<A> /xc1
<LA02> /xc1
 /xc2
<LB02> /xc2
<C> /xc3
<LC02> /xc3
<D> /xc4
<LD02> /xc4
<E> /xc5
<LE02> /xc5
<F> /xc6
<LF02> /xc6
<G> /xc7
<LG02> /xc7
<H> /xc8
<LH02> /xc8
<I> /xc9
<LI02> /xc9
<syllable-hyphen> /xca
<SP32> /xca
<o-circumflex> /xcb
<LO15> /xcb
<o-diaeresis> /xcc
<LO17> /xcc
<o-grave> /xcd
<LO13> /xcd
<o-acute> /xce
<LO11> /xce
<o-tilde> /xcf
<LO19> /xcf
<right-brace> /xd0
<right-curly-bracket> /xd0
<SM14> /xd0
<J> /xd1
<LJ02> /xd1
<K> /xd2
<LK02> /xd2
<L> /xd3
<LL02> /xd3
<M> /xd4
<LM02> /xd4
<N> /xd5

794 OS/390 V2R10.0 C/C++ Programming Guide

<LN02> /xd5
<O> /xd6
<LO02> /xd6
<P> /xd7
<LP02> /xd7
<Q> /xd8
<LQ02> /xd8
<R> /xd9
<LR02> /xd9
<one-superior> /xda
<ND011> /xda
<u-circumflex> /xdb
<LU15> /xdb
<u-diaeresis> /xdc
<LU17> /xdc
<u-grave> /xdd
<LU13> /xdd
<u-acute> /xde
<LU11> /xde
<y-diaeresis> /xdf
<LY17> /xdf
<backslash> /xe0
<reverse-solidus> /xe0
<SM07> /xe0
<divide> /xe1
<division> /xe1
<SA06> /xe1
<S> /xe2
<LS02> /xe2
<T> /xe3
<LT02> /xe3
<U> /xe4
<LU02> /xe4
<V> /xe5
<LV02> /xe5
<W> /xe6
<LW02> /xe6
<X> /xe7
<LX02> /xe7
<Y> /xe8
<LY02> /xe8
<Z> /xe9
<LZ02> /xe9
<two-superior> /xea
<ND021> /xea
<O-circumflex> /xeb
<LO16> /xeb
<O-diaeresis> /xec
<LO18> /xec
<O-grave> /xed
<LO14> /xed
<O-acute> /xee
<LO12> /xee
<O-tilde> /xef
<LO20> /xef
<zero> /xf0
<ND10> /xf0
<one> /xf1
<ND01> /xf1
<two> /xf2
<ND02> /xf2
<three> /xf3
<ND03> /xf3
<four> /xf4
<ND04> /xf4
<five> /xf5
<ND05> /xf5

Appendix F. Examples of Charmap and Locale Definition Source 795

<six> /xf6
<ND06> /xf6
<seven> /xf7
<ND07> /xf7
<eight> /xf8
<ND08> /xf8
<nine> /xf9
<ND09> /xf9
<three-superior> /xfa
<ND031> /xfa
<U-circumflex> /xfb
<LU16> /xfb
<U-diaeresis> /xfc
<LU18> /xfc
<U-grave> /xfd
<LU14> /xfd
<U-acute> /xfe
<LU12> /xfe
<eo> /xff
END CHARMAP

CHARSETID
<NUL>...<SUB> 0
<space>...<U-acute> 1
END CHARSETID

Locale Definition Source File
This example shows the typical locale definition file representing the cultural and
language conventions in the United States of America. For this example
(LC_COLLATE), please note the following:

v The digits (0...9) sort before the letters.

v Upper case and lowercase letters have the same primary sorting weight.

v For each letter, the uppercase letter sorts before the equivalent lowercase letter.

Locale Definition File
escape_char /
comment-char %

%%%%%%%%%%%%%
LC_CTYPE
%%%%%%%%%%%%%

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

space <tab>;<newline>;<vertical-tab>;<form-feed>;/
<carriage-return>;<space>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/
<form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;/
<ETX>;<SEL>;<RNL>;;<GE>;<SPS>;<RPT>;<SI>;<SO>;<DLE>;<DC1>;/
<DC2>;<DC3>;<RES>;<POC>;<CAN>;;<UBS>;<CU1>;<IFS>;/
<IGS>;<IRS>;<ITB>;<DS>;<SOS>;<fs>;<WUS>;<BYP>;<LF>;/
<ETB>;<ESC>;<SA>;<SM>;<CSP>;<MFA>;<ENQ>;<ACK>;/
<SYN>;<IR>;<PP>;<TRN>;<NBS>;<EOT>;<SBS>;<IT>;<RFF>;/
<CU3>;<DC4>;<NAK>;<SUB>

punct <exclamation-mark>;<quotation-mark>;<number-sign>;<dollar-sign>;/
<percent-sign>;<ampersand>;<apostrophe>;<left-parenthesis>;/

796 OS/390 V2R10.0 C/C++ Programming Guide

<right-parenthesis>;<asterisk>;<plus-sign>;<comma>;/
<hyphen-minus>;<period>;<slash>;<colon>;<semicolon>;/
<less-than-sign>;<equals-sign>;<greater-than-sign>;/
<question-mark>;<commercial-at>;<left-square-bracket>;/
<backslash>;<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;<left-curly-bracket>;/
<vertical-line>;<right-curly-bracket>;<tilde>

digit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>

xdigit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>;/
<A>;;<C>;<D>;<E>;<F>;/
<a>;;<c>;<d>;<e>;<f>

blank <space>;<tab>

END LC_CTYPE

%%%%%%%%%%%%%
LC_COLLATE
%%%%%%%%%%%%%

order_start forward;forward

<NUL>
...
<SUB>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen-minus>
<period>
<slash>
<zero>
...
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A> <A>;<A>
 ;
<C> <C>;<C>
<D> <D>;<D>
<E> <E>;<E>
<F> <F>;<F>
<G> <G>;<G>
<H> <H>;<H>
<I> <I>;<I>
<J> <J>;<J>
<K> <K>;<K>
<L> <L>;<L>

Appendix F. Examples of Charmap and Locale Definition Source 797

<M> <M>;<M>
<N> <N>;<N>
<O> <O>;<O>
<P> <P>;<P>
<Q> <Q>;<Q>
<R> <R>;<R>
<S> <S>;<S>
<T> <T>;<T>
<U> <U>;<U>
<V> <V>;<V>
<W> <W>;<W>
<X> <X>;<X>
<Y> <Y>;<Y>
<Z> <Z>;<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a> <A>;<a>
 ;
<c> <C>;<c>
<d> <D>;<d>
<e> <E>;<e>
<f> <F>;<f>
<g> <G>;<g>
<h> <H>;<h>
<i> <I>;<i>
<j> <J>;<j>
<k> <K>;<k>
<l> <L>;<l>
<m> <M>;<m>
<n> <N>;<n>
<o> <O>;<o>
<p> <P>;<p>
<q> <Q>;<q>
<r> <R>;<r>
<s> <S>;<s>
<t> <T>;<t>
<u> <U>;<u>
<v> <V>;<v>
<w> <W>;<w>
<x> <X>;<x>
<y> <Y>;<y>
<z> <Z>;<z>
UNDEFINED
order_end

END LC_COLLATE

%%%%%%%%%%%%%
LC_MONETARY
%%%%%%%%%%%%%

int_curr_symbol "<U><S><D><space>"
currency_symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping "3;0"
positive_sign ""
negative_sign "<hyphen-minus>"
int_frac_digits 2
frac_digits 2
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1

798 OS/390 V2R10.0 C/C++ Programming Guide

n_sep_by_space 0
p_sign_posn 2
n_sign_posn 2
debit_sign "<D>"
credit_sign "<C><R>"
left_parenthesis "<left-parenthesis>"
right_parenthesis "<right-parenthesis>"

END LC_MONETARY

%%%%%%%%%%%%%
LC_NUMERIC
%%%%%%%%%%%%%

decimal_point "<period>"
thousands_sep "<comma>"
grouping "3;0"

END LC_NUMERIC

%%%%%%%%%%%%%
LC_TIME
%%%%%%%%%%%%%
abday "<S><u><n>";/

"<M><o><n>";/
"<T><u><e>";/
"<W><e><d>";/
"<T><h><u>";/
"<F><r><i>";/
"<S><a><t>"

day "<S><u><n><d><a><y>";/
"<M><o><n><d><a><y>";/
"<T><u><e><s><d><a><y>";/
"<W><e><d><n><e><s><d><a><y>";/
"<T><h><u><r><s><d><a><y>";/
"<F><r><i><d><a><y>";/
"<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";/
"<F><e>";/
"<M><a><r>";/
"<A><p><r>";/
"<M><a><y>";/
"<J><u><n>";/
"<J><u><l>";/
"<A><u><g>";/
"<S><e><p>";/
"<O><c><t>";/
"<N><o><v>";/
"<D><e><c>"

mon "<J><a><n><u><a><r><y>";/
"<F><e><r><u><a><r><y>";/
"<M><a><r><c><h>";/
"<A><p><r><i><l>";/
"<M><a><y>";/
"<J><u><n><e>";/
"<J><u><l><y>";/
"<A><u><g><u><s><t>";/
"<S><e><p><t><e><m><e><r>";/
"<O><c><t><o><e><r>";/
"<N><o><v><e><m><e><r>";/
"<D><e><c><e><m><e><r>"

d_t_fmt "%a %b %e %H:%M:%S %Z %Y"

Appendix F. Examples of Charmap and Locale Definition Source 799

d_fmt "%m//%d//%y"

t_fmt "%H:%M:%S"

am_pm "<A><M>";"<P><M>"

END LC_TIME

%%%%%%%%%%%%%
LC_MESSAGES
%%%%%%%%%%%%%

yesexpr "<circumflex><left-parenthesis><left-square-bracket><y><Y>/
<right-square-bracket><left-square-bracket><e><E><right-square-bracket>/
<left-square-bracket><s><S><right-square-bracket><vertical-line>/
<left-square-bracket><y><Y><right-square-bracket><right-parenthesis>"
noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>/
<right-square-bracket><left-square-bracket><o><O><right-square-bracket>/
<vertical-line><left-square-bracket><n><N><right-square-bracket>/
<right-parenthesis>"

END LC_MESSAGES
%%%%%%%%%%%%%
LC_SYNTAX
%%%%%%%%%%%%%

backslash "<backslash>"
right_brace "<right-brace>"
left_brace "<left-brace>"
right_bracket "<right-square-bracket>"
left_bracket "<left-square-bracket>"
circumflex "<circumflex>"
tilde "<tilde>"
exclamation_mark "<exclamation-mark>"
number_sign "<number-sign>"
vertical_line "<vertical-line>"
dollar_sign "<dollar-sign>"
commercial_at "<commercial-at>"
grave_accent "<grave-accent>"

END LC_SYNTAX

%%%%%%%%%%%%%
LC_TOD
%%%%%%%%%%%%%

timezone_difference +480
timezone_name "<P><S><T>"
daylight_name "<P><D><T>"
start_month 0
end_month 0
start_week 0
end_week 0
start_day 0
end_day 0
start_time 0
end_time 0
shift 3600
END LC_TOD

800 OS/390 V2R10.0 C/C++ Programming Guide

Appendix G. Converting Code from Coded Character Set
IBM-1047

The following program shows you how to convert hybrid code to a specified code
page. Hybrid code is code in which the data is in the local coded character set but
the syntax uses IBM-1047 code.

CBC3GHC1

/*
* CBC3GHC1: Sample code to convert all C syntax from code page 1047
* to the coded character set the user specifies.
* Comments, string literals and character constants are
* left alone. The escape character in an escape sequence
* is changed, since it is variant.
*
* Usage: CBC3GHC1 <coded character set>
* The input file is read from stdin and the output is written
* to stdout.
*
* Example: If you want to convert all C syntax, written in coded character set
* 1047, in a file (test1047 c a) to coded character set 500, you can
* use CBC3GHC1 by issuing the following command.
*
* cbcghc1 <test1047.c.a >test1047.gen.a IBM-500
*
* The result will store in "test500 gen a" file.
*/

#include <stdio.h>
#include <stdlib.h>
#include <iconv.h>
#include <errno.h>

enum boolean { false=0, False=0, FALSE=0, true=1, True=1, TRUE=1 };

/*
* CharState - state that the FSM is in. Initial State is CodeState
*/
enum CharState { CodeState, SQuoteState, DQuoteState, CommentState,

DBCSState, EscState, EOFState };

/*
* CharVal - characters that can change the state of the FSM
*/
enum CharVal { SlashChar='/', SQuoteChar='\'', DQuoteChar='"',

StarChar='*', SOChar='\x0E', SIChar='\x0F',
BSlashChar='\\', EOFChar= -1 };

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 1 of 10)

© Copyright IBM Corp. 1996, 2000 801

/*
* XlateTable - type of translation table
*/
typedef iconv_t XlateTable;

static char *Initialize(int argc, char *argv[]);
static int Convert(char *codeset);
static int InitConv(char **inBuff, char **outBuff, int *maxRecSize,

char *codeSet, XlateTable *xlateTable);
static void ConvBuff(int start, int end,

char *buff, XlateTable xlateTable);
static enum CharVal LookAhead(char *inBuff, char *outBuff,

int *recSize, int *curPos,
int maxRecSize, int *codeStartPos,
enum CharState state,
XlateTable xlateTable);

static enum CharVal GetNextChar(char *inBuff, char *outBuff,
int *recSize, int maxRecSize,
int *curPos, int *codeStartPos,
enum CharState state,
XlateTable xlateTable);

static int UpdateAndRead(char *inBuff, char *outBuff,
int *recSize, int maxRecSize,
int codeStartPos, enum CharState state,
XlateTable xlateTable);

static int ReadAndCopy(char *inBuff,char *outBuff, int maxRecSize);

#pragma inline(LAST_POS)
#pragma inline(NEXT_TO_LAST_POS)
#pragma inline(LookAhead)
#pragma inline(GetNextChar)
#pragma inline(ConvBuff)

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 2 of 10)

802 OS/390 V2R10.0 C/C++ Programming Guide

/*
* Initialize the environment, and if everything is ok, convert input
*/
main(int argc, char *argv[]) {

char *codeset = Initialize(argc, argv);
if (codeset == NULL) {

return(8);
}
return(Convert(codeset));

}

/*
* Check that 1 parameter was specified - the coded character set to convert the
* the syntax to.
* Re-open stdin and stdout as binary files for record IO.
* Return the code set if everything is ok, NULL otherwise
*/
static char *Initialize(int argc, char *argv[]) {

if (argc != 2) {
fprintf(stderr, "Expected %d argument but got %d\n",

1, argc-1);
return(NULL);

}
stdin = freopen("", "rb,type=record", stdin);
stdout= freopen("", "wb,type=record", stdout);
if (stdin == NULL || stdout == NULL) {

fprintf(stderr, "Could not re-open standard streams\n");
return(NULL);

}

return(argv[1]);
}

/*
* Return the last position in a record
*/
static int LAST_POS(int recSize) {

return(recSize-1);
}

/*
* Return the next to last position in a record
*/
static int NEXT_TO_LAST_POS(int recSize) {

return(recSize-2);
}

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 3 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 803

/*
* Convert the stdin file using codeset and write to stdout.
* Set up the translation table.
* Read the first record and copy it into the output buffer.
* Go through the FSM, starting in the Code State and leaving
* when EOFState is reached (End Of File).
* Close the translation table.
*/
static int Convert(char *codeset) {

enum CharVal c;
int recSize;
enum CharState prvState;
int rc;

int codeStartPos = 0;
int curPos = 0;
enum boolean high = FALSE;
enum CharState state = CodeState;

char * inBuff;
char * outBuff;
int maxRecSize;
XlateTable xlateTable;

rc = InitConv(&inBuff, &outBuff, &maxRecSize, codeset, &xlateTable);
if (rc) {

if (inBuff) free(inBuff);
if (outBuff) free(outBuff);
return(rc);

}

recSize = ReadAndCopy(inBuff, outBuff, maxRecSize);

while (state != EOFState) {
c = GetNextChar(inBuff, outBuff, &recSize, maxRecSize,

&curPos, &codeStartPos, state, xlateTable);
if (c == EOFChar) {

state = EOFState;
}

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 4 of 10)

804 OS/390 V2R10.0 C/C++ Programming Guide

switch(state) {
case CodeState:

switch (c) {
case BSlashChar:

curPos = LAST_POS(recSize);
break;

case SlashChar:
if (LookAhead(inBuff, outBuff, &recSize,

&curPos, maxRecSize, &codeStartPos,
state, xlateTable)
== StarChar) {

state = CommentState;
}
break;

case SQuoteChar:
state = SQuoteState;
break;

case DQuoteChar:
state = DQuoteState;
break;

}
if (state != CodeState || curPos == NEXT_TO_LAST_POS(recSize)) {

if (curPos == NEXT_TO_LAST_POS(recSize)) {
++curPos;

}
else {

ConvBuff(codeStartPos, curPos, outBuff, xlateTable);
}

}
break;

case CommentState:
switch(c) {

case BSlashChar:
curPos = LAST_POS(recSize);
break;

case StarChar:
if (LookAhead(inBuff, outBuff, &recSize,

&curPos, maxRecSize, &codeStartPos,
state, xlateTable)
== SlashChar) {

state = CodeState;
codeStartPos = curPos;

}
break;

}
break;

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 5 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 805

case DQuoteState:
switch(c) {

case DQuoteChar:
state = CodeState;
codeStartPos = curPos;
break;

case SOChar:
prvState = state;
state = DBCSState;
break;

case BSlashChar:
ConvBuff(curPos, curPos, outBuff, xlateTable);
if (curPos != LAST_POS(recSize)) {

prvState = state;
state = EscState;

}
break;

}
break;

case SQuoteState:
switch(c) {

case SQuoteChar:
state = CodeState;
codeStartPos = curPos;
break;

case SOChar:
prvState = state;
state = DBCSState;
break;

case BSlashChar:
ConvBuff(curPos, curPos, outBuff, xlateTable);
if (curPos != LAST_POS(recSize)) {

prvState = state;
state = EscState;

}
break;

}
break;

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 6 of 10)

806 OS/390 V2R10.0 C/C++ Programming Guide

case DBCSState:
high ¬= 1; /* TRUE -> FALSE or FALSE -> TRUE */
if (high && (c == SIChar)) {

state = prvState;
high = FALSE;

}
break;

case EscState:
state = prvState; /* really, this is ok */
break;

case EOFState:
break;

default:
fprintf(stderr, "Internal error - ended up in state %d\n",

state);
return(16);

} /* end of switch statement */
++curPos;

}
rc = TermConv(inBuff, outBuff, xlateTable);
return(0);

}

/*
* Initialize the translation table and allocate the input and
* output buffers to use.
* Return 0 if successful.
*/
static int InitConv(char **inBuff, char **outBuff, int *maxRecSize,

char *codeset, XlateTable* xlateTable) {

static char fileNameBuff[FILENAME_MAX+1];
fldata_t info;
int rc;

*outBuff = *inBuff = NULL;

rc = fldata(stdin, fileNameBuff, &info);
if (rc) {

return(rc);
}

*maxRecSize = info.__maxreclen;
*inBuff = malloc(*maxRecSize);
*outBuff = malloc(*maxRecSize);

if ((*xlateTable = iconv_open("IBM-1047",codeset)) == (iconv_t)(-1)) {
fprintf(stderr,"Cannot open convertor from %s to IBM-1047",codeset);
return (8);

}

return(!inBuff || !outBuff);
}

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 7 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 807

/*
* Convert the buffer from start to end using the translation table
*/
static void ConvBuff(int start, int end,

char *buff, XlateTable xlateTable) {
int rc;
size_t inleft, outleft, org;
char *inptr, *outptr;

outleft = inleft = end-start+1;
inptr = outptr = &buff[start];

while (1) {
rc = iconv(xlateTable,&inptr,&inleft,&outptr,&outleft);

if (rc == -1) {
switch (errno) {

/* Skip the invalid character */
case EILSEQ: if (--inleft == 0) return;

++inptr;
++outptr;
--outleft;
break;

default: fprintf(stderr,"iconv() fails with errno = %d\n",errno);
exit(8);

}
} else

return;
}

}

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 8 of 10)

808 OS/390 V2R10.0 C/C++ Programming Guide

/*
* Look ahead to the next character. If the current position
* is the last character of the input record, write the current
* output record and read in the next record.
* Return the 'character' read, which may be EOF if the end of
* the file was reached.
*/
static enum CharVal LookAhead(char *inBuff, char *outBuff,

int *recSize, int *curPos,
int maxRecSize, int *codeStartPos,
enum CharState state,
XlateTable xlateTable) {

if (*curPos == LAST_POS(*recSize)) {
if (UpdateAndRead(inBuff, outBuff, recSize, maxRecSize,

*codeStartPos, state, xlateTable)) {
return(EOFChar);

}
*curPos = 0;
*codeStartPos = 0;

}
else {

(*curPos)++;
}
return(inBuff[*curPos]);

}

/*
* Similar to LookAhead(), but return the current character
*/
static enum CharVal GetNextChar(char *inBuff, char *outBuff,

int *recSize, int maxRecSize,
int *curPos, int *codeStartPos,
enum CharState state,
XlateTable xlateTable) {

if (*curPos > LAST_POS(*recSize)) {
if (UpdateAndRead(inBuff, outBuff, recSize, maxRecSize,

*codeStartPos, state, xlateTable)) {
return(EOFChar);

}
*curPos = 0;
*codeStartPos = 0;

}
return(inBuff[*curPos]);

}

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 9 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 809

/*
* If the current state is the code state, translate the remaining
* part of the record.
* Write out the record to stdout
* Read in the next record and copy it to the output buffer.
*/
static int UpdateAndRead(char *inBuff, char *outBuff,

int *recSize, int maxRecSize,
int codeStartPos, enum CharState state,
XlateTable xlateTable) {

if (state == CodeState) {
ConvBuff(codeStartPos, LAST_POS(*recSize), outBuff, xlateTable);

}
fwrite(outBuff, 1, *recSize, stdout);
*recSize = ReadAndCopy(inBuff, outBuff, maxRecSize);
return((*recSize == 0) ? 1 : 0);

}

/*
* Read in a record from stdin and copy it to the output buffer.
* Return the number of bytes read.
*/
static int ReadAndCopy(char *inBuff, char *outBuff,

int maxRecSize) {
int recSize;

recSize = fread(inBuff, 1, maxRecSize, stdin);
if (feof(stdin) && recSize == 0) {

return(0);
}
else {

memcpy(outBuff, inBuff, recSize);
return(recSize);

}
}

/*
* Free allocated storage and close the translation table.
*/
static int TermConv(char *inBuff,

char *outBuff, XlateTable xlateTable) {
iconv_close(xlateTable);
free(inBuff);
free(outBuff);
return(0);

}

Figure 232. Converting Hybrid Code to a Specific Character Set (Part 10 of 10)

810 OS/390 V2R10.0 C/C++ Programming Guide

Appendix H. Additional Examples

This chapter contains additional examples that you might find useful when you are
writing a C or C++ program.

Memory Management
If you have ever received an error from overwriting storage created with the
malloc() function, the following code may be of interest. It shows how to use
debuggable versions of malloc()/calloc()/realloc() and free(). You can tailor the
following macros.

CBC3GMI1

Main routine follows:

/* debuggable malloc()/calloc()/realloc()/free() example */
/* part 1 of 2-other file is CBC3GMI2 */
#ifndef __STORAGE__

#define __STORAGE__

#define PADDING_SIZE 4 /* amount of padding around */
/* allocated storage */

#define PADDING_BYTE 0xFE /* special value to initialize*/
/* padding to */

#define HEAP_INIT_SIZE 4096 /* get 4K to start with */
#define HEAP_INCR_SIZE 4096 /* get 4K increments */
#define HEAP_OPTS 72 /* HEAP(,,ANYWHERE,FREE) */

extern int heapVerbose; /* If 0, heap allocation and */
/* free messages will be */
/* suppressed, otherwise, they*/
/* will be displayed */

#endif

Figure 233. Debuggable malloc()/calloc()/realloc()/free() example

© Copyright IBM Corp. 1996, 2000 811

CBC3GMI2

/* debuggable malloc()/calloc()/realloc()/free() example */
/* part 2 of 2-other file is CBC3GMI1 */
/*
* STORAGE:
*
* EXTERNALS:
*
* This file contains code for the following functions:
* -malloc......allocate storage from a Language Environment heap
* -calloc......allocate storage from a Language Environment heap
* and initialize it to 0.
* file.
* this file. If a NULL pointer is passed instead of a
* directly.
*
* USAGE:
*
* You do not need to compile this code with any special options.
* The TEST option is useful, however, as the traceback will provide
* additional information. Line number information and the type and
* values of variables will be dumped in a traceback for all
* files compiled with TEST.
*
* Prelink,link, or bind this object module with your other object modules.
* malloc(), free(), and realloc().
*
* INTERNALS:
*
* General Algorithm:
*
* When storage is allocated, extra 'padding' is allocated at the
* start and end of the actual storage allocated for you.
* This padding is then initialized to a special pad value. If your
* code is functioning correctly, the padding should not
* have been changed when it comes time to free the storage. If the
* free() routine finds that the padding does not have the correct
* value, the storage about to be freed is dumped and a traceback
* is issued. The storage is then dumped, as usual.
* The padding size and padding byte value can be modified to suit
* your needs. Update the include file "cbc3gmi2.h" if you want
* to modify these values.
* Here is a diagram of how storage is allocated (assume that the
* pad value is xFE, the padding size is 4 bytes and 8 bytes of
* storage were requested):
*

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 1 of 10)

812 OS/390 V2R10.0 C/C++ Programming Guide

* Length of Padding Allocated storage Padding
* storage | returned to user |
* | | | |
* +----+------+ +----+------+ +------------+------------+ +----+-----+
* | | | | | | | |
*+--+
*| 00 00 00 10 | FE FE FE FE | xx xx xx xx | xx xx xx xx | FE FE FE FE|
*+--+
*
* (Values above shown in hexadecimal)
*
* This method is fairly effective in tracking down storage
* allocation problems. Also, code does not have
* to be recompiled to use these routines - it just has to be
* relinked. Note that this method is not guaranteed to find all storage
* allocation errors - if you overwrite the padding with the
* same value it had before, or you overwrite more storage than
* you had padding for, you will still have problems.
*
* This code uses the Language Environment heap services to allocate,
* reallocate, and free storage. A User Heap is used instead of the
* library heap so that if the heap gets corrupted, the standard library
* services that use the heap will not be affected. For example,
* if the user heap is damaged, a call to a library function
* such as printf should still succeed.
*
* Notes of interest:
* - The run-time option STORAGE is very useful for tracking down
* random pointer problems - it initializes heap or stack frame
* storage to a particular value.
* - The run-time option RPTSTG(ON) is useful for improving heap and
* stack frame allocation - it generates a report indicating how
* stack and heap storage was managed for a given program.
*/
#include "storage.h"
#include <leawi.h>
#include <stdio.h>

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 2 of 10)

Appendix H. Additional Examples 813

/*
* heapVerbose: external variable that controls whether heap
* allocation and free messages are displayed.
*/
int heapVerbose=1;

/*
* mallocHeapID: static variable that is the Heap ID used for allocating
* storage via malloc(). On the first call to malloc(),
* a Heap will be created and this Heap ID will be set.
* All subsequent calls to malloc will use this Heap ID.
*/
static _INT4 mallocHeapID=0;

/*
* CHARS_PER_LINE/BYTES_PER_LINE: Used by dump() and DumpLine()
* to control the width of a storage dump.
*/
#define CHARS_PER_LINE 40
#define BYTES_PER_LINE 16

/*
* align: Given a value and the alignment desired (in bits), round
* the value to the next largest alignment, unless it is
* already aligned, in which case, just return the value passed.
*/
#pragma inline(align)
static int align(int value, int shift) {

int alignment = (0x1 << shift);

if (value % alignment) {
return(((value >> shift) << shift) + alignment);

}
else {

return(value);
}

}

/*
* padding: given a buffer (address and length), return 1 if the
* entire buffer consists of the pad character specified,
* otherwise return 0.
*/
#pragma inline(padding)
static int padding(const char* buffer, long size, int pad) {

int i;
for (i=0;i<size;++i) {

if (buffer[i] != pad) return(0);
}
return(1);

}

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 3 of 10)

814 OS/390 V2R10.0 C/C++ Programming Guide

/*
* CEECmp: Given two feedback codes, return 0 if they have the same
* message number and facility id, otherwise return 1.
*/
#pragma inline(CEECmp)
static int CEECmp(_FEEDBACK* fc1, _FEEDBACK* fc2) {

if (fc1->tok_msgno == fc2->tok_msgno &&
!memcmp(fc1->tok_facid, fc2->tok_facid,

sizeof(fc1->tok_facid))) {
return(0);

}
else {

return(1);
}

}

/*
* CEEOk: Given a feedback code, return 1 if it compares the same to
* condition code CEE000.
*/
#pragma inline(CEEOk)
static int CEEOk(_FEEDBACK* fc) {

_FEEDBACK CEE000 = { 0, 0, 0, 0, 0, {0,0,0}, 0 };

return(CEECmp(fc, &CEE000) == 0);
}

/*
* CEEErr: Given a title string and a feedback code, print the
* title to stderr, then print the message associated
* with the feedback code. If the feedback code message can not
* be printed out, print out the message number and severity.
*/
static void CEEErr(const char* title, _FEEDBACK* fc) {

_FEEDBACK msgFC;
_INT4 dest = 2;

fprintf(stderr, "\n%s\n", title);
CEEMSG(fc, &dest, &msgFC);
if (!CEEOk(&msgFC)); {

fprintf(stderr, "Message number:%d with severity %d occurred\n",
fc->tok_msgno, fc->tok_sev);

}
}

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 4 of 10)

Appendix H. Additional Examples 815

/*
* DumpLine: Dump out a buffer (address and length) to stderr.
*/
static void DumpLine(char* address, int length) {

int i, c, charCount=0;

if (length % 4) length += 4;

fprintf(stderr, "%8.8p: ", address);
for (i=0; i < length/4; ++i) {

fprintf(stderr, "%8.8X ", ((int*)address)[i]);
charCount += 9;

}
for (i=charCount; i < CHARS_PER_LINE; ++i) {

putc(' ', stderr);
}
fprintf(stderr, "| ");
for (i=0; i < length; ++i) {

c = address[i];
c = (isprint(c) ? c : '.');
fprintf(stderr, "%c", c);

}
fprintf(stderr, "\n");

}

/*
* dump: dump out a buffer (address and length) to stderr by dumping out
* a line at a time (DumpLine), until the buffer is written out.
*/
static void dump(void* generalAddress, int length) {

int curr = 0;
char* address = (char*) generalAddress;

while (&address[curr] < &address[length-BYTES_PER_LINE]) {
DumpLine(&address[curr], BYTES_PER_LINE);
curr += BYTES_PER_LINE;

}
if (curr < length) {

DumpLine(&address[curr], length-curr);
}

}

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 5 of 10)

816 OS/390 V2R10.0 C/C++ Programming Guide

/*
* malloc: Create a heap if necessary by calling CEECRHP. This only
* needs to be done on the first call to malloc(). Verify
* that the heap creation was ok. If it was not, issue an
* error message and return a NULL pointer.
* Write a message to stderr indicating how many bytes
* are about to be allocated.
* Call CEEGTST to allocate the storage requested plus
* additional padding to be placed at the start and end
* of the allocated storage. Verify that the storage allocation
* was successful. If it was not, issue an error message and
* return a NULL pointer.
* Write a message to stderr indicating the address of the
* allocated storage.
* Initialize the padding to the value of PADDING_BYTE, so that
* free() will be able to test that the padding was not changed.
* Return the address of the allocated storage (starting after
* the padding bytes).
*/
void* malloc(long initSize) {

_FEEDBACK fc;
_POINTER address=0;
long totSize;
long* lenPtr;
char* msg;
char* start;
char* end;

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 6 of 10)

Appendix H. Additional Examples 817

if (!mallocHeapID) {
_INT4 heapSize = HEAP_INIT_SIZE;
_INT4 heapInc = HEAP_INCR_SIZE;
_INT4 opts = HEAP_OPTS;

CEECRHP(&mallocHeapID, &heapSize, &heapInc, &opts,
&fc);
if (!CEEOk(&fc)) {

CEEErr("Heap creation failed", &fc);
return(0);

}
}
if (heapVerbose) {

fprintf(stderr, "Allocate %d bytes", initSize);
}
/*
* Add the padding size to the total size, then round up to the
* nearest double word
*/
totSize = initSize + (PADDING_SIZE*2) + sizeof(long);
totSize = align(totSize, 3);

CEEGTST(&mallocHeapID, &totSize, &address, &fc);
if (!CEEOk(&fc)) {

msg = "Storage request failed";
CEEErr(msg, &fc);
__ctrace(msg);

return(0);
}

lenPtr = (long*) address;
*lenPtr= initSize;
start = ((char*) address) + sizeof(long);
end = start + initSize + PADDING_SIZE;

memset(start, PADDING_BYTE, PADDING_SIZE);
memset(end, PADDING_BYTE, PADDING_SIZE);

if (heapVerbose) {
fprintf(stderr, " starting at address %p\n", address);

}

return(start + PADDING_SIZE);
}

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 7 of 10)

818 OS/390 V2R10.0 C/C++ Programming Guide

/*
* calloc: Call malloc() to allocate the requested amount of storage.
* If the allocation was successful, initialize the allocated
* storage to 0.
* Return the address of the allocated storage (or a NULL
* pointer if malloc returned a NULL pointer).
*/
void* calloc(long initSize) {

void* ptr;

ptr = malloc(initSize);
if (ptr) {

memset(ptr, 0, initSize);
}
return(ptr);

}
/*
* realloc: If a NULL pointer is passed, call malloc() directly.
* Call CEECZST to reallocate the storage requested plus
* additional padding to be placed at the start and end
* of the allocated storage.
* Verify that the storage re-allocation was ok. If it was not,
* issue an error message, dump the storage, and return a NULL
* pointer.
* Write a message to stderr indicating the address of the
* reallocated storage.
* Initialize the padding to the value of PADDING_BYTE, so
* that free() will be able to test that the padding was not
* changed. Note that the padding at the start of the storage
* does not need to be allocated, since it was already
* initialized by an earlier call to malloc().
* Return the address of the reallocated storage (starting
* after the padding bytes).
*/
void* realloc(char* ptr, long initSize) {

_FEEDBACK fc;
_POINTER address = (ptr - sizeof(long) - PADDING_SIZE);
long oldSize;
long* lenPtr;
char* start;
char* end;
char* msg;
long newSize = initSize;

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 8 of 10)

Appendix H. Additional Examples 819

if (ptr == 0) {
return(malloc(newSize));

}

oldSize = *((long*) address);

if (heapVerbose) {
fprintf(stderr, "Re-allocate %d bytes from address %p to ",

newSize, address);
}

/*
* Add the padding size to the total size, then round up to the
* nearest double word
*/
newSize += (PADDING_SIZE*2) + sizeof(long);
newSize = align(newSize, 3);
CEECZST(&address, &newSize, &fc);
if (!CEEOk(&fc)) {

msg = "Storage re-allocation failed";

CEEErr(msg, &fc);
dump(address, oldSize + (PADDING_SIZE*2) + sizeof(long));
__ctrace(msg);
return(0);

}

lenPtr = (long*) address;
*lenPtr= initSize;
start = ((char*) address) + sizeof(long);
end = start + initSize + PADDING_SIZE;

memset(end, PADDING_BYTE, PADDING_SIZE);

if (heapVerbose) {
fprintf(stderr, "address %p\n", address);

}

return(start + PADDING_SIZE);
}

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 9 of 10)

820 OS/390 V2R10.0 C/C++ Programming Guide

Calling MVS WTO routines from C
The following sample code calls a function that will perform a Write To Operator
(WTO) call. You can tailor it as you wish. The C code performs an ILC to an
assembler routine to do a dynamic WTO call.

Assemble CBC3GWT1, compile CBC3GWT2, link the two together, and run
CBC3GWT2. Information writes to the job log.

Note: This example runs only in the TSO BATCH environment.

/*
* free: Calculate where the start and end of the originally
* allocated storage was. The start will be different than the
* address passed in because the address passed in points after
* the padding bytes added by malloc() or realloc().
* Write a message to stderr indicating what address is about
* to be freed.
* Verify that the start and end padding bytes have the original
* padding value. If they do not, dump out the originally
* allocated storage and issue a trace.
* Free the storage by calling CEEFRST. If the storage free
* fails, dump out the storage and issue a trace.
*/
void free(char* ptr) {

_FEEDBACK fc;
_POINTER address=(void*) (ptr - sizeof(long) - PADDING_SIZE);
char* start;
char* end;
long size;
long* lenPtr;
char* msg;

lenPtr = (long*) address;
size = *lenPtr;
start = ((char*) address) + sizeof(long);
end = start + size + PADDING_SIZE;

if (heapVerbose) {
fprintf(stderr, "Free address %p\n", address);

}
if (!padding(start, PADDING_SIZE, PADDING_BYTE) ||

!padding(end, PADDING_SIZE, PADDING_BYTE)) {

dump(address, size + (PADDING_SIZE*2) + sizeof(long));
msg = "Padding overwritten";
__ctrace(msg);

}
else {

CEEFRST(&address, &fc);
if (!CEEOk(&fc)) {

msg = "Storage free failed";

CEEErr(msg, &fc);
dump(address, size + (PADDING_SIZE*2) + sizeof(long));
__ctrace(msg);

}
}

}

Figure 234. Debuggable malloc()/calloc()/realloc()/free() example (Part 10 of 10)

Appendix H. Additional Examples 821

CBC3GWT1

/* write to operator example */
/* part 1 of 2-other file is CBC3GWT2 */
WTO csect
WTO amode 31
WTO rmode any

* r1->address of integer -> length of string
* ->character string

edcprlg dsalen=dlen
using dsa,13

* range check length
* ignore a single trailing null character

l 5,0(,1) point to length
la 15,4 return code for invalid length
icm 5,b'1111',0(5) length of message
bnp return not >0? return
l 6,4(,1) point to message
la 8,0(5,6) point to char after message
bctr 8,0 point to last character
cli 0(8),0 is it a null character?
bne noEndingNull
bct 5,noEndingNull ignore it: user said WTO(sizeof s,s)
b return unless length was dropped to zero

noEndingNull ds 0h
la 7,0 length OK so far
la 8,l'buffer maximum length
cr 5,8 check length
bnh lenOK
lr 5,8 show only what fits into buffer
la 7,4 remember specified string was too long

lenOK ds 0h

* build WTO buffer
* copy list form of WTO to DSA
* execute WTO

sth 5,prefix length shown goes into prefix
bctr 5,0 reduce length for execute
ex 5,msg move message text
la 6,prefix point to prefix of copied message
mvc wtod,wtol move list form of macro to DSA
wto text=(6),mf=(e,wtod)

Figure 235. Performing a Write To Operator (Part 1 of 2)

822 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GWT2

Listing Partitioned Data Set Members
The following example shows a way to create a list of all members in a Partitioned
Data Set (PDS).

Note: This information is included to aid you in such a task and is not
programming interface information.

* if WTO returned non-zero that's the return code for the user
* otherwise we return 4 if we truncated message, 0 if we didn't

ltr 15,15 check rc from WTO
bnz return <>0 wto RC returned to caller
lr 15,7 tell caller if string was too long

return ds 0h
edcepil

msg mvc buffer(*-*),0(6)
wtol wto text=,routcde=11,desc=12,mf=l list form
wtolen equ *-wtol length to move
dsa edcdsad

ds 0f
wtod ds cl(wtolen)
prefix ds h
buffer ds cl126
dlen equ *-dsa

end

Figure 235. Performing a Write To Operator (Part 2 of 2)

/* write to operator example */
/* part 2 of 2-other file is CBC3GWT1 */
#pragma linkage(WTO,os_upstack)
int WTO(int,char*);

int main(void) {
#define msg "my message"
WTO(sizeof msg-1,msg);

}

Figure 236. Performing a Write To Operator

Appendix H. Additional Examples 823

CBC3GIP1

/* this example shows how to create a list of members of a PDS under */
/* OS/390 */
/* part 1 of 2-other file is CBC3GIP2 */
/*
* NODE_PTR pds_mem(const char *pds):
* pds must be a fully qualified pds name, for example,
* ID.PDS.DATASET * returns a * pointer to a linked list of
* nodes. Each node contains a member of the * pds and a
* pointer to the next node. If no members exist, the pointer
* is NULL.
*
* Note: Behavior is undefined if pds is the name of a sequential file.
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "cbc3gip2.h"

/*
* RECORD: each record of a pds will be read into one of these structures.
* The first 2 bytes is the record length, which is put into 'count',
* the remaining 254 bytes are put into rest. Each record is 256 bytes long.
*/

#define RECLEN 254

typedef struct {
unsigned short int count;
char rest[RECLEN];
} RECORD;

/* Local function prototypes */

static int gen_node(NODE_PTR *node, RECORD *rec, NODE_PTR *last_ptr);
static char *add_name(NODE_PTR *node, char *name, NODE_PTR *last_ptr);

Figure 237. Example of Listing All Members of a PDS (Part 1 of 5)

824 OS/390 V2R10.0 C/C++ Programming Guide

NODE_PTR pds_mem(const char *pds) {

FILE *fp;
int bytes;
NODE_PTR node, last_ptr;
RECORD rec;
int list_end;
char *qual_pds;

node = NULL;
last_ptr = NULL;
/*
* Allocate a new variable, qual_pds, which will be the same as pds, except
* with single quotes around it, i.e. ID.PDS.DATASET ==> 'ID.PDS.DATA SET'
*/

qual_pds = (char *)malloc(strlen(pds) + 3);
if (qual_pds == NULL) {

fprintf(stderr,"malloc failed for %d bytes\n",strlen(pds) + 3);
exit(-1);

}
sprintf(qual_pds,"'%s'",pds);

/*
* Open the pds in binary read mode. The PDS directory will be read one
* record at a time until either the end of the directory or end-of-file
* is detected. Call up gen_node() with every record read, to add member
* names to the linked list
*/

fp = fopen(qual_pds,"rb");
if (fp == NULL)

return(NULL);

do {
bytes = fread(&rec, 1, sizeof(rec), fp);
if ((bytes != sizeof(rec)) && !feof(fp)) {

perror("FREAD:");
fprintf(stderr,"Failed in %s, line %d\n"

"Expected to read %d bytes but read %d bytes\n",
__FILE__,__LINE__,sizeof(rec), bytes);

exit(-1);
}

list_end = gen_node(&node,&rec, &last_ptr);

} while (!feof(fp) &&; !list_end);
fclose(fp);
free(qual_pds);
return(node);

}

Figure 237. Example of Listing All Members of a PDS (Part 2 of 5)

Appendix H. Additional Examples 825

/*
* GEN_NODE() processes the record passed. The main loop scans through the
* record until it has read at least rec->count bytes, or a directory end
* marker is detected.
*
* Each record has the form:
*
* +------------+------+------+------+------+----------------+
* + # of bytes ¦Member¦Member¦......¦Member¦ Unused +
* + in record ¦ 1 ¦ 2 ¦ ¦ n ¦ +
* +------------+------+------+------+------+----------------+
* ¦--count---¦¦-----------------rest-----------------------¦
* (Note that the number stored in count includes its own
* two bytes)
*
* And, each member has the form:
*
* +--------+-------+----+-----------------------------------+
* + Member ¦TTR ¦info¦ +
* + Name ¦ ¦byte¦ User Data TTRN's (halfwords) +
* + 8 bytes¦3 bytes¦ ¦ +
* +--------+-------+----+-----------------------------------+
*/

#define TTRLEN 3 /* The TTR's are 3 bytes long */
/*
* bit 0 of the info-byte is '1' if the member is an alias,
* 0 otherwise. ALIAS_MASK is used to extract this information
*/
#define ALIAS_MASK ((unsigned int) 0x80)
/*
* The number of user data half-words is in bits 3-7 of the info byte.
* SKIP_MASK is used to extract this information. Since this number is
* in half-words, it needs to be double to obtain the number of bytes.
*/
#define SKIP_MASK ((unsigned int) 0x1F)

/*
* 8 hex FF's mark the end of the directory

Figure 237. Example of Listing All Members of a PDS (Part 3 of 5)

826 OS/390 V2R10.0 C/C++ Programming Guide

*/
char *endmark = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF";
static int gen_node(NODE_PTR *node, RECORD *rec, NODE_PTR *last_ptr) {

char *ptr, *name;
int skip, count = 2;
unsigned int info_byte, alias, ttrn;
char ttr[TTRLEN];
int list_end = 0;

ptr = rec->rest;

while(count < rec->count) {
if (!memcmp(ptr,endmark,NAMELEN)) {

list_end = 1;
break;

}

/* member name */
name = ptr;
ptr += NAMELEN;

/* ttr */
memcpy(ttr,ptr,TTRLEN);
ptr += TTRLEN;

/* info_byte */
info_byte = (unsigned int) (*ptr);
alias = info_byte & ALIAS_MASK;
if (!alias) add_name(node,name,last_ptr);
skip = (info_byte & SKIP_MASK) * 2 + 1;
ptr += skip;
count += (TTRLEN + NAMELEN + skip);

}
return(list_end);

}

Figure 237. Example of Listing All Members of a PDS (Part 4 of 5)

Appendix H. Additional Examples 827

/*
* ADD_NAME: Add a new member name to the linked node. The new member is
* added to the end so that the original ordering is maintained.
*/

static char *add_name(NODE_PTR *node, char *name, NODE_PTR *last_ptr) {

NODE_PTR newnode;

/*
* malloc space for the new node
*/

newnode = (NODE_PTR)malloc(sizeof(NODE));
if (newnode == NULL) {

fprintf(stderr,"malloc failed for %d bytes\n",sizeof(NODE));
exit(-1);

}

/* copy the name into the node and NULL terminate it */

memcpy(newnode->name,name,NAMELEN);
newnode->name[NAMELEN] = '\0';
newnode->next = NULL;

/*
* add the new node to the linked list
*/

if (*last_ptr != NULL) {
(*last_ptr)->next = newnode;
*last_ptr = newnode;

}
else {

*node = newnode;
*last_ptr = newnode;

}
return(newnode->name);

}
/*
* FREE_MEM: This function is not used by pds_mem(), but it should be used
* as soon as you are finished using the linked list. It frees the storage
* allocated by the linked list.
*/

void free_mem(NODE_PTR node) {

NODE_PTR next_node=node;

while (next_node != NULL) {
next_node = node->next;
free(node);
node = next_node;

}
return;

}

Figure 237. Example of Listing All Members of a PDS (Part 5 of 5)

828 OS/390 V2R10.0 C/C++ Programming Guide

CBC3GIP2

/* this example shows how to create a list of members of a PDS under */
/* OS/390 */
/* part 2 of 2-other file is CBC3GIP1 */
/*
* NODE: a pointer to this structure is returned from the call to pds_mem().
* It is a linked list of character arrays - each array contains a member
* name. Each next pointer points * to the next member, except the last
* next member which points to NULL.
*/

#define NAMELEN 8 /* Length of a MVS member name */

typedef struct node {
struct node *next;
char name[NAMELEN+1];

} NODE, *NODE_PTR;

NODE_PTR pds_mem(const char *pds);
void free_mem(NODE_PTR list);

Figure 238. cbc3gip2.h Header file

Appendix H. Additional Examples 829

830 OS/390 V2R10.0 C/C++ Programming Guide

Appendix I. Using Built-In Functions

The following functions are components of the OS/390 C/C++ compiler. The
compiler generates inline code for these functions at compile time.

Built-In Function Header File

abs() stdlib.h

alloca() stdlib.h

cds() stdlib.h

cs() stdlib.h

decabs() decimal.h

decchk() decimal.h

decfix() decimal.h

fabs() math.h

fortrc() stdlib.h

memchr() string.h

memcpy() string.h

memcmp() string.h

memset() string.h

strcat() string.h

strchr() string.h

strcmp() string.h

strcpy() string.h

strlen() string.h

strncat() string.h

strncmp() string.h

strncpy() string.h

strrchr() string.h

tsched() mtf.h

Note: tsched() is valid only under C

Note: Built-in functions do not correspond to inline functions that result from the
use of the compile-time option INLINE and the #pragma inline directive in C.
Refer to OS/390 C/C++ Run-Time Library Reference for more information.

© Copyright IBM Corp. 1996, 2000 831

832 OS/390 V2R10.0 C/C++ Programming Guide

Appendix J. Application Considerations for OS/390 UNIX
C/C++

This appendix briefly describes the extent of OS/390 C/C++ support available for
traditional MVS programming environments when you are using OS/390 UNIX.

Relationship to DB2 Universal Database
No explicit support for DB2 programs exists for POSIX.1 implementation. DB2
OS/390 C/C++ programs must be processed by a DB2 precompile step to replace
Structured Query Language (SQL) statements with OS/390 C/C++ functions. The
precompilation step accepts only MVS data set I/O. Therefore, a DB2 database
cannot reside in a hierarchical file system (HFS).

It is possible that an existing DB2 OS/390 C/C++ application program can be
changed to add POSIX.1-defined I/O functions to access data in HFS files. IBM,
however, does not explicitly support this access. It is also possible that you can
write a new POSIX.1.-conforming OS/390 C/C++ application program that access
DB2 data by calling non-POSIX.1-conforming DB2 programs. IBM, however, does
not explicitly support this either.

Application Programming Environments Not Supported
The following MVS programming environments are not supported for use when
developing POSIX.1 OS/390 C/C++ application programs:

v CICS

v IMS file system

Application programs that attempt to take advantage of these environments will not
work as intended.

Support for the Curses Library
The Curses library provides a set of functions that enable you to manipulate a
terminal’s display regardless of the terminal type. Using this structure, you can
manipulate data on a terminal’s display. You can instruct curses to treat the entire
terminal display as one large window or you can create multiple windows on the
display. The windows can be different sizes and can overlap one another.

Each window on a terminal’s display has its own window data structure. This
structure keeps state information about the window such as its size and where it is
located on the display. Curses uses the window data structure to obtain relevant
information it needs to carry out your instructions.

The Curses archive file resides in /usr/lib. The non-XPLINK version is named
libcurses.a, and the XPLINK version is named libcursesxp.a. The following is an
example of compiling test.c with the Curses XPLINK archive:
c89 -o test -Wc,xplink -Wl,xplink test.c -lcursesxp

For more information about curses, refer to the OS/390 C Curses manual.

© Copyright IBM Corp. 1996, 2000 833

|
|
|

|

|

834 OS/390 V2R10.0 C/C++ Programming Guide

Appendix K. External Variables

The POSIX 1003.1 and X/Open CAE Specification 4.2 (XPG4.2) require that the C
system header files define certain external variables. Additional variables are
defined for use with POSIX or XPG4.2 functions. If you define one of the POSIX or
XPG4 feature test macros and include one of these headers, the external variables
will be defined in your program. These external variables are treated differently than
other global variables in a multithreaded environment (values are thread-specific)
and across a call to a fetched module (values are propagated). To access the
global variable values (not thread specific), either C with the RENT compiler option
or C++ must be used, and the SCEEOBJ autocall library must be specified during
the OS/390 bind. Functions to access the thread-specific values of these variables
are provided for use in a multithreaded environment.

For a dynamically called DLL module to share access to the POSIX external
variables with its caller, the DLL module must define the _SHARE_EXT_VARS
feature test macro. This is implemented in the current Language Environment
run-time. For more information, see the section on feature test macros in OS/390
C/C++ Run-Time Library Reference.

When compiling code with the XPLINK compiler option, all access to these external
variables is resolved by dynamic linkage, using IMPORT control statements in the
CELHS003 member of the SCEELIB library. The SCEEOBJ library cannot be used when
binding XPLINK executable modules. Because of this, the _SHARE_EXT_VARS (and
subordinate) feature test macros need not be used with XPLINK (they will be
ignored). All references to these external variables are as if _SHARE_EXT_VARS was
defined, without the need to access them through the thread-specific functions.

For more information on the header files referred to in the following sections, see
OS/390 C/C++ Run-Time Library Reference.

errno
When a run-time library function is not successful, the function may do any of the
following to identify the error:

v Set errno to a documented value.

v Set errno to a value that is not documented. You can use strerror() or perror()
to get the message associated with the errno.

v Not set errno.

v Clear errno.

See also errno.h.

daylight
The daylight savings time flag set by tzset(). Note that other time zone sensitive
functions such as ctime(), localtime(), mktime(), and strftime() implicitly call
tzset(). For non-XPLINK code, use the __dlght() function to access the
thread-specific value of daylight. See also time.h.

getdate_err
The variable is set to the following value when an error occurs in the getdate()
function.

© Copyright IBM Corp. 1996, 2000 835

|
|
|
|
|
|
|

|
|
|
|

Value Description

1 The DATEMASK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error is encountered while reading the template file.

6 Memory allocation is not successful.

7 There is no line in the template that matches the input.

8 There is no line in the template that matches the input.

Any changes to errno are unspecified. For non-XPLINK code, use the __gderr()
function to access the thread-specific value of getdate_err. See also time.h.

h_errno
An integer that holds the specific error code when the network nameserver
encounters an error. The network nameserver is used by the gethostbyname() and
gethostbyaddr() functions. For non-XPLINK code, use the __h_errno() function to
access the thread-specific value of h_errno. See also netdb.h.

__loc1
A global character pointer that is set by the regex() function to point to the first
matched character in the input string. For non-XPLINK code, use the ____loc1()
function to access the thread-specific value of __loc1. See also libgen.h.

loc1
A pointer to characters matched by regular expressions used by step(). The value
is not propagated across a call to a fetched module. See also regexp.h.

loc2
A pointer to characters matched by regular expressions used by step(). The value
is not propagated across a call to a fetched module. See also regexp.h.

locs
Used by advance() to stop regular expression matching in a string. The value is not
propagated across a call to a fetched module. See also regexp.h.

optarg
Character pointer used by getopt() for options parsing variables. For non-XPLINK
code, use the __optargf() function to access the thread-specific value of optarg.
See also stdio.h and unistd.h.

opterr
Error value used by getopt(). For non-XPLINK code, use the __operrf() function
to access the thread-specific value of opterr. See also stdio.h and unistd.h.

836 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|

|
|
|

|
|
|

|
|

optind
Integer pointer used by getopt() for options parsing variables. For non-XPLINK
code, use the __opindf() function to access the thread-specific value of optind.
See also stdio.h and unistd.h.

optopt
Integer pointer used by getopt() for options parsing variables. For non-XPLINK
code, use the __opoptf() function to access the thread-specific value of optopt.
See also stdio.h and unistd.h.

signgam
Storage for sign of lgamma(). This function defaults to thread specific. See also
math.h.

stdin
Standard Input stream. The external variable will be initialized to point to the
enclave-level stream pointer for the standard input file. There is no multithreaded
function. See also stdio.h.

stderr
Standard Error stream. The external variable will be initialized to point to the
enclave-level stream pointer for the standard error file. There is no multithreaded
function. See also stdio.h.

stdout
Standard Output stream. The external variable will be initialized to point to the
enclave-level stream pointer for the standard output file. There is no multithreaded
function. See also stdio.h.

t_errno
An integer that holds the specific error code when a failure occurs in one of the
X/Open Transport Interface (XTI) functions. For non-XPLINK code, use the
__t_errno() function to access the thread-specific value of t_errno. See also xti.h.

timezone
Long integer difference from UTC and standard time as set by tzset(). Note that
other time zone sensitive functions such as, ctime(), localtime(), mktime(), and
strftime() implicitly call tzset(). For non-XPLINK code, use the __tzone()
function to access the thread-specific value of timezone. See also time.h.

Appendix K. External Variables 837

|
|
|

|
|
|

|
|
|

|
|
|
|

tzname
Character pointer to unsized array of timezone strings used by tzset() and
ctime(). The *tzname variable contains the Standard and Daylight Savings time
zone names. If the TZ environment variable is present and correct, tzname is set
from TZ. Otherwise tzname is set from the LC_TOD locale category. See the
tzset() function for a description. There is no multithreaded function. See also
time.h.

838 OS/390 V2R10.0 C/C++ Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OR CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2000 839

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on the OS/390 operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the
purposes of developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States or other countries or both:

AFP AIX AT
BookManager C Set ++ C/370
CICS CICS/ESA CT
DB2 DB2 Universal Database DFSMS
DFSMS/MVS DRDA ESCON

840 OS/390 V2R10.0 C/C++ Programming Guide

GDDM Hiperspace IBM
IMS IMS/ESA Language Environment
Library Reader MVS MVS/DFP
MVS/ESA Open Class OpenEdition
OS OPEN OS/2 OS/390
OS/400 QMF SOM
RACF S/370 S/390
SP System/370 System Object Model
VisualAge VM/ESA VSE/ESA
3890 400

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the U.S. and/or other countries.

UNIX is a registered trademark of The Open Group in the U.S. and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the U.S. and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

Standards
Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:
System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

For more information on IEEE, visit their web site at http://www.ieee.org/.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC. For more
information on ISO, visit their web site at http://www.iso.ch/.

Notices 841

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the X/Open
Company Ltd, UK. For more information, visit http://www.opengroup.org/.

842 OS/390 V2R10.0 C/C++ Programming Guide

Glossary

This glossary defines technical terms and
abbreviations that are used in OS/390 C/C++
documentation. If you do not find the term you are
looking for, refer to the index of the appropriate
OS/390 C/C++ manual or view IBM Dictionary of
Computing, located at:
http://www.ibm.com/networking/nsg/nsgmain.htm

This glossary includes terms and definitions from:

v American National Standard Dictionary for
Information Systems, ANSI/ISO X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI/ISO). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are indicated
by the symbol ANSI/ISO after the definition.

v IBM Dictionary of Computing, SC20-1699.
These definitions are indicated by the registered
trademark IBM after the definition.

v X/Open CAE Specification, Commands and
Utilities, Issue 4. July, 1992. These definitions
are indicated by the symbol X/Open after the
definition.

v ISO/IEC 9945-1:1990/IEEE POSIX
1003.1-1990. These definitions are indicated by
the symbol ISO.1 after the definition.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol
ISO-JTC1 after the definition; definitions taken
from draft international standards, committee
drafts, and working papers being developed by
ISO/IEC JTC1/SC1 are identified by the symbol
ISO Draft after the definition, indicating that final
agreement has not yet been reached among
the participating National Bodies of SC1.

A
abstract class. (1) A class with at least one pure
virtual function that is used as a base class for other
classes. The abstract class represents a concept;
classes derived from it represent implementations of the
concept. You cannot create a direct object of an
abstract class, but you can create references and
pointers to an abstract class and set them to refer to
objects of classes derived from the abstract class. See

also base class. (2) A class that allows polymorphism.
There can be no objects of an abstract class; they are
only used to derive new classes.

abstract code unit. See ACU.

abstract data type. A mathematical model that
includes a structure for storing data and operations that
can be performed on that data. Common abstract data
types include sets, trees, and heaps.

abstraction (data). A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

access. An attribute that determines whether or not a
class member is accessible in an expression or
declaration.

access declaration. A declaration used to restore
access to members of a base class.

access mode. (1) A technique that is used to obtain a
particular logical record from, or to place a particular
logical record into, a file assigned to a mass storage
device. ANSI/ISO. (2) The manner in which files are
referred to by a computer. Access can be sequential
(records are referred to one after another in the order in
which they appear on the file), access can be random
(the individual records can be referred to in a
nonsequential manner), or access can be dynamic
(records can be accessed sequentially or randomly,
depending on the form of the input/output request). IBM.
(3) A particular form of access permitted to a file.
X/Open.

access resolution. The process by which the
accessibility of a particular class member is determined.

access specifier. One of the C++ keywords: public,
private, and protected, used to define the access to a
member.

ACU (abstract code unit). A measurement used by
the OS/390 C/C++ compiler for judging the size of a
function. The number of ACUs that comprise a function
is proportional to its size and complexity.

addressing mode. See AMODE.

address space. (1) The range of addresses available
to a computer program. ANSI/ISO. (2) The complete
range of addresses that are available to a programmer.
See also virtual address space. (3) The area of virtual
storage available for a particular job. (4) The memory
locations that can be referenced by a process. X/Open.
ISO.1.

© Copyright IBM Corp. 1996, 2000 843

|
|
|
|
|
|
|
|

|

aggregate. (1) An array or a structure. (2) A
compile-time option to show the layout of a structure or
union in the listing. (3) In programming languages, a
structured collection of data items that form a data type.
ISO-JTC1. (4) In C++, an array or a class with no
user-declared constructors, no private or protected
non-static data members, no base classes, and no
virtual functions.

alert. (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. IBM. (2) To cause the user's
terminal to give some audible or visual indication that an
error or some other event has occurred. When the
standard output is directed to a terminal device, the
method for alerting the terminal user is unspecified.
When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert
character to standard output (unless the utility
description indicates that the use of standard output
produces undefined results in this case). X/Open.

alert character. A character that in the output stream
should cause a terminal to alert its user via a visual or
audible notification. The alert character is the character
designated by a '\a' in the C and C++ languages. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the alert function. X/Open.

This character is named <alert> in the portable
character set.

alias. (1) An alternate label; for example, a label and
one or more aliases may be used to refer to the same
data element or point in a computer program. ANSI/ISO.
(2) An alternate name for a member of a partitioned
data set. IBM. (3) An alternate name used for a
network. Synonymous with nickname. IBM.

alias name. (1) A word consisting solely of
underscores, digits, and alphabetics from the portable
file name character set, and any of the following
characters: ! % , @. Implementations may allow other
characters within alias names as an extension. X/Open.
(2) An alternate name. IBM. (3) A name that is defined
in one network to represent a logical unit name in
another interconnected network. The alias name does
not have to be the same as the real name; if these
names are not the same; translation is required. IBM.

alignment. The storing of data in relation to certain
machine-dependent boundaries. IBM.

alternate code point. A syntactic code point that
permits a substitute code point to be used. For
example, the left brace ({) can be represented by X'B0'
and also by X'C0'.

American National Standard Code for Information
Interchange (ASCII). The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for

information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control characters
and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code
(characters 128–255).

American National Standards Institute (ANSI/ISO).
An organization consisting of producers, consumers,
and general interest groups, that establishes the
procedures by which accredited organizations create
and maintain voluntary industry standards in the United
States. ANSI/ISO.

AMODE (addressing mode). In OS/390, a program
attribute that refers to the address length that a program
is prepared to handle upon entry. In OS/390, addresses
may be 24 or 31 bits in length. IBM.

angle brackets. The characters < (left angle bracket)
and > (right angle bracket). When used in the phrase
“enclosed in angle brackets”, the symbol < immediately
precedes the object to be enclosed, and > immediately
follows it. When describing these characters in the
portable character set, the names <less-than-sign> and
<greater-than-sign> are used. X/Open.

anonymous union. A union that is declared within a
structure or class and does not have a name. It must
not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

API (application program interface). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program. IBM.

application. (1) The use to which an information
processing system is put; for example, a payroll
application, an airline reservation application, a network
application. IBM. (2) A collection of software
components used to perform specific types of
user-oriented work on a computer. IBM.

application generator. An application development
tool that creates applications, application components
(panels, data, databases, logic, interfaces to system
services), or complete application systems from design
specifications.

application program. A program written for or by a
user that applies to the user's work, such as a program
that does inventory control or payroll. IBM.

archive libraries. The archive library file, when
created for application program object files, has a
special symbol table for members that are object files.

844 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|

argument. (1) A parameter passed between a calling
program and a called program. IBM. (2) In a function
call, an expression that represents a value that the
calling function passes to the function specified in the
call. (3) In the shell, a parameter passed to a utility as
the equivalent of a single string in the argv array
created by one of the exec functions. An argument is
one of the options, option-arguments, or operands
following the command name. X/Open.

argument declaration. See parameter declaration.

arithmetic object. (1) A bit field, or an integral,
floating-point, or packed decimal (IBM extension) object.
(2) A real object or objects having the type float, double,
or long double.

array. In programming languages, an aggregate that
consists of data objects with identical attributes, each of
which may be uniquely referenced by subscripting.
ISO-JTC1.

array element. A data item in an array. IBM.

ASCII. See American National Standard Code for
Information Interchange.

Assembler H. An IBM licensed program. Translates
symbolic assembler language into binary machine
language.

assembler language. A source language that includes
symbolic language statements in which there is a
one-to-one correspondence with the instruction formats
and data formats of the computer. IBM.

assembler user exit. In the OS/390 Language
Environment a routine to tailor the characteristics of an
enclave prior to its establishment.

assignment expression. An expression that assigns
the value of the right operand expression to the left
operand variable and has as its value the value of the
right operand. IBM.

atexit list. A list of actions specified in the OS/390
C/C++ atexit() function that occur at normal program
termination.

auto storage class specifier. A specifier that enables
the programmer to define a variable with automatic
storage; its scope restricted to the current block.

automatic call library. Contains modules that are
used as secondary input to the binder to resolve
external symbols left undefined after all the primary
input has been processed.

The automatic call library can contain:

v Object modules, with or without binder control
statements

v Load modules

v OS/390 C/C++ run-time routines (SCEELKED)

automatic library call. The process in which control
sections are processed by the binder or loader to
resolve references to members of partitioned data sets.
IBM.

automatic storage. Storage that is allocated on entry
to a routine or block and is freed on the subsequent
return. Sometimes referred to as stack storage or
dynamic storage.

B
background process. (1) A process that does not
require operator intervention but can be run by the
computer while the workstation is used to do other
work. IBM. (2) A mode of program execution in which
the shell does not wait for program completion before
prompting the user for another command. IBM. (3) A
process that is a member of a background process
group. X/Open. ISO.1.

background process group. Any process group,
other than a foreground process group, that is a
member of a session that has established a connection
with a controlling terminal. X/Open. ISO.1.

backslash. The character \. This character is named
<backslash> in the portable character set.

base class. A class from which other classes are
derived. A base class may itself be derived from another
base class. See also abstract class.

based on. The use of existing classes for
implementing new classes.

binary expression. An expression containing two
operands and one operator.

binary stream. (1) An ordered sequence of
untranslated characters. (2) A sequence of characters
that corresponds on a one-to-one basis with the
characters in the file. No character translation is
performed on binary streams. IBM.

bind. (1) To combine one or more control sections or
program modules into a single program module,
resolving references between them. (2) To assign virtual
storage addresses to external symbols.

binder. The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in the
MVS/ESA or OS/390 operating system.

bit field. A member of a structure or union that
contains a specified number of bits. IBM.

bitwise operator. An operator that manipulates the
value of an object at the bit level.

Glossary 845

|
|
|
|

blank character. (1) A graphic representation of the
space character. ANSI/ISO. (2) A character that
represents an empty position in a graphic character
string. ISO Draft. (3) One of the characters that belong
to the blank character class as defined via the
LC_CTYPE category in the current locale. In the POSIX
locale, a blank character is either a tab or a space
character. X/Open.

block. (1) In programming languages, a compound
statement that coincides with the scope of at least one
of the declarations contained within it. A block may also
specify storage allocation or segment programs for
other purposes. ISO-JTC1. (2) A string of data elements
recorded or transmitted as a unit. The elements may be
characters, words or physical records. ISO Draft. (3)
The unit of data transmitted to and from a device. Each
block contains one record, part of a record, or several
records.

block statement. In the C or C++ languages, a group
of data definitions, declarations, and statements
appearing between a left brace and a right brace that
are processed as a unit. The block statement is
considered to be a single C or C++ statement. IBM.

boundary alignment. The position in main storage of
a fixed-length field, such as a halfword or doubleword,
on a byte-level boundary for that unit of information.
IBM.

braces. The characters { (left brace) and } (right
brace), also known as curly braces. When used in the
phrase “enclosed in (curly) braces” the symbol {
immediately precedes the object to be enclosed, and }
immediately follows it. When describing these
characters in the portable character set, the names
<left-brace> and <right-brace> are used. X/Open.

brackets. The characters [(left bracket) and] (right
bracket), also known as square brackets. When used in
the phrase enclosed in (square) brackets the symbol [
immediately precedes the object to be enclosed, and]
immediately follows it. When describing these
characters in the portable character set, the names
<left-bracket> and <right-bracket> are used. X/Open.

break statement. A C or C++ control statement that
contains the keyword “break” and a semicolon. IBM. It is
used to end an iterative or a switch statement by exiting
from it at any point other than the logical end. Control is
passed to the first statement after the iteration or switch
statement.

built-in. (1) A function that the compiler will
automatically inline instead of making the function call,
unless the programmer specifies not to inline. (2) In
programming languages, pertaining to a language
object that is declared by the definition of the
programming language; for example, the built-in function

SIN in PL/I, the predefined data type INTEGER in
FORTRAN. ISO-JTC1. Synonymous with predefined.
IBM.

byte-oriented stream. See orientation of a stream.

C
C library. A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions. IBM.

C or C++ language statement. A C or C++ language
statement contains zero or more expressions. A block
statement begins with a { (left brace) symbol, ends with
a } (right brace) symbol, and contains any number of
statements.

All C or C++ language statements, except block
statements, end with a ; (semicolon) symbol.

c89 utility. A utility used to compile and bind an
OS/390 UNIX application program from the OS/390
shell.

C++ class library. A collection of C++ classes.

C++ library. A system library that contains common
C++ language subroutines for file access, memory
allocation, and other functions.

callable services. A set of services that can be
invoked by a OS/390 Language Environment-
conforming high level language using the conventional
OS/390 Language Environment-defined call interface,
and usable by all programs sharing the OS/390
Language Environment conventions.

Use of these services helps to decrease an application's
dependence on the specific form and content of the
services delivered by any single operating system.

call chain. A trace of all active functions.

caller. A function that calls another function.

cancelability point. A specific point within the current
thread that is enabled to solicit cancel requests. This is
accomplished using the pthread_testintr() function.

carriage-return character. A character that in the
output stream indicates that printing should start at the
beginning of the same physical line in which the
carriage-return character occurred. The carriage-return
is the character designated by '\r' in the C and C++
languages. It is unspecified whether this character is the
exact sequence transmitted to an output device by the
system to accomplish the movement to the beginning of
the line. X/Open.

case clause. In a C or C++ switch statement, a CASE
label followed by any number of statements.

846 OS/390 V2R10.0 C/C++ Programming Guide

|

case label. The word case followed by a constant
integral expression and a colon. When the selector
evaluates the value of the constant expression, the
statements following the case label are processed.

cast expression. An expression that converts or
reinterprets its operand.

cast operator. The cast operator is used for explicit
type conversions.

cataloged procedures. A set of control statements
placed in a library and retrievable by name. IBM.

catch block. A block associated with a try block that
receives control when an exception matching its
argument is thrown.

char specifier. A char is a built-in data type. In the
C++ language, char, signed char, and unsigned char
are all distinct data types.

character. (1) A letter, digit, or other symbol that is
used as part of the organization, control, or
representation of data. A character is often in the form
of a spatial arrangement of adjacent or connected
strokes. ANSI/ISO. (2) A sequence of one or more bytes
representing a single graphic symbol or control code.
This term corresponds to the ISO C standard term
multibyte character (multibyte character), where a
single-byte character is a special case of the multibyte
character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with
storage space, and byte is used when storage space is
discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters sharing
an attribute associated with the name of the class. The
classes and the characters that they contain are
dependent on the value of the LC_CTYPE category in
the current locale. X/Open.

character constant. A string of any of the characters
that can be represented, usually enclosed in quotes.

character set. (1) A finite set of different characters
that is complete for a given purpose; for example, the
character set in ISO Standard 646, 7-bit Coded
Character Set for Information Processing Interchange.
ISO Draft. (2) All the valid characters for a programming
language or for a computer system. IBM. (3) A group of
characters used for a specific reason; for example, the
set of characters a printer can print. IBM. (4) See also
portable character set.

character special file. (1) A special file that provides
access to an input or output device. The character
interface is used for devices that do not use block I/O.
IBM. (2) A file that refers to a device. One specific type
of character special file is a terminal device file. X/Open.
ISO.1.

character string. A contiguous sequence of
characters terminated by and including the first null
byte. X/Open.

child. A node that is subordinate to another node in a
tree structure. Only the root node is not a child.

child enclave. The nested enclave created as a result
of certain commands being issued from a parent
enclave.

CICS (Customer Information Control System).
Pertaining to an IBM licensed program that enables
transactions entered at remote terminals to be
processed concurrently by user-written application
programs. It includes facilities for building, using, and
maintaining databases. IBM.

CICS destination control table. See DCT.

CICS translator. A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

class. (1) A C++ aggregate that may contain functions,
types, and user-defined operators in addition to data. A
class may be derived from another class, inheriting the
properties of its parent class. A class may restrict
access to its members. (2) A user-defined data type. A
class data type can contain both data representations
(data members) and functions (member functions).

class key. One of the C++ keywords: class, struct and
union.

class library. A collection of classes.

class member operator. An operator used to access
class members through class objects or pointers to
class objects. The class member operators are:

. -> .* ->*

class name. A unique identifier that names a class
type.

class scope. An indication that a name of a class can
be used only in a member function of that class.

class tag. Synonym for class name.

class template. A blueprint describing how a set of
related classes can be constructed.

client program. A program that uses a class. The
program is said to be a client of the class.

CLIST. A programming language that typically
executes a list of TSO commands.

CLLE (COBOL Load List Entry). Entry in the load list
containing the name of the program and the load
address.

Glossary 847

|
|

|
|
|
|
|

COBCOM. Control block containing information about
a COBOL partition.

COBOL (common business-oriented language). A
high-level language, based on English, that is primarily
used for business applications.

COBOL Load List Entry. See CLLE.

COBVEC. COBOL vector table containing the address
of the library routines.

coded character set. (1) A set of graphic characters
and their code point assignments. The set may contain
fewer characters than the total number of possible
characters: some code points may be unassigned. IBM.
(2) A coded set whose elements are single characters;
for example, all characters of an alphabet. ISO Draft. (3)
Loosely, a code. ANSI/ISO.

code element set. (1) The result of applying a code to
all elements of a coded set, for example, all the
three-letter international representations of airport
names. ISO Draft. (2) The result of applying rules that
map a numeric code value to each element of a
character set. An element of a character set may be
related to more than one numeric code value but the
reverse is not true. However, for state-dependent
encodings the relationship between numeric code
values to elements of a character set may be further
controlled by state information. The character set may
contain fewer elements than the total number of
possible numeric code values; that is, some code
values may be unassigned. X/Open. (3) Synonym for
codeset.

code page. (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for an 8-bit code, assignment of
characters and meanings to 128 code points for a 7-bit
code. (2) A particular assignment of hexadecimal
identifiers to graphic characters.

code point. (1) A representation of a unique character.
For example, in a single-byte character set each of 256
possible characters is represented by a one-byte code
point. (2) An identifier in an alert description that
represents a short unit of text. The code point is
replaced with the text by an alert display program.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to
determine the logical ordering of character or
wide-character strings. A collating element consists of
either a single character, or two or more characters
collating as a single entity. The value of the
LC_COLLATE category in the current locale determines
the current set of collating elements. X/Open.

collating sequence. (1) A specified arrangement used
in sequencing. ISO-JTC1. ANSI/ISO. (2) An ordering

assigned to a set of items, such that any two sets in
that assigned order can be collated. ANSI/ISO. (3) The
relative ordering of collating elements as determined by
the setting of the LC_COLLATE category in the current
locale. The character order, as defined for the
LC_COLLATE category in the current locale, defines the
relative order of all collating elements, such that each
element occupies a unique position in the order. This is
the order used in ranges of characters and collating
elements in regular expressions and pattern matching.
In addition, the definition of the collating weights of
characters and collating elements uses collating
elements to represent their respective positions within
the collation sequence.

collation. The logical ordering of character or
wide-character strings according to defined precedence
rules. These rules identify a collation sequence between
the collating elements, and such additional rules that
can be used to order strings consisting or multiple
collating elements. X/Open.

collection. (1) An abstract class without any ordering,
element properties, or key properties. (2) In a general
sense, an implementation of an abstract data type for
storing elements.

Collection Class Library. A set of classes that
provide basic functions for collections, and can be used
as base classes.

column position. A unit of horizontal measure related
to characters in a line.

It is assumed that each character in a character set has
an intrinsic column width independent of any output
device. Each printable character in the portable
character set has a column width of one. The standard
utilities, when used as described in this document set,
assume that all characters have integral column widths.
The column width of a character is not necessarily
related to the internal representation of the character
(numbers of bits or bytes).

The column position of a character in a line is defined
as one plus the sum of the column widths of the
preceding characters in the line. Column positions are
numbered starting from 1. X/Open.

comma expression. An expression (not a function
argument list) that contains two or more operands
separated by commas. The compiler evaluates all
operands in the order specified, discarding all but the
last (rightmost). The value of the expression is the value
of the rightmost operand. Typically this is done to
produce side effects.

command. A request to perform an operation or run a
program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting
character string is a single command.

command processor parameter list (CPPL). The
format of a TSO parameter list. When a TSO terminal

848 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|

|
|
|
|
|
|
|

monitor application attaches a command processor,
register 1 contains a pointer to the CPPL, containing
addresses required by the command processor.

COMMAREA. A communication area made available
to applications running under CICS.

Common Business-Oriented Language. See
COBOL.

common expression elimination. Duplicated
expressions are eliminated by using the result of the
previous expression. This includes intermediate
expressions within expressions.

compilation unit. (1) A portion of a computer program
sufficiently complete to be compiled correctly. IBM. (2) A
single compiled file and all its associated include files.
(3) An independently compilable sequence of high-level
language statements. Each high-level language product
has different rules for what makes up a compilation unit.

complete class name. The complete qualification of a
nested class name including all enclosing class names.

Complex Mathematics library. A C++ class library
that provides the facilities to manipulate complex
numbers and perform standard mathematical operations
on them.

computational independence. No data modified by
either a main task program or a parallel function is
examined or modified by a parallel function that might
be running simultaneously.

concrete class. (1) A class that is not abstract. (2) A
class defining objects that can be created.

condition. (1) A relational expression that can be
evaluated to a value of either true or false. IBM. (2) An
exception that has been enabled, or recognized, by the
OS/390 Language Environment and thus is eligible to
activate user and language condition handlers. Any
alteration to the normal programmed flow of an
application. Conditions can be detected by the
hardware/operating system and result in an interrupt.
They can also be detected by language-specific
generated code or language library code.

conditional expression. A compound expression that
contains a condition (the first expression), an expression
to be evaluated if the condition has a nonzero value
(the second expression), and an expression to be
evaluated if the condition has the value zero (the third
expression).

condition handler. A user-written condition handler or
language-specific condition handler (such as a PL/I
ON-unit or OS/390 C/C++ signal() function call)
invoked by the OS/390 C/C++ condition manager to
respond to conditions.

condition manager. Manages conditions in the
common execution environment by invoking various
user-written and language-specific condition handlers.

condition token. In the OS/390 Language
Environment, a data type consisting of 12 bytes (96
bits). The condition token contains structured fields that
indicate various aspects of a condition including the
severity, the associated message number, and
information that is specific to a given instance of the
condition.

const. (1) An attribute of a data object that declares
the object cannot be changed. (2) A keyword that allows
you to define a variable whose value does not change.
(3) A keyword that allows you to define a parameter that
is not changed by the function. (4) A keyword that
allows you to define a member function that does not
modify the state of the class for which it is defined.

constant. (1) In programming languages, a language
object that takes only one specific value. ISO-JTC1. (2)
A data item with a value that does not change. IBM.

constant expression. An expression having a value
that can be determined during compilation and that
does not change during the running of the program.
IBM.

constant propagation. An optimization technique
where constants used in an expression are combined
and new ones are generated. Mode conversions are
done to allow some intrinsic functions to be evaluated at
compile time.

constructed reentrancy. The attribute of applications
that contain external data and require additional
processing to make them reentrant. Contrast with
natural reentrancy.

constructor. A special C++ class member function
that has the same name as the class and is used to
create an object of that class.

control character. (1) A character whose occurrence
in a particular context specifies a control function. ISO
Draft. (2) Synonymous with nonprinting character. IBM.
(3) A character, other than a graphic character, that
affects the recording, processing, transmission, or
interpretation of text. X/Open.

control statement. (1) A statement that is used to
alter the continuous sequential execution of statements;
a control statement may be a conditional statement,
such as if, or an imperative statement, such as return.
(2) A statement that changes the path of execution.

controlling process. The session leader that
establishes the connection to the controlling terminal. If
the terminal ceases to be a controlling terminal for this
session, the session leader ceases to be the controlling
process. X/Open. ISO.1.

Glossary 849

|
|

|
|
|
|

controlling terminal. A terminal that is associated with
a session. Each session may have at most one
controlling terminal associated with it, and a controlling
terminal is associated with exactly one session. Certain
input sequences from the controlling terminal cause
signals to be sent to all processes in the process group
associated with the controlling terminal. X/Open. ISO.1.

conversion. (1) In programming languages, the
transformation between values that represent the same
data item but belong to different data types. Information
may be lost because of conversion since accuracy of
data representation varies among different data types.
ISO-JTC1. (2) The process of changing from one
method of data processing to another or from one data
processing system to another. IBM. (3) The process of
changing from one form of representation to another; for
example to change from decimal representation to
binary representation. IBM. (4) A change in the type of a
value. For example, when you add values having
different data types, the compiler converts both values
to a common form before adding the values.

conversion descriptor. A per-process unique value
used to identify an open codeset conversion. X/Open.

conversion function. A member function that
specifies a conversion from its class type to another
type.

coordinated universal time (UTC). Synonym for
Greenwich Mean Time (GMT). See GMT.

copy constructor. A constructor that copies a class
object of the same class type.

CSECT (control section). The part of a program
specified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining main
storage locations.

Cross System Product. See CSP.

CSP (Cross System Product). A set of licensed
programs designed to permit the user to develop and
run applications using independently defined maps
(display and printer formats), data items (records,
working storage, files, and single items), and processes
(logic). The Cross System Product set consists of two
parts: Cross System Product/Application Development
(CSP/AD) and Cross System Product/Application
Execution (CSP/AE). IBM.

current working directory. (1) A directory, associated
with a process, that is used in path-name resolution for
path names that do not begin with a slash. X/Open.
ISO.1. (2) In the OS/2 operating system, the first
directory in which the operating system looks for
programs and files and stores temporary files and
output. IBM. (3) In the OS/390 UNIX environment, a
directory that is active and that can be displayed.
Relative path name resolution begins in the current
directory. IBM.

cursor. A reference to an element at a specific
position in a data structure.

Customer Information Control System. See CICS.

D
data abstraction. A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

data definition (DD). (1) In the C and C++ languages,
a definition that describes a data object, reserves
storage for a data object, and can provide an initial
value for a data object. A data definition appears
outside a function or at the beginning of a block
statement. IBM. (2) A program statement that describes
the features of, specifies relationships of, or establishes
context of, data. ANSI/ISO. (3) A statement that is
stored in the environment and that externally identifies a
file and the attributes with which it should be opened.

data definition name. See ddname.

data definition statement. See DD statement.

data member. The smallest possible piece of
complete data. Elements are composed of data
members.

data object. (1) A storage area used to hold a value.
(2) Anything that exists in storage and on which
operations can be performed, such as files, programs,
classes, or arrays. (3) In a program, an element of data
structure, such as a file, array, or operand, that is
needed for the execution of a program and that is
named or otherwise specified by the allowable character
set of the language in which a program is coded. IBM.

data set. Under OS/390, a named collection of related
data records that is stored and retrieved by an assigned
name.

data stream. A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
IBM.

data structure. The internal data representation of an
implementation.

data type. The properties and internal representation
that characterize data.

Data Window Services (DWS). Services provided as
part of the Callable Services Library that allow
manipulation of data objects such as VSAM linear data
sets and temporary data objects known as
TEMPSPACE.

850 OS/390 V2R10.0 C/C++ Programming Guide

DBCS (double-byte character set). A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets.

Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires
hardware and programs that support DBCS. IBM.

DCT (destination control table). A table that contains
an entry for each extrapartition, intrapartition, and
indirect destination. Extrapartition entries address data
sets external to the CICS region. Intrapartition
destination entries contain the information required to
locate the queue in the intrapartition data set. Indirect
destination entries contain the information required to
locate the queue in the intrapartition data set.

ddname (data definition name). (1) The logical name
of a file within an application. The ddname provides the
means for the logical file to be connected to the
physical file. (2) The part of the data definition before
the equal sign. It is the name used in a call to fopen or
freopen to refer to the data definition stored in the
environment.

DD statement (data definition statement). (1) In
OS/390, serves as the connection between the logical
name of a file and the physical name of the file. (2) A
job control statement that defines a file to the operating
system, and is a request to the operating system for the
allocation of input/output resources.

dead code elimination. A process that eliminates
code that exists for calculations that are not necessary.
Code may be designated as dead by other optimization
techniques.

dead store elimination. A process that eliminates
unnecessary storage use in code. A store is deemed
unnecessary if the value stored is never referenced
again in the code.

decimal constant. (1) A numerical data type used in
standard arithmetic operations. (2) A number containing
any of the digits 0 through 9. IBM.

decimal overflow. A condition that occurs when one
or more nonzero digits are lost because the destination
field in a decimal operation is too short to contain the
results.

declaration. (1) In the C and C++ languages, a
description that makes an external object or function
available to a function or a block statement. IBM. (2)
Establishes the names and characteristics of data
objects and functions used in a program.

declarator. Designates a data object or function
declared. Initializations can be performed in a
declarator.

default argument. An argument that is declared with a
default value in a function prototype or declaration. If a
call to the function omits this argument, the default
value is used. Arguments with default values must be
the trailing arguments in a function prototype argument
list.

default clause. In the C or C++ languages, within a
switch statement, the keyword default followed by a
colon, and one or more statements. When the
conditions of the specified case labels in the switch
statement do not hold, the default clause is chosen.
IBM.

default constructor. A constructor that takes no
arguments, or, if it takes arguments, all its arguments
have default values.

default initialization. The initial value assigned to a
data object by the compiler if no initial value is specified
by the programmer.

default locale. (1) The C locale, which is always used
when no selection of locale is performed. (2) A system
default locale, named by locale-related environmental
variables.

define directive. A preprocessor directive that directs
the preprocessor to replace an identifier or macro
invocation with special code.

definition. (1) A data description that reserves storage
and may provide an initial value. (2) A declaration that
allocates storage, and may initialize a data object or
specify the body of a function.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free storage
deallocation operator. (2) A C++ operator used to
destroy objects created by new.

demangling. The conversion of mangled names back
to their original source code names. During C++
compilation, identifiers such as function and static class
member names are mangled (encoded) with type and
scoping information to ensure type-safe linkage. These
mangled names appear in the object file and the final
executable file. Demangling (decoding) converts these
names back to their original names to make program
debugging easier. See also mangling.

deque. A queue that can have elements added and
removed at both ends. A double-ended queue.

dequeue. An operation that removes the first element
of a queue.

dereference. In the C and C++ languages, the
application of the unary operator * to a pointer to access
the object the pointer points to. Also known as
indirection.

Glossary 851

|
|
|

derivation. In the C++ language, to derive a class,
called a derived class, from an existing class, called a
base class.

derived class. A class that inherits from a base class.
All members of the base class become members of the
derived class. You can add additional data members
and member functions to the derived class. A derived
class object can be manipulated as if it is a base class
object. The derived class can override virtual functions
of the base class.

descriptor. PL/I control block that holds information
such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another
during run time.

destination control table. See DCT.

destructor. A special member function that has the
same name as its class, preceded by a tilde (˜), and
that "cleans up" after an object of that class, for
example, freeing storage that was allocated when the
object was created. A destructor has no arguments and
no return type.

detach state attribute. An attribute associated with a
thread attribute object. This attribute has two possible
values:

0 Undetached. An undetached thread keeps its
resources after termination of the thread.

1 Detached. A detached thread has its resources
freed by the system after termination.

device. A computer peripheral or an object that
appears to the application as such. X/Open. ISO.1.

difference. For two sets A and B, the difference (A-B)
is the set of all elements in A but not in B. For bags,
there is an additional rule for duplicates: If bag P
contains an element m times and bag Q contains the
same element n times, then, if m>n, the difference
contains that element m-n times. If m≤n, the difference
contains that element zero times.

digraph. A combination of two keystrokes used to
represent unavailable characters in a C or C++ source
program. Digraphs are read as tokens during the
preprocessor phase.

directory. (1) In a hierarchical file system, a container
for files or other directories. IBM. (2) The part of a
partitioned data set that describes the members in the
data set.

disabled signal. Synonym for enabled signal.

display. To direct the output to the user's terminal. If
the output is not directed to the terminal, the results are
undefined. X/Open.

DLL. See dynamic link library.

do statement. In the C and C++ compilers, a looping
statement that contains the keyword “do”, followed by a
statement (the action), the keyword “while”, and an
expression in parentheses (the condition). IBM.

dot. The file name consisting of a single dot character
(.). X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

double-quote. The character ", also known as
quotation mark. X/Open.

This character is named <quotation-mark> in the
portable character set.

doubleword. A contiguous sequence of bytes or
characters that comprises two computer words and is
capable of being addressed as a unit. IBM.

dynamic. Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or fixed
time. IBM.

dynamic allocation. Assignment of system resources
to a program when the program is executed rather than
when it is loaded into main storage. IBM.

dynamic binding. The act of resolving references to
external variables and functions at run time. In C++,
dynamic binding is supported by using virtual functions.

dynamic link library (DLL). A file containing
executable code and data bound to a program at run
time. The code and data in a dynamic link library can be
shared by several applications simultaneously.
Compiling code with the DLL option does not mean that
the produced executable will be a DLL. To create a
DLL, use #pragma export or the EXPORTALL compiler
option.

DSA (dynamic storage area). An area of storage
obtained during the running of an application that
consists of a register save area and an area for
automatic data, such as program variables. DSAs are
generally allocated within Language
Environment-managed stack segments. DSAs are
added to the stack when a routine is entered and
removed upon exit in a last in, first out (LIFO) manner.
In Language Environment, a DSA is known as a stack
frame.

dynamic storage. Synonym for automatic storage.

dynamic storage area. See DSA

852 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|

|
|
|

E
EBCDIC. See extended binary-coded decimal
interchange code.

effective group ID. An attribute of a process that is
used in determining various permissions, including file
access permissions. This value is subject to change
during the process lifetime, as described in the exec
family of functions and setgid(). X/Open. ISO.1.

effective user ID. (1) The user ID associated with the
last authenticated user or the last setuid() program. It
is equal to either the real or the saved user ID. (2) The
current user ID, but not necessarily the user's login ID;
for example, a user logged in under a login ID may
change to another user's ID. The ID to which the user
changes becomes the effective user ID until the user
switches back to the original login ID. All discretionary
access decisions are based on the effective user ID.
IBM. (3) An attribute of a process that is used in
determining various permissions, including file access
permissions. This value is subject to change during the
process lifetime, as described in exec and setuid().
X/Open. ISO.1.

elaborated type specifier. A specifier typically used in
an incomplete class declaration to qualify types that are
otherwise hidden.

element. The component of an array, subrange,
enumeration, or set.

element equality. A relation that determines if two
elements are equal.

element occurrence. A single instance of an element
in a collection. In a unique collection, element
occurrence is synonymous with element value.

element value. All the instances of an element with a
particular value in a collection. In a nonunique
collection, an element value may have more than one
occurrence. In a unique collection, element value is
synonymous with element occurrence.

else clause. The part of an if statement that contains
the word else, followed by a statement. The else clause
provides an action that is started when the if condition
evaluates to a value of zero (false). IBM.

empty line. A line consisting of only a new-line
character. X/Open.

empty string. (1) A string whose first byte is a null
byte. Synonymous with null string. X/Open. (2) A
character array whose first element is a null character.
ISO.1.

enabled signal. The occurrence of an enabled signal
results in the default system response or the execution
of an established signal handler. If disabled, the
occurrence of the signal is ignored.

encapsulation. Hiding the internal representation of
data objects and implementation details of functions
from the client program. This enables the end user to
focus on the use of data objects and functions without
having to know about their representation or
implementation.

enclave. In OS/390 Language Environment, an
independent collection of routines, one of which is
designated as the main routine. An enclave is roughly
analogous to a program or run unit.

enqueue. (1) An operation that adds an element as
the last element to a queue. (2) Request control of a
serially reusable resource.

entry point. The address or label of the first
instruction that is executed when a routine is entered for
execution.

enumeration constant. In the C or C++ language, an
identifier, with an associated integer value, defined in an
enumerator. An enumeration constant may be used
anywhere an integer constant is allowed. IBM.

enumeration data type. (1) In the Fortran, C, and
C++ language, a data type that represents a set of
values that a user defines. IBM. (2) A type that
represents integers and a set of enumeration constants.
Each enumeration constant has an associated integer
value.

enumeration tag. In the C and C++ language, the
identifier that names an enumeration data type. IBM.

enumeration type. An enumeration type defines a set
of enumeration constants. In the C++ language, an
enumeration type is a distinct data type that is not an
integral type.

enumerator. In the C and C++ language, an
enumeration constant and its associated value. IBM.

equivalence class. (1) A grouping of characters that
are considered equal for the purpose of collation; for
example, many languages place an uppercase
character in the same equivalence class as its
lowercase form, but some languages distinguish
between accented and unaccented character forms for
the purpose of collation. IBM. (2) A set of collating
elements with the same primary collation weight.

Elements in an equivalence class are typically elements
that naturally group together, such as all accented
letters based on the same base letter.

The collation order of elements within an equivalence
class is determined by the weights assigned on any
subsequent levels after the primary weight. X/Open.

escape sequence. (1) A representation of a character.
An escape sequence contains the \ symbol followed by
one of the characters: a, b, f, n, r, t, v, ', ", x, \, or
followed by one or more octal or hexadecimal digits. (2)

Glossary 853

|
|

|
|
|

A sequence of characters that represent, for example,
nonprinting characters, or the exact code point value to
be used to represent variant and nonvariant characters
regardless of code page. (3) In the C and C++
language, an escape character followed by one or more
characters. The escape character indicates that a
different code, or a different coded character set, is
used to interpret the characters that follow. Any member
of the character set used at runtime can be represented
using an escape sequence. (4) A character that is
preceded by a backslash character and is interpreted to
have a special meaning to the operating system. (5) A
sequence sent to a terminal to perform actions such as
moving the cursor, changing from normal to reverse
video, and clearing the screen. Synonymous with
multibyte control. IBM.

exception. (1) Any user, logic, or system error
detected by a function that does not itself deal with the
error but passes the error on to a handling routine (also
called throwing the exception). (2) In programming
languages, an abnormal situation that may arise during
execution, that may cause a deviation from the normal
execution sequence, and for which facilities exist in a
programming language to define, raise, recognize,
ignore, and handle it; for example, (ON-) condition in
PL/I, exception in ADA. ISO-JTC1.

executable. A load module or program object which
has yet to be loaded into memory for execution.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided. The
internal format of an executable file is unspecified, but a
conforming application cannot assume an executable
file is a text file. X/Open.

exception handler. (1) Exception handlers are catch
blocks in C++ applications. Catch blocks catch
exceptions when they are thrown from a function
enclosed in a try block. Try blocks, catch blocks, and
throw expressions are the constructs used to implement
formal exception handling in C++ applications. (2) A set
of routines used to detect deadlock conditions or to
process abnormal condition processing. An exception
handler allows the normal running of processes to be
interrupted and resumed. IBM.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided. The
internal format of an executable file is unspecified, but a
conforming application cannot assume an executable
file is a text file. X/Open.

executable program. A program that has been
link-edited and therefore can be run in a processor.
IBM.

extended binary-coded data interchange code
(EBCDIC). A coded character set of 256 8-bit
characters. IBM.

extended-precision. Pertaining to the use of more
than two computer words to represent a floating point
number in accordance with the required precision. In
OS/390 four computer words are used for an
extended-precision number.

extension. (1) An element or function not included in
the standard language. (2) File name extension.

external data definition. A description of a variable
appearing outside a function. It causes the system to
allocate storage for that variable and makes that
variable accessible to all functions that follow the
definition and are located in the same file as the
definition. IBM.

extern storage class specifier. A specifier that
enables the programmer to declare objects and
functions that several source files can use.

F
feature test macro (FTM). A macro (#define) used to
determine whether a particular set of features will be
included from a header. X/Open. ISO.1.

FIFO special file. A type of file with the property that
data written to such a file is read on a first-in-first-out
basis. Other characteristics of FIFOs are described in
open(), read(), write(), and lseek(). X/Open. ISO.1.

file access permissions. The standard file access
control mechanism uses the file permission bits. The
bits are set at the time of file creation by functions such
as open(), creat(), mkdir(), and mkfifo() and can be
changed by chmod(). The bits are read by stat() or
fstat(). X/Open.

file descriptor. (1) A positive integer that the system
uses instead of the file name to identify an open file. (2)
A per-process unique, non-negative integer used to
identify an open file for the purpose of file access.
ISO.1.

The value of a file descriptor is from zero to
{OPEN_MAX}—which is defined in <limits.h>. A process
can have no more than {OPEN_MAX} file descriptors
open simultaneously. File descriptors may also be used
to implement directory streams. X/Open.

file mode. An object containing the file mode bits and
file type of a file, as described in <sys/stat.h>. X/Open.

854 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|

file mode bits. A file's file permission bits,
set-user-ID-on-execution bit (S_ISUID) and
set-group-ID-on-execution bit (S_ISGID). X/Open.

file permission bits. Information about a file that is
used, along with other information, to determine if a
process has read, write, or execute/search permission
to a file. The bits are divided into three parts: owner,
group, and other. Each part is used with the
corresponding file class of process. These bits are
contained in the file mode, as described in <sys/stat.h>.
The detailed usage of the file permission bits is
described in file access permissions. X/Open. ISO.1.

file scope. A name declared outside all blocks,
classes, and function declarations has file scope and
can be used after the point of declaration in a source
file.

filter. A command whose operation consists of reading
data from standard input or a list of input files and
writing data to standard output. Typically, its function is
to perform some transformation on the data stream.
X/Open.

first element. The element visited first in an iteration
over a collection. Each collection has its own definition
for first element. For example, the first element of a
sorted set is the element with the smallest value.

flat collection. A collection that has no hierarchical
structure.

float constant. (1) A constant representing a
nonintegral number. (2) A number containing a decimal
point, an exponent, or both a decimal point and an
exponent. The exponent contains an e or E, an optional
sign (+ or -), and one or more digits (0 through 9). IBM.

for statement. A looping statement that contains the
word for followed by a for-initializing-statement, an
optional condition, a semicolon, and an optional
expression, all enclosed in parentheses.

foreground process. (1) A process that must run to
completion before another command is issued. The
foreground process is in the foreground process group,
which is the group that receives the signals generated
by a terminal. IBM. (2) A process that is a member of a
foreground process group. X/Open. ISO.1.

foreground process group. (1) The group that
receives the signals generated by a terminal. IBM. (2) A
process group whose member processes have certain
privileges, denied to processes in background process
groups, when accessing their controlling terminal. Each
session that has established a connection with a
controlling terminal has exactly one process group of
the session as the foreground process group of that
controlling terminal. X/Open. ISO.1.

foreground process group ID. The process group ID
of the foreground process group. X/Open. ISO.1.

form-feed character. A character in the output stream
that indicates that printing should start on the next page
of an output device. The formfeed is the character
designated by '\f' in the C and C++ language. If the
formfeed is not the first character of an output line, the
result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an output
device by the system to accomplish the movement to
the next page. X/Open.

forward declaration. A declaration of a class or
function made earlier in a compilation unit, so that the
declared class or function can be used before it has
been defined.

freestanding application. (1) An application that is
created to run without the run-time environment or
library with which it was developed. (2) An OS/390
C/C++ application that does not use the services of the
dynamic OS/390 C/C++ run-time library or of the
Language Environment. Under OS/390 C support, this
ability is a feature of the System Programming C
support.

free store. Dynamically allocated memory. New and
delete are used to allocate and deallocate free store.

friend class. A class in which all the member
functions are granted access to the private and
protected members of another class. It is named in the
declaration of another class and uses the keyword
friend as a prefix to the class. For example, the
following source code makes all the functions and data
in class you friends of class me:

class me {
friend class you;

// ...
};

friend function. A function that is granted access to
the private and protected parts of a class. It is named in
the declaration of the other class with the prefix friend.

function. A named group of statements that can be
called and evaluated and can return a value to the
calling statement. IBM.

function call. An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of values. IBM.

function declarator. The part of a function definition
that names the function, provides additional information
about the return value of the function, and lists the
function parameters. IBM.

function definition. The complete description of a
function. A function definition contains a sequence of
specifiers (storage class, optional type, inline, virtual,
optional friend), a function declarator, optional

Glossary 855

|
|
|
|

|
|
|
|

|
|
|
|

contructor-initializers, parameter declarations, optional
const, and the block statement. Inline, virtual, friend,
and const are not available with C.

function prototype. A function declaration that
provides type information for each parameter. It is the
first line of the function (header) followed by a
semicolon (;). The declaration is required by the
compiler at the time that the function is declared, so that
the compiler can check the type.

function scope. Labels that are declared in a function
have function scope and can be used anywhere in that
function after their declaration.

function template. Provides a blueprint describing
how a set of related individual functions can be
constructed.

G
Generalization. Refers to a class, function, or static
data member which derives its definition from a
template. An instantiation of a template function would
be a generalization.

Generalized Object File Format (GOFF). It is the
strategic object module format for S/390. It extends the
capabilities of object modules to contain more
information than current object modules. It removes the
limitations of the previous object module format and
supports future enhancements. It is required for
XPLINK.

generic class. Synonym for class templates.

global. Pertaining to information available to more
than one program or subroutine. IBM.

global scope. Synonym for file scope.

global variable. A symbol defined in one program
module that is used in other independently compiled
program modules.

GMT (Greenwich Mean Time). The solar time at the
meridian of Greenwich, formerly used as the prime
basis of standard time throughout the world. GMT has
been superseded by coordinated universal time (UTC).

graphic character. (1) A visual representation of a
character, other than a control character, that is
normally produced by writing, printing, or displaying.
ISO Draft. (2) A character that can be displayed or
printed. IBM.

Graphical Data Display Manager (GDDM). Pertaining
to an IBM licensed program that provides a group of
routines that allows pictures to be defined and displayed
procedurally through function routines that correspond
to graphic primitives. IBM.

Greenwich Mean Time. See GMT.

group ID. (1) A non-negative integer that is used to
identify a group of system users. Each system user is a
member of at least one group. When the identity of a
group is associated with a process, a group ID value is
referred to as a real group ID, an effective group ID,
one of the supplementary group IDs or a saved
set-group-ID. X/Open. (2) A non-negative integer, which
can be contained in an object of type gid_t, that is used
to identify a group of system users. ISO.1.

H
halfword. A contiguous sequence of bytes or
characters that constitutes half a computer word and
can be addressed as a unit. IBM.

hash function. A function that determines which
category, or bucket, to put an element in. A hash
function is needed when implementing a hash table.

hash table. (1) A data structure that divides all
elements into (preferably) equal-sized categories, or
buckets, to allow quick access to the elements. The
hash function determines which bucket an element
belongs in. (2) A table of information that is accessed by
way of a shortened search key (that hash value). Using
a hash table minimizes average search time.

header file. A text file that contains declarations used
by a group of functions, programs, or users.

heap storage. An area of storage used for allocation
of storage whose lifetime is not related to the execution
of the current routine. The heap consists of the initial
heap segment and zero or more increments.

hexadecimal constant. A constant, usually starting
with special characters, that contains only hexadecimal
digits. Three examples for the hexadecimal constant
with value 0 would be '\x00', '0x0', or '0X00'.

High Level Assembler. An IBM licensed program.
Translates symbolic assembler language into binary
machine language.

hiperspace memory file. An IBM file used under
OS/390 to deal with memory files as large as 2
gigabytes. IBM.

hooks. Instructions inserted into a program by a
compiler at compile-time. Using hooks, you can set
break-points to instruct the Debug Tool to gain control of
the program at selected points during its execution.

hybrid code. Program statements that have not been
internationalized with respect to code page, especially
where data constants contain variant characters. Such
statements can be found in applications written in older
implementations of MVS, which required syntax
statements to be written using code page IBM-1047
exclusively. Such applications cannot be converted from
one code page to another using iconv().

856 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|

|
|
|
|
|
|
|

|
|
|

I
I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to identify
or name a data element and possibly to indicate certain
properties of that data element. ANSI/ISO. (2) In
programming languages, a token that names a data
object such as a variable, an array, a record, a
subprogram, or a function. ANSI/ISO. (3) A sequence of
letters, digits, and underscores used to identify a data
object or function. IBM.

if statement. A conditional statement that contains the
keyword if, followed by an expression in parentheses
(the condition), a statement (the action), and an optional
else clause (the alternative action). IBM.

ILC (interlanguage call). A function call made by one
language to a function coded in another language.
Interlanguage calls are used to communicate between
programs written in different languages.

ILC (interlanguage communication). The ability of
routines written in different programming languages to
communicate. ILC support enables the application writer
to readily build applications from component routines
written in a variety of languages.

implementation-defined behavior. Application
behavior that is not defined by the standards. The
implementing compiler and library defines this behavior
when a program contains correct program constructs or
uses correct data. Programs that rely on
implementation-defined behavior may behave differently
on different C or C++ implementations. Refer to the
OS/390 C/C++ books that are listed in “IBM OS/390
C/C++ and Related Publications” on page 4 for
information about implementation-defined behavior in
the OS/390 C/C++ environment. Contrast with
unspecified behavior and undefined behavior.

IMS (Information Management System). Pertaining
to an IBM database/data communication (DB/DC)
system that can manage complex databases and
networks. IBM.

include directive. A preprocessor directive that
causes the preprocessor to replace the statement with
the contents of a specified file.

include file. See header file.

incomplete class declaration. A class declaration
that does not define any members of a class. Until a
class is fully declared, or defined, you can only use the
class name where the size of the class is not required.
Typically an incomplete class declaration is used as a
forward declaration.

incomplete type. A type that has no value or meaning
when it is first declared. There are three incomplete

types: void, arrays of unknown size and structures and
unions of unspecified content. A void type can never be
completed. Arrays of unknown size and structures or
unions of unspecified content can be completed in
further declarations.

indirection. (1) A mechanism for connecting objects
by storing, in one object, a reference to another object.
(2) In the C and C++ languages, the application of the
unary operator * to a pointer to access the object to
which the pointer points.

indirection class. Synonym for reference class.

induction variable. It is a controlling variable of a
loop.

inheritance. A technique that allows the use of an
existing class as the base for creating other classes.

initial heap. The OS/390 C/C++ heap controlled by
the HEAP runtime option and designated by a heap_id
of 0. The initial heap contains dynamically allocated
user data.

initializer. An expression used to initialize data
objects. The C++ language, supports the following types
of initializers:

v An expression followed by an assignment operator
that is used to initialize fundamental data type objects
or class objects that contain copy constructors.

v A parenthesized expression list that is used to
initialize base classes and members that use
constructors.

Both the C and C++ languages support an expression
enclosed in braces ({ }), that used to initialize
aggregates.

inlined function. A function whose actual code
replaces a function call. A function that is both declared
and defined in a class definition is an example of an
inline function. Another example is one which you
explicitly declared inline by using the keyword inline.
Both member and nonmember functions can be inlined.

input stream. A sequence of control statements and
data submitted to a system from an input unit.
Synonymous with input job stream, job input stream.
IBM.

instance. An object-oriented programming term
synonymous with object. An instance is a particular
instantiation of a data type. It is simply a region of
storage that contains a value or group of values. For
example, if a class box is previously defined, two
instances of a class box could be instantiated with the
declaration: box box1, box2;

Glossary 857

|
|

instantiate. To create or generate a particular instance
or object of a data type. For example, an instance box1
of class box could be instantiated with the declaration:
box box1;

instruction. A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer's request to the processor
to perform a specific operation.

instruction scheduling. An optimization technique
that reorders instructions in code to minimize execution
time.

integer constant. A decimal, octal, or hexadecimal
constant.

integral object. A character object, an object having
an enumeration type, an object having variations of the
type int, or an object that is a bit field.

Interactive System Productivity Facility. See ISPF.

interlanguage call. See ILC (interlanguage call).

interlanguage communication. See ILC
(interlanguage communication).

internationalization. The capability of a computer
program to adapt to the requirements of different native
languages, local customs, and coded character sets.
X/Open.

Synonymous with I18N.

interoperability. The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units.

Interprocedural Analysis. See IPA.

interprocess communication. (1) The exchange of
information between processes or threads through
semaphores, queues, and shared memory. (2) The
process by which programs communicate data to each
other to synchronize their activities. Semaphores,
signals, and internal message queues are common
methods of inter-process communication.

I/O Stream library. A class library that provides the
facilities to deal with many varieties of input and output.

IPA (Interprocedural Analysis). A process for
performing optimizations across compilation units.

ISPF (Interactive System Productivity Facility). An
IBM licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user. (ISPF)

iteration. The process of repeatedly applying a
function to a series of elements in a collection until
some condition is satisfied.

J
JCL (job control language). A control language used
to identify a job to an operating system and to describe
the job's requirement. IBM.

K
keyword. (1) A predefined word reserved for the C
and C++ languages, that may not be used as an
identifier. (2) A symbol that identifies a parameter in
JCL.

kind attribute. An attribute for a mutex attribute
object. This attribute's value determines whether the
mutex can be locked once or more than once for a
thread and whether state changes to the mutex will be
reported to the debug interface.

L
label. An identifier within or attached to a set of data
elements. ISO Draft.

Language Environment. Abbreviated form of OS/390
Language Environment. Pertaining to an IBM software
product that provides a common runtime environment
and runtime services to applications compiled by
Language Environment-conforming compilers.

last element. The element visited last in an iteration
over a collection. Each collection has its own definition
for last element. For example, the last element of a
sorted set is the element with the largest value.

late binding. Allowing the system to determine the
specific class of the object and invoke the appropriate
function implementations at run time. Late binding or
dynamic binding hides the differences between a group
of related classes from the application program.

leaves. Nodes without children. Synonymous with
terminals.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, calls, subroutines,
or other data. IBM. (2) A set of object modules that can
be specified in a link command.

linkage editor. Synonym for linker. The linkage editor
has been replaced by the binder for the MVS/ESA or
OS/390 operating systems. See binder.

Linkage. Refers to the binding between a reference
and a definition. A function has internal linkage if the
function is defined inline as part of the class, is declared

858 OS/390 V2R10.0 C/C++ Programming Guide

with the inline keyword, or is a nonmember function
declared with the static keyword. All other functions
have external linkage.

linker. A computer program for creating load modules
from one or more object modules by resolving cross
references among the modules and, if necessary,
adjusting addresses. IBM.

link pack area (LPA). In OS/390, an area of storage
containing re-enterable routines from system libraries.
Their presence in main storage saves loading time.

literal. (1) In programming languages, a lexical unit
that directly represents a value; for example, 14
represents the integer fourteen, “APRIL” represents the
string of characters APRIL, 3.0005E2 represents the
number 300.05. ISO-JTC1. (2) A symbol or a quantity in
a source program that is itself data, rather than a
reference to data. IBM. (3) A character string whose
value is given by the characters themselves; for
example, the numeric literal 7 has the value 7, and the
character literal CHARACTERS has the value
CHARACTERS. IBM.

loader. A routine, commonly a computer program, that
reads data into main storage. ANSI/ISO.

load module. All or part of a computer program in a
form suitable for loading into main storage for execution.
A load module is usually the output of a linkage editor.
ISO Draft.

local. (1) In programming languages, pertaining to the
relationship between a language object and a block
such that the language object has a scope contained in
that block. ISO-JTC1. (2) Pertaining to that which is
defined and used only in one subdivision of a computer
program. ANSI/ISO.

local customs. The conventions of a geographical
area or territory for such things as date, time, and
currency formats. X/Open.

locale. The definition of the subset of a user's
environment that depends on language and cultural
conventions. X/Open.

localization. The process of establishing information
within a computer system specific to the operation of
particular native languages, local customs, and coded
character sets. X/Open.

local scope. A name declared in a block has scope
within the block, and can therefore only be used in that
block.

Long name. An external name C++ name in an object
module, or and external name in an object module
created by the C compiler when the LONGNAME option is
used. Long names are up to 1024 characters long and
may contain both upper-case and lower-case
characters.

lvalue. An expression that represents a data object
that can be both examined and altered.

M
macro. An identifier followed by arguments (may be a
parenthesized list of arguments) that the preprocessor
replaces with the replacement code located in a
preprocessor #define directive.

macro call. Synonym for macro.

macro instruction. Synonym for macro.

main function. An external function with the identifier
main that is the first user function—aside from exit
routines and C++ static object constructors—to get
control when program execution begins. Each C and
C++ program must have exactly one function named
main.

makefile. A text file containing a list of your
application's parts. The make utility uses makefiles to
maintain application parts and dependencies.

make utility. Maintains all of the parts and
dependencies for your application. The make utility uses
a makefile to keep the parts of your program
synchronized. If one part of your application changes,
the make utility updates all other files that depend on
the changed part. This utility is available under the
OS/390 shell and by default, uses the c89 utility to
recompile and bind your application.

mangling. The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. These mangled
names ensure type-safe linkage. See also demangling.

manipulator. A value that can be inserted into streams
or extracted from streams to affect or query the
behavior of the stream.

member. A data object or function in a structure,
union, or class. Members can also be classes,
enumerations, bit fields, and type names.

member function. (1) An operator or function that is
declared as a member of a class. A member function
has access to the private and protected data members
and member functions of objects of its class. Member
functions are also called methods. (2) A function that
performs operations on a class.

method. In the C++ language, a synonym for member
function.

migrate. To move to a changed operating
environment, usually to a new release or version of a
system. IBM.

module. A program unit that usually performs a
particular function or related functions, and that is

Glossary 859

distinct and identifiable with respect to compiling,
combining with other units, and loading.

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character
set.

multicharacter collating element. A sequence of two
or more characters that collate as an entity. For
example, in some coded character sets, an accented
character is represented by a non-spacing accent,
followed by the letter. Other examples are the Spanish
elements ch and ll. X/Open.

multiple inheritance. An object-oriented programming
technique implemented in the C++ language through
derivation, in which the derived class inherits members
from more than one base class.

multitasking. A mode of operation that allows
concurrent performance, or interleaved execution of two
or more tasks. ISO-JTC1. ANSI/ISO.

mutex. A flag used by a semaphore to protect shared
resources. The mutex is locked and unlocked by
threads in a program. A mutex can only be locked by
one thread at a time and can only be unlocked by the
same thread that locked it. The current owner of a
mutex is the thread that it is currently locked by. An
unlocked mutex has no current owner.

mutex attribute object. Allows the user to manage
the characteristics of mutexes in their application by
defining a set of values to be used for the mutex during
its creation. A mutex attribute object allows the user to
create many mutexes with the same set of
characteristics without redefining the same set of
characteristics for each mutex created.

mutex object. Used to identify a mutex.

N
name space. A category used to group similar types
of identifiers.

named pipe. A FIFO file. Named pipes allow transfer
of data between processes in a FIFO manner and
synchronization of process execution. Allows processes
to communicate even though they do not know what
processes are on the other end of the pipe.

natural reentrancy. A program that contains no
writable static and requires no additional processing to
make it reentrant is considered naturally reentrant.

nested class. A class defined within the scope of
another class.

nested enclave. A new enclave created by an existing
enclave. The nested enclave that is created must be a

new main routine within the process. See also child
enclave and parent enclave.

newline character. A character that in the output
stream indicates that printing should start at the
beginning of the next line. The newline character is
designated by '\n' in the C and C++ language. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the movement to the next line. X/Open.

nickname. Synonym for alias.

nonprinting character. See control character.

null character (NUL). The ASCII or EBCDIC character
'\0' with the hex value 00, all bits turned off. It is used to
represent the absence of a printed or displayed
character. This character is named <NUL> in the
portable character set.

null pointer. The value that is obtained by converting
the number 0 into a pointer; for example, (void *) 0.
The C and C++ languages guarantee that this value will
not match that of any legitimate pointer, so it is used by
many functions that return pointers to indicate an error.
X/Open.

null statement. A C or C++ statement that consists
solely of a semicolon.

null string. (1) A string whose first byte is a null byte.
Synonymous with empty string. X/Open. (2) A character
array whose first element is a null character. ISO.1.

null value. A parameter position for which no value is
specified. IBM.

null wide-character code. A wide-character code with
all bits set to zero. X/Open.

number sign. The character #, also known as pound
sign and hash sign. This character is named
<number-sign> in the portable character set.

O
object. (1) A region of storage. An object is created
when a variable is defined. An object is destroyed when
it goes out of scope. (See also instance.) (2) In
object-oriented design or programming, an abstraction
consisting of data and the operations associated with
that data. See also class. IBM. (3) An instance of a
class.

object code. Machine-executable instructions, usually
generated by a compiler from source code written in a
higher level language (such as the C++ language). For
programs that must be linked, object code consists of
relocatable machine code.

object module. (1) All or part of an object program
sufficiently complete for linking. Assemblers and

860 OS/390 V2R10.0 C/C++ Programming Guide

compilers usually produce object modules. ISO Draft.
(2) A set of instructions in machine language produced
by a compiler from a source program. IBM.

object-oriented programming. A programming
approach based on the concepts of data abstraction
and inheritance. Unlike procedural programming
techniques, object-oriented programming concentrates
not on how something is accomplished, but on what
data objects comprise the problem and how they are
manipulated.

octal constant. The digit 0 (zero) followed by any
digits 0 through 7.

open file. A file that is currently associated with a file
descriptor. X/Open. ISO.1.

operand. An entity on which an operation is
performed. ISO-JTC1. ANSI/ISO.

operating system (OS). Software that controls
functions such as resource allocation, scheduling,
input/output control, and data management.

operator function. An overloaded operator that is
either a member of a class or that takes at least one
argument that is a class type or a reference to a class
type.

operator precedence. In programming languages, an
order relation defining the sequence of the application
of operators within an expression. ISO-JTC1.

orientation of a stream. After application of an input
or output function to a stream, it becomes either
byte-oriented or wide-oriented. A byte-oriented stream is
a stream that had a byte input or output function applied
to it when it had no orientation. A wide-oriented stream
is a stream that had a wide character input or output
function applied to it when it had no orientation. A
stream has no orientation when it has been associated
with an external file but has not had any operations
performed on it.

OS/390 UNIX System Services (OS/390 UNIX). An
element of the OS/390 operating system, (formerly
known as OpenEdition). OS/390 UNIX includes a
POSIX system Application Programming Interface for
the C language, a shell and utilities component, and a
dbx debugger. All the components conform to IEEE
POSIX standards (ISO 9945-1: 1990/IEEE POSIX
1003.1-1990, IEEE POSIX 1003.1a, IEEE POSIX
1003.2, and IEEE POSIX 1003.4a).

overflow. (1) A condition that occurs when a portion of
the result of an operation exceeds the capacity of the
intended unit of storage. (2) That portion of an operation
that exceeds the capacity of the intended unit of
storage. IBM.

overlay. The technique of repeatedly using the same
areas of internal storage during different stages of a
program. ANSI/ISO. Unions are used to accomplish this
in C and C++.

overloading. An object-oriented programming
technique that allows you to redefine functions and most
standard C++ operators when the functions and
operators are used with class types.

P
parameter. (1) In the C and C++ languages, an object
declared as part of a function declaration or definition
that acquires a value on entry to the function, or an
identifier following the macro name in a function-like
macro definition. X/Open. (2) Data passed between
programs or procedures. IBM.

parameter declaration. A description of a value that a
function receives. A parameter declaration determines
the storage class and the data type of the value.

parent enclave. The enclave that issues a call to
system services or language constructs to create a
nested or child enclave. See also child enclave and
nested enclave.

parent process. (1) The program that originates the
creation of other processes by means of spawn or exec
function calls. See also child process. (2) A process that
creates other processes.

parent process ID. (1) An attribute of a new process
identifying the parent of the process. The parent
process ID of a process is the process ID of its creator,
for the lifetime of the creator. After the creator's lifetime
has ended, the parent process ID is the process ID of
an implementation-dependent system process. X/Open.
(2) An attribute of a new process after it is created by a
currently active process. ISO.1.

partitioned concatenation. Specifying multiple PDSs
or PDSEs under one ddname. The concatenated data
sets act as one big PDS or PDSE and access can be
made to any member with a unique name. An attempted
access to a member whose name occurs more than
once in the concatenated data sets, returns the first
member with that name found in the entire
concatenation.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data. IBM.

partitioned data set extended (PDSE). Similar to
partitioned data set, but with extended capabilities.

path name. (1) A string that is used to identify a file. A
path name consists of, at most, {PATH_MAX} bytes,
including the terminating null character. It has an

Glossary 861

optional beginning slash, followed by zero or more file
names separated by slashes. If the path name refers to
a directory, it may also have one or more trailing
slashes. Multiple successive slashes are treated as one
slash. A path name that begins with two successive
slashes may be interpreted in an implementation-
dependent manner, although more than two leading
slashes are treated as a single slash. The interpretation
of the path name is described in path name resolution.
ISO.1. (2) A file name specifying all directories leading
to the file.

path name resolution. Path name resolution is
performed for a process to resolve a path name to a
particular file in a file hierarchy. There may be multiple
path names that resolve to the same file. X/Open.

pattern. A sequence of characters used either with
regular expression notation or for path name expansion,
as a means of selecting various characters strings or
path names, respectively. The syntaxes of the two
patterns are similar, but not identical. X/Open.

period. The character (.). The term period is
contrasted against dot, which is used to describe a
specific directory entry. This character is named
<period> in the portable character set.

permissions. Codes that determine how a file can be
used by any users who work on the system. See also
file access permissions. IBM.

persistent environment. A program can explicitly
establish a persistent environment, direct functions to it,
and explicitly terminate it.

pointer. In the C and C++ languages, a variable that
holds the address of a data object or a function. IBM.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the
address of non-static members of a class.

polymorphism. The technique of taking an abstract
view of an object or function and using any concrete
objects or arguments that are derived from this abstract
view.

portable character set. The set of characters
specified in POSIX 1003.2, section 2.4:

<NUL>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<space>
<exclamation-mark> !
<quotation-mark> "
<number-sign> #
<dollar-sign> $

<percent-sign> %
<ampersand> &
<apostrophe> '
<left-parenthesis> (
<right-parenthesis>)
<asterisk> *
<plus-sign> +
<comma> ,
<hyphen> –
<hyphen-minus> –
<period> .
<slash> ⁄
<zero> 0
<one> 1
<two> 2
<three> 3
<four> 4
<five> 5
<six> 6
<seven> 7
<eight> 8
<nine> 9
<colon> :
<semicolon> ;
<less-than-sign> <
<equals-sign> =
<greater-than-sign> >
<question-mark> ?
<commercial-at> @

<A> A
 B
<C> C
<D> D
<E> E
<F> F
<G> G
<H> H
<I> I
<J> J
<K> K
<L> L
<M> M
<N> N
<O> O
<P> P
<Q> Q
<R> R
<S> S
<T> T
<U> U
<V> V
<W> W
<X> X
<Y> Y
<Z> Z

<left-square-bracket> [
<backslash> \
<reverse-solidus> \
<right-square-bracket>]
<circumflex> |
<circumflex-accent> |
<underscore> _
<low-line> _
<grave-accent> v
<a> a
 b

862 OS/390 V2R10.0 C/C++ Programming Guide

<c> c
<d> d
<e> e
<f> f
<g> g
<h> h
<i> i
<j> j
<k> k
<l> l

<m> m
<n> n
<o> o
<p> p
<q> q
<r> r
<s> s
<t> t
<u> u
<v> v
<w> w
<x> x
<y> y
<z> z

<left-brace> {
<left-curly-bracket> {
<vertical-line> |
<right-brace> }
<right-curly-bracket> }
<tilde> ˜

portable file name character set. The set of
characters from which portable file names are
constructed. For a file name to be portable across
implementations conforming to the ISO POSIX-1
standard and to ISO/IEC 9945, it must consists only of
the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore,
and hyphen characters, respectively. The hyphen must
not be used as the first character of a portable file
name. Upper- and lower-case letters retain their unique
identities between conforming implementations. In the
case of a portable path name, the slash character may
also be used. X/Open. ISO.1.

portability. The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

positional parameter. A parameter that must appear
in a specified location relative to other positional
parameters. IBM.

precedence. The priority system for grouping different
types of operators with their operands.

predefined macros. Frequently used routines
provided by an application or language for the
programmer.

preinitialization. A process by which an environment
or library is initialized once and can then be used
repeatedly to avoid the inefficiency of initializing the
environment or library each time it is needed.

prelinker. A utility provided with OS/390 Language
Environment that you can use to process application
programs that require DLL support, or contain either
constructed reentrancy or external symbol names that
are longer than 8 characters. You require the prelinker,
or its equivalent function which is provided by the
binder, to process all C++ applications, or C applications
that are compiled with the RENT, DLL, LONGNAME or
IPA options. As of Version 2 Release 4, the prelinker
was superseded by the binder. See also binder.

preprocessor. A phase of the compiler that examines
the source program for preprocessor statements that
are then executed, resulting in the alteration of the
source program.

preprocessor statement. In the C and C++
languages, a statement that begins with the symbol #
and is interpreted by the preprocessor during
compilation. IBM.

primary expression. (1) An identifier, parenthesized
expression, function call, array element specification,
structure member specification, or union member
specification. IBM. (2) Literals, names, and names
qualified by the :: (scope resolution) operator.

printable character. One of the characters included in
the print character classification of the LC_CTYPE
category in the current locale. X/Open.

private. Pertaining to a class member that is only
accessible to member functions and friends of that
class.

process. (1) An instance of an executing application
and the resources it uses. (2) An address space and
single thread of control that executes within that
address space, and its required system resources. A
process is created by another process issuing the
fork() function. The process that issues the fork()
function is known as the parent process, and the new
process created by the fork() function is known as the
child process. X/Open. ISO.1.

process group. A collection of processes that permits
the signaling of related processes. Each process in the
system is a member of a process group that is identified
by the process group ID. A newly created process joins
the process group of its creator. IBM. X/Open. ISO.1.

process group ID. The unique identifier representing
a process group during its lifetime. A process group ID
is a positive integer. (Under ISO only, it is a positive
integer that can be contained in a pid_t.) A process
group ID will not be reused by the system until the
process group lifetime ends. X/Open. ISO.1.

Glossary 863

process group lifetime. A period of time that begins
when a process group is created and ends when the
last remaining process in the group leaves the group,
because either it is the end of the last process' lifetime
or the last remaining process is calling the setsid() or
setpgid() functions. X/Open. ISO.1.

process ID. The unique identifier representing a
process. A process ID is a positive integer. (Under ISO
only, it is a positive integer that can be contained in a
pid_t.) A process ID will not be reused by the system
until the process lifetime ends. In addition, if there exists
a process group whose process group ID is equal to
that process ID, the process ID will not be reused by
the system until the process group lifetime ends. A
process that is not a system process will not have a
process ID of 1. X/Open. ISO.1.

process lifetime. The period of time that begins when
a process is created and ends when the process ID is
returned to the system. After a process is created with a
fork() function, it is considered active. Its thread of
control and address space exist until it terminates. It
then enters an inactive state where certain resources
may be returned to the system, although some
resources, such as the process ID, are still in use.
When another process executes a wait() or waitpid()
function for an inactive process, the remaining
resources are returned to the system. The last resource
to be returned to the system is the process ID. At this
time, the lifetime of the process ends. X/Open. ISO.1.

program object. All or part of a computer program in
a from suitable for loading into main storage for
execution. A program object is the output of the OS/390
Binder and is a newer more flexible format (e.g. longer
external names) than a load module.

protected. Pertaining to a class member that is only
accessible to member functions and friends of that
class, or to member functions and friends of classes
derived from that class.

prototype. A function declaration or definition that
includes both the return type of the function and the
types of its parameters. See function prototype.

public. Pertaining to a class member that is accessible
to all functions.

pure virtual function. A virtual function that has a
function definition of = 0;. See also abstract classes.

Q
qualified class name. Any class name or class name
qualified with one or more :: (scope resolution)
operators.

qualified name. Used to qualify a nonclass type name
such as a member by its class name.

qualified type name. Used to reduce complex class
name syntax by using typedefs to represent qualified
class names.

Query Management Facility (QMF). Pertaining to an
IBM query and report writing facility that enables a
variety of tasks such as data entry, query building,
administration, and report analysis. IBM.

queue. A sequence with restricted access in which
elements can only be added at the back end (or bottom)
and removed from the front end (or top). A queue is
characterized by first-in, first-out behavior and
chronological order.

quotation marks. The characters " and ‘, also known
as double-quote and single-quote respectively. X/Open.

R
radix character. The character that separates the
integer part of a number from the fractional part.
X/Open.

real group ID. The attribute of a process that, at the
time of process creating, identifies the group of the user
who created the process. This value is subject to
change during the process lifetime, as describe in
setgid(). X/Open. ISO.1.

real user ID. The attribute of a process that, at the
time of process creation, identifies the user who created
the process. This value is subject to change during the
process lifetime, as described in setuid(). X/Open.
ISO.1.

reason code. A code that identifies the reason for a
detected error. IBM.

reassociation. An optimization technique that
rearranges the sequence of calculations in a subscript
expression producing more candidates for common
expression elimination.

redirection. In the shell, a method of associating files
with the input or output of commands. X/Open.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

reference class. A class that links a concrete class to
an abstract class. Reference classes make
polymorphism possible with the Collection Classes.
Synonymous with indirection class.

refresh. To ensure that the information on the user's
terminal screen is up-to-date. X/Open.

register storage class specifier. A specifier that
indicates to the compiler within a block scope data
definition, or a parameter declaration, that the object
being described will be heavily used.

864 OS/390 V2R10.0 C/C++ Programming Guide

register variable. A variable defined with the register
storage class specifier. Register variables have
automatic storage.

regular expression. (1) A mechanism to select
specific strings from a set of character strings. (2) A set
of characters, meta-characters, and operators that
define a string or group of strings in a search pattern.
(3) A string containing wildcard characters and
operations that define a set of one or more possible
strings.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure imposed by
the system. X/Open. ISO.1.

relation. An unordered flat collection class that uses
keys, allows for duplicate elements, and has element
equality.

relative path name. The name of a directory or file
expressed as a sequence of directories followed by a
file name, beginning from the current directory. See path
name resolution. IBM.

reserved word. (1) In programming languages, a
keyword that may not be used as an identifier.
ISO-JTC1. (2) A word used in a source program to
describe an action to be taken by the program or
compiler. It must not appear in the program as a
user-defined name or a system name. IBM.

RMODE (residency mode). In OS/390, a program
attribute that refers to where a module is prepared to
run. RMODE can be 24 or ANY. ANY refers to the fact
that the module can be loaded either above or below
the 16M line. RMODE 24 means the module expects to
be loaded below the 16M line.

runtime library. A compiled collection of functions
whose members can be referred to by an application
program during runtime execution. Typically used to
refer to a dynamic library that is provided in object code,
such that references to the library are resolved during
the linking step. The runtime library itself is not statically
bound into the application modules.

S
saved set-group-ID. An attribute of a process that
allows some flexibility in the assignment of the effective
group ID attribute, as described in the exec() family of
functions and setgid(). X/Open. ISO.1.

saved set-user-ID. An attribute of a process that
allows some flexibility in the assignment of the effective
user ID attribute, as described in exec() and setuid().
X/Open. ISO.1.

scalar. An arithmetic object, or a pointer to an object
of any type.

scope. (1) That part of a source program in which a
variable is visible. (2) That part of a source program in
which an object is defined and recognized.

scope operator (::). An operator that defines the
scope for the argument on the right. If the left argument
is blank, the scope is global; if the left argument is a
class name, the scope is within that class. Synonymous
with scope resolution operator.

scope resolution operator (::). Synonym for scope
operator.

semaphore. An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources. Processes can be
locked to a resource with semaphores if the processes
follow certain programming conventions.

sequence. A sequentially ordered flat collection.

sequential concatenation. Multiple sequential data
sets or partitioned data-set members are treated as one
long sequential data set. In the case of sequential data
sets, you can access or update the data sets in order.
In the case of partitioned data-set members, you can
access or update the members in order. Repositioning
is possible if all of the data sets in the concatenation
support repositioning.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. IBM.

session. A collection of process groups established for
job control purposes. Each process group is a member
of a session. A process is a member of the session of
which its process group is a member. A newly created
process joins the session of its creator. A process can
alter its session membership; see setsid(). There can
be multiple process groups in the same session.
X/Open. ISO.1.

shell. A program that interprets sequences of text
input as commands. It may operate on an input stream
or it may interactively prompt and read commands from
a terminal. X/Open.

This feature is provided as part of the OS/390 Shell and
Utilities feature licensed program.

Short name. An external non-C++ name in an object
module produced by compiling with the NOLONGNAME
option. Such a name is up to 8 characters long and
single case.

signal. (1) A condition that may or may not be
reported during program execution. For example, SIGFPE
is the signal used to represent erroneous arithmetic
operations such as a division by zero. (2) A mechanism
by which a process may be notified of, or affected by,
an event occurring in the system. Examples of such
events include hardware exceptions and specific actions
by processes. The term signal is also used to refer to

Glossary 865

the event itself. X/Open. ISO.1. (3) A method of
interprocess communication that simulates software
interrupts. IBM.

signal handler. A function to be called when the signal
is reported.

single-byte character set (SBCS). A set of characters
in which each character is represented by a one-byte
code. IBM.

single-precision. Pertaining to the use of one
computer word to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

single-quote. The character ‘, also known as
apostrophe. This character is named <quotation-mark>
in the portable character set.

slash. The character /, also known as solidus. This
character is named <slash> in the portable character
set.

socket. (1) A unique host identifier created by the
concatenation of a port identifier with a transmission
control protocol/Internet protocol (TCP/IP) address. (2) A
port identifier. (3) A 16-bit port-identifier. (4) A port on a
specific host; a communications end point that is
accessible though a protocol family's addressing
mechanism. A socket is identified by a socket address.
IBM.

sorted map. A sorted flat collection with key and
element equality.

sorted relation. A sorted flat collection that uses keys,
has element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element
equality.

source module. A file that contains source statements
for such items as high-level language programs and
data description specifications. IBM.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run. IBM.

space character. The character defined in the
portable character set as <space>. The space character
is a member of the space character class of the current
locale, but represents the single character, and not all of
the possible members of the class. X/Open.

spanned record. A logical record contained in more
than one block. IBM.

specialization. A user-supplied definition which
replaces a corresponding template instantiation.

specifiers. Used in declarations to indicate storage
class, fundamental data type and other properties of the
object or function being declared.

spill area. A storage area used to save the contents of
registers. IBM.

SQL (Structured Query Language). A language
designed to create, access, update and free data
tables.

square brackets. The characters [(left bracket) and]
(right bracket). Also see brackets.

stack frame. The physical representation of the
activation of a routine. The stack frame is allocated and
freed on a LIFO (last in, first out) basis. A stack is a
collection of one or more stack segments consisting of
an initial stack segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to
be used for diagnostic messages. X/Open.

standard input. (1) An input stream usually intended
to be used for primary data input. X/Open. (2) The
primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command. IBM.

standard output. (1) An output stream usually
intended to be used for primary data output. X/Open. (2)
The primary destination of data coming from a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command. IBM.

statement. An instruction that ends with the character
; (semicolon) or several instructions that are surrounded
by the characters { and }.

static. A keyword used for defining the scope and
linkage of variables and functions. For internal variables,
the variable has block scope and retains its value
between function calls. For external values, the variable
has file scope and retains its value within the source
file. For class variables, the variable is shared by all
objects of the class and retains its value within the
entire program.

static binding. The act of resolving references to
external variables and functions before run time.

storage class specifier. One of the terms used to
specify a storage class, such as auto, register, static, or
extern.

stream. (1) A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
(2) A file access object that allows access to an ordered
sequence of characters, as described by the ISO C
standard. Such objects can be created by the fdopen()
or fopen() functions, and are associated with a file

866 OS/390 V2R10.0 C/C++ Programming Guide

descriptor. A stream provides the additional services of
user-selectable buffering and formatted input and
output. X/Open.

string. A contiguous sequence of bytes terminated by
and including the first null byte. X/Open.

string constant. Zero or more characters enclosed in
double quotation marks.

string literal. Zero or more characters enclosed in
double quotation marks.

striped data set. A special data set organization that
spreads a data set over a specified number of volumes
so that I/O parallelism can be exploited. Record n in a
striped data set is found on a volume separate from the
volume containing record n - p, where n > p.

struct. An aggregate of elements having arbitrary
types.

structure. A construct (a class data type) that contains
an ordered group of data objects. Unlike an array, the
data objects within a structure can have varied data
types. A structure can be used in all places a class is
used. The initial projection is public.

structure tag. The identifier that names a structure
data type.

Structured Query Language. See SQL.

stub routine. A routine, within a runtime library, that
contains the minimum lines of code required to locate a
given routine at run time.

subprogram. In the IPA Link version of the Inline
Report listing section, an equivalent term for 'function'.

subscript. One or more expressions, each enclosed in
brackets, that follow an array name. A subscript refers
to an element in an array.

subsystem. A secondary or subordinate system,
usually capable of operating independently of or
asynchronously with, a controlling system. ISO Draft.

subtree. A tree structure created by arbitrarily denoting
a node to be the root node in a tree. A subtree is
always part of a whole tree.

superset. Given two sets A and B, A is a superset of B
if and only if all elements of B are also elements of A.
That is, A is a superset of B if B is a subset of A.

support. In system development, to provide the
necessary resources for the correct operation of a
functional unit. IBM.

switch expression. The controlling expression of a
switch statement.

switch statement. A C or C++ language statement
that causes control to be transferred to one of several
statements depending on the value of an expression.

system default. A default value defined in the system
profile. IBM.

system process. (1) An implementation-dependent
object, other than a process executing an application,
that has a process ID. X/Open. (2) An object, other than
a process executing an application, that is defined by
the system, and has a process ID. ISO.1.

T
tab character. A character that in the output stream
indicates that printing or displaying should start at the
next horizontal tabulation position on the current line.
The tab is the character designated by '\t' in the C
language. If the current position is at or past the last
defined horizontal tabulation position, the behavior is
unspecified. It is unspecified whether the character is
the exact sequence transmitted to an output device by
the system to accomplish the tabulation. X/Open.

This character is named <tab> in the portable character
set.

task library. A class library that provides the facilities
to write programs that are made up of tasks.

template. A family of classes or functions with variable
types.

template class. A class instance generated by a class
template.

Template Declaration. A prototype of a template
which can optionally include a template definition.

Template Definition. A blueprint the compiler uses to
generate a template instantiation.

template function. A function generated by a function
template.

Template Instantiation. Compiler generated code for
a class or function using the referenced types and the
corresponding class or function template definition.

terminals. Synonym for leaves.

text file. A file that contains characters organized into
one or more lines. The lines must not contain NUL
characters and none can exceed {LINE_MAX}—which is
defined in limits.h—bytes in length, including the
new-line character. The term text file does not prevent
the inclusion of control or other unprintable characters
(other than NUL). X/Open.

thread. The smallest unit of operation to be performed
within a process. IBM.

Glossary 867

throw expression. An argument to the C++ exception
being thrown.

tilde. The character ˜. This character is named <tilde>
in the portable character set.

token. The smallest independent unit of meaning of a
program as defined either by a parser or a lexical
analyzer. A token can contain data, a language
keyword, an identifier, or other parts of language syntax.
IBM.

traceback. A section of a dump that provides
information about the stack frame, the program unit
address, the entry point of the routine, the statement
number, and the status of the routines on the call-chain
at the time the traceback was produced.

trigraph sequence. An alternative spelling of some
characters to allow the implementation of C in character
sets that do not provide a sufficient number of
non-alphabetic graphics. ANSI/ISO.

Before preprocessing, each trigraph sequence in a
string or literal is replaced by the single character that it
represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C++ exception is
passed to a handler.

type definition. A definition of a name for a data type.
IBM.

type specifier. Used to indicate the data type of an
object or function being declared.

U
ultimate consumer. The target of data in an I/O
operation. An ultimate consumer can be a file, a device,
or an array of bytes in memory.

ultimate producer. The source of data in an I/O
operation. An ultimate producer can be a file, a device,
or an array of byes in memory.

unary expression. An expression that contains one
operand. IBM.

undefined behavior. Action by the compiler and
library when the program uses erroneous constructs or
contains erroneous data. Permissible undefined
behavior includes ignoring the situation completely with
unpredictable results. It also includes behaving in a
documented manner that is characteristic of the
environment, during translation or program execution,
with or without issuing a diagnostic message. It can also
include terminating a translation or execution, while
issuing a diagnostic message. Contrast with unspecified
behavior and implementation-defined behavior.

underflow. (1) A condition that occurs when the result
of an operation is less than the smallest possible
nonzero number. (2) Synonym for arithmetic underflow,
monadic operation. IBM.

union. (1) In the C or C++ language, a variable that
can hold any one of several data types, but only one
data type at a time. IBM. (2) For bags, there is an
additional rule for duplicates: If bag P contains an
element m times and bag Q contains the same element
n times, then the union of P and Q contains that
element m+n times.

union tag. The identifier that names a union data type.

unnamed pipe. A pipe that is accessible only by the
process that created the pipe and its child processes.
An unnamed pipe does not have to be opened before it
can be used. It is a temporary file that lasts only until
the last file descriptor that uses it is closed.

unique collection. A collection in which the value of
an element only occurs once; that is, there are no
duplicate elements.

unrecoverable error. An error for which recovery is
impossible without use of recovery techniques external
to the computer program or run.

unspecified behavior. Action by the compiler and
library when the program uses correct constructs or
data, for which the standards impose no specific
requirements. Such action should not cause compiler or
application failure. You should not, however, write any
programs to rely on such behavior as they may not be
portable to other systems. Contrast with
implementation-defined behavior and undefined
behavior.

user-defined data type. (1) A mathematical model
that includes a structure for storing data and operations
that can be performed on that data. Common abstract
data types include sets, trees, and heaps. (2) See also
abstract data type.

user ID. A nonnegative integer that is used to identify
a system user. (Under ISO only, a nonnegative integer,
which can be contained in an object of type uid_t.)
When the identity of a user is associated with a
process, a user ID value is referred to as a real user ID,
an effective user ID, or (under ISO only, and there
optionally) a saved set-user ID. X/Open. ISO.1.

user name. A string that is used to identify a user.
ISO.1.

user prefix. In an OS/390 environment, the user prefix
is typically the user's logon user identification.

868 OS/390 V2R10.0 C/C++ Programming Guide

V
value numbering. An optimization technique that
involves local constant propagation, local expression
elimination, and folding several instructions into a single
instruction.

variable. In programming languages, a language
object that may take different values, one at a time. The
values of a variable are usually restricted to a certain
data type. ISO-JTC1.

variant character. A character whose hexadecimal
value differs between different character sets. On
EBCDIC systems, such as S/390, these 13 characters
are an exception to the portability of the portable
character set.

<left-square-bracket> [
<right-square-bracket>]
<left-brace> {
<right-brace> }
<backslash> \
<circumflex> |
<tilde> ˜
<exclamation-mark> !
<number-sign> #
<vertical-line> |
<grave-accent> v
<dollar-sign> $
<commercial-at> @

vertical-tab character. A character that in the output
stream indicates that printing should start at the next
vertical tabulation position. The vertical-tab is the
character designated by '\v' in the C or C++ languages.
If the current position is at or past the last defined
vertical tabulation position, the behavior is unspecified.
It is unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the tabulation. X/Open. This character is
named <vertical-tab> in the portable character set.

virtual address space. In virtual storage systems, the
virtual storage assigned to a batched or terminal job, a
system task, or a task initiated by a command.

virtual function. A function of a class that is declared
with the keyword virtual. The implementation that is
executed when you make a call to a virtual function
depends on the type of the object for which it is called,
which is determined at run time.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

visible. Visibility of identifiers is based on scoping
rules and is independent of access.

volatile attribute. (1) In the C or C++ language, the
keyword volatile, used in a definition, declaration, or
cast. It causes the compiler to place the value of the
data object in storage and to reload this value at each
reference to the data object. IBM. (2) An attribute of a
data object that indicates the object is changeable. Any
expression referring to a volatile object is evaluated
immediately (for example, assignments).

W
while statement. A looping statement that contains
the keyword while followed by an expression in
parentheses (the condition) and a statement (the
action). IBM.

white space. (1) Space characters, tab characters,
form-feed characters, and new-line characters. (2) A
sequence of one or more characters that belong to the
space character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale,
white space consists of one or more blank characters
(space and tab characters), new-line characters,
carriage-return characters, form-feed characters, and
vertical-tab characters. X/Open.

wide-character. A character whose range of values
can represent distinct codes for all members of the
largest extended character set specified among the
supporting locales.

wide-character code. An integral value corresponding
to a single graphic symbol or control code. X/Open.

wide-character string. A contiguous sequence of
wide-character codes terminated by and including the
first null wide-character code. X/Open.

wide-oriented stream. See orientation of a stream.

word. A character string considered as a unit for a
given purpose. In S/390, a word is 32 bits or 4 bytes.

working directory. Synonym for current working
directory.

writable static area. See WSA.

write. (1) To output characters to a file, such as
standard output or standard error. Unless otherwise
stated, standard output is the default output destination
for all uses of the term write. X/Open. (2) To make a
permanent or transient recording of data in a storage
device or on a data medium. ISO-JTC1. ANSI/ISO.

WSA (writable static area). An area of memory in the
program that is modifyable during program execution.
Typically, this area contains global variables and
function and variable descriptors for DLLs.

Glossary 869

|
|

X
XPLINK (Extra Performance Linkage). A new call
linkage between functions that has the potential for a
significant performance increase when used in an
environment of frequent calls between small functions.
XPLINK makes subroutine calls more efficient by
removing nonessential instructions from the main path.
When all functions are compiled with the XPLINK
option, pointers can be used without restriction, which
makes it easier to port new applications to S/390.

870 OS/390 V2R10.0 C/C++ Programming Guide

|
|
|
|
|
|
|
|
|

Bibliography

This bibliography lists the publications for IBM products that are related to the
OS/390 C/C++ product. It includes publications covering the application
programming task. The bibliography is not a comprehensive list of the publications
for these products, however, it should be adequate for most OS/390 C/C++ users.
Refer to OS/390 Information Roadmap, GC28-1727, for a complete list of
publications belonging to the OS/390 product.

Related publications not listed in this section can be found on the IBM Online
Library Omnibus Edition: MVS Collection CD-ROM (SK2T-0710), the IBM Online
Library Omnibus Edition: OS/390 Collection CD-ROM (SK2T-6700), or on a tape
available with OS/390.

OS/390
v OS/390 Introduction and Release Guide, GC28-1725

v OS/390 Planning for Installation, GC28-1726

v OS/390 Summary of Message Changes, GC28-1499

v OS/390 Information Roadmap, GC28-1727

OS/390 C/C++
v OS/390 C/C++ Programming Guide, SC09-2362

v OS/390 C/C++ User’s Guide, SC09-2361

v OS/390 C/C++ Language Reference, SC09-2360

v OS/390 C/C++ Run-Time Library Reference, SC28-1663

v OS/390 C Curses, SC28-1907

v OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359

v OS/390 C/C++ Reference Summary, SX09-1313

v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

v OS/390 C/C++ IBM Open Class Library Reference, SC09-2364

v Debug Tool User’s Guide and Reference, SC09-2137

OS/390 Language Environment
v OS/390 Language Environment Concepts Guide, GC28-1945

v OS/390 Language Environment Customization, SC28-1941

v OS/390 Language Environment Debugging Guide and Run-Time Messages,
SC28-1942

v OS/390 Language Environment Programming Guide, SC28-1939

v OS/390 Language Environment Programming Reference, SC28-1940

v OS/390 Language Environment Run-Time Migration Guide, SC28-1944

v OS/390 Language Environment Writing Interlanguage Applications, SC28-1943

Assembler
v HLASM Language Reference, SC26-4940

v HLASM Programmer’s Guide, SC26-4941

© Copyright IBM Corp. 1996, 2000 871

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|
|

|

|

COBOL
v COBOL for OS/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

v Programming Guide, SC26-9049

v Language Reference, SC26-9046

v Diagnosis Guide, GC26-9047

v Licensed Program Specifications, GC26-9044

v Installation and Customization under OS/390, GC26-9045

v Millenium Language Extensions, GC26-9266

PL/I
v PL/I for MVS & VM Language Reference, SC26-3114

v PL/I for MVS & VM Programming Guide, SC26-3113

v PL/I for MVS & VM Compiler and Run-Time Migration Guide, SC26-3118

VS FORTRAN
v Language and Library Reference, SC26-4221

v Programming Guide, SC26-4222

CICS
v CICS Application Programming Guide, SC34-5702

v CICS Application Programming Reference, SC34-5703

v CICS Distributed Transaction Programming Guide, SC34-5708

v CICS Front End Programming Interface User’s Guide, SC34-5710

v CICS Messages and Codes, GC33-5716

v CICS Resource Definition Guide, SC34-5722

v CICS System Definition Guide, SC34-5725

v CICS System Programming Reference, SC34-5726

v CICS User’s Handbook, SX33-6116

v CICS Family: Client/Server Programming, SC34-1435

v CICS Transaction Server for OS/390 Migration Guide, GC34-5699

v CICS Transaction Server for OS/390 Release Guide, GC34-5701

v CICS Transaction Server for OS/390: Planning for Installation, GC34-5700

DB2
v DB2 Administration Guide, SC26-8957

v DB2 Application Programming and SQL Guide, SC26-8958

v DB2 Call Level Interface Guide and Reference, SC26-8959

v DB2 Command Reference, SC26-8960

v DB2 Data Sharing: Planning and Administration, SC26-8961

v DB2 Installation Guide, GC26-8970

v DB2 Messages and Codes, GC26-8979

v DB2 Reference for Remote DRDA Requesters and Servers, SC26-8964

v DB2 SQL Reference, SC26-8966

v DB2 Utility Guide and Reference, SC26-8967

872 OS/390 V2R10.0 C/C++ Programming Guide

|

IMS/ESA
v IMS/ESA Application Programming: Design Guide, SC26-8728

v IMS/ESA Application Programming: Transaction Manager, SC26-8729

v IMS/ESA Application Programming: Database Manager, SC26-8727

v IMS/ESA Application Programming: EXEC DLI Commands for CICS and IMS,
SC26-8726

QMF
v Introducing QMF, GC26-9576

v Using QMF, SC26-9578

v Developing QMF Applications, SC26-9579

v Reference, SC26-9577

v Installing and Managing QMF on MVS, SC26-9575

v Messages and Codes, SC26-9580

DFSMS
v OS/390 DFSMS Introduction, SC26-7344

v OS/390 DFSMS: Managing Catalogs, SC26-7338

v OS/390 DFSMS: Using Data Sets, SC26-7339

v OS/390 DFSMS Macro Instructions for Data Sets, SC26-7337

v OS/390 DFSMS Access Method Services for Catalogs, SC26-7326

v OS/390 DFSMS Program Management, SC27-0806

Bibliography 873

874 OS/390 V2R10.0 C/C++ Programming Guide

INDEX

Special Characters
// (double slash), part of MVS data-set name 104, 167
/* (EOF sequence for text terminal) 201
] (right square bracket) and [(left square bracket) 771
& (ampersand)

using to specify temporary data-set names
(MVS) 104

! (exclamation point) 772
(number sign) 772
??=pragma filetag directive 757
\a (alarm) 126
__abendcode macro, using for debugging 228
__amrc structure

debugging I/O programs 227
example 229
using with VSAM 164, 186

__amrc2 structure
usage 230

\b (backspace) 126
__csplist() library function 605
\f (form feed) 126
__last_op codes for __amrc 231
\n (newline) 126
\r (carriage return) 126
__rsncode macro 228, 383
\t (horizontal tab) 126
\v (vertical tab) 126
\x0E (DBCS shift out) 126
\x0F (DBCS shift in) 126
_24malc() library function 535
_4kmalc() library function 535
˜ (tilde) 772
| (caret) 771
_EDC_GLOBAL_STREAMS environment variable 478
_EDC_IP_CACHE_ENTRIES environment

variable 479
_EDC_RRDS_HIDE_KEY environment variable 173
_ICONV_UCS2 environment variable 745
_ICONV_UCS2_PREFIX environment variable 742
{ (left brace) 772
} (right brace) 772
_TZ environment variable 711
| (vertical bar) 772
_xhotc() library function 531
_xhotl() library function 532
_xhott() library function 532
_xhotu() library function 533
_xregs() library function 533
_xsacc() library function 534
_xsrvc() library function 534
_xusr() library function 535
_xusr2() library function 535

Numerics
24malc() library function 535
4kmalc() library function 535

64 bit offsets 155

A
abend

CICS and assembler user exit 545
codes

CEEBXITA, CEEAUE_RETC field 543
specifying those to be percolated 546

dumps, CEEAUE_DUMP 545
generating 523
percolating 541, 546
requesting dump 545
system 541, 546
TRAP run-time option 542
user 541, 546

absolute value, decimal type 356
acc parameter for fopen()

memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM data sets 169

accept(), network example 436
additive operators, decimal 346
addressing

within AF_INET domain 434
within AF_UNIX domain 435
within sockets 433

AF_INET domain
addressing 434
defined 434

AF_UNIX domain
addressing 435
defined 435

alarm escape sequence \a 126
alloca() library function 400
alternate code point support 751
AMODE processing option

for CEEBXITA user exit 542
AMODE/RMODE under CICS 581, 602
ANSIALIAS compiler option

optimization 407
application, network 440
application service routines 505
ARCHITECTURE compiler option

optimization 407
argc under CICS 588
ARGPARSE run-time option

preinitialization 260
argv under CICS 588
arithmetic

constructions 397
operators, decimal data type

additive 346
conditional 348
equality 347
multiplicative 346
relational 347

© Copyright IBM Corp. 1996, 2000 875

ASA (American Standards Association)
control characters 71
example 71
overview 71

asis parameter, fopen()
memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM data sets 170

assembler
assembler user exit for termination of 543
epilog 250
example 254, 261
interlanguage calls 245
level 249
macros 245
multiple invocations 256
prolog 249, 250, 251
system programming alternative 487
user exits

CEEBXITA 538
assignment

operators, decimal 349
standard stream 90

asynchronous I/O (MVS) 120
atoi() library function 400

B
backspace escape sequence \b 126
BDAM data sets, restriction 103
BDW (block descriptor word) 117
Berkeley Socket 429
binary files

byte stream behavior 44
fixed behavior 37
undefined format behavior 43
using fseek() and ftell(), OS I/O 133
variable behavior 41

binary I/O, description 34
bind(), network example 436
bit fields 399
blksize parameter

defaults 56
memory file I/O 212
OS/390 OS I/O 117
specifying 55
terminal I/O 200
VSAM data sets 169

blocked records 36
buffers

full buffering 69
line buffering 69
multiple 120
no buffering

HFS files 69
memory files 69

OS I/O 119
terminal I/O 201
using 69

BUFNO subparameter, multiple buffering 120

built-in library functions
list of 831
optimizing code 399

byte order, network 434
byteseek parameter in fopen()

effects on OS files 133
memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM data sets 170

C
C locale

comparing with POSIX and SAA locales 719
defined 713

C or C++ interlanguage calls
with assembler 245
with C++ 239
with COBOL 239
with FORTRAN 239
with PL/I 239

CALL
command 605
token for preinitialization 258

calling
assembler from C or C++ 245
C++ from C 239
C from C++ 239
C or C++ from assembler 245
COBOL from C or C++ 239
FORTRAN from C or C++ 239
functions repeatedly 256
PL/I from C or C++ 239

card
punch output 115
reader input 115

carriage return escape sequence \r 126
cast operator, decimal 350
catalogued procedure 453

changes for sockets 452, 453
EDCC sample 453
EDCCB sample 452
link edit 452

catch 371
cds() library function 399
cdump() library function 589
CEE.SCEEMAC 249
CEEAUE_ parameters 541
CEEBINT HLL user exit

customizing 539
invoking 538
using default version 539

CEEBXITA assembler user exit
abends 541
customizing for your installation 539
during enclave termination 540
during process termination 541
effects of run-time options 541
error handling 542
invoking 538, 540

876 OS/390 V2R10.0 C/C++ Programming Guide

CEEBXITA assembler user exit (continued)
using default version 539

CEESTART
creating modules without 490
using with MTF 573

cerr
C++ standard error stream 83
predefined stream, usage 47

CESE, CICS data queue 223
CESO, CICS data queue 223
Character Set

hexadecimal values 777
POSIX 767

character special files (HFS)
creating 140
I/O rules 152
using 139

charmap file
example 789
input 767
restriction, Japanese Katakana 769

charmap section 670
CHARSETID section 672
CICS (Customer Information Control System)

AMODE/RMODE considerations 581, 602
arguments to C or C++ main() 588
cdump() library function 589
CESE data queue 223
CESO data queue 223
clock() library function 589
compile 596, 601
Cross System Product (CSP) 605
CSD considerations 604
csnap() library function 589
ctdli() library function 589
ctrace() library function 589
define and run the program 603
designing and coding a program 582
developing a C or C++ program 581
DLL 589
dump functions 589
dynamic allocation 588
EXEC CICS LINK 589
EXEC CICS XCTL 589
fetch() library function 589
floating point arithmetic 589
input and output 53, 223
interlanguage support 591
iscics() library function 589
JCL to translate and compile 601
link considerations 603
link load module 602
linking for reentrancy 602
locale support 588, 764
memory file support 587
MTF support 588
OS/390 C/C++ library support 588
OS/390 UNIX 833
overview 581
packed decimal support 588
POSIX support 588

CICS (Customer Information Control System)
(continued)

prelinking 602
preparing for use with OS/390 Language

Environment 581
program processing 603
program termination 589
redirecting standard streams 94
reentrancy 603
release() library function 589
requirements 581
run-time options 588
SP C support 588
standard stream support 586
storage management 590
svc99() library function 588
system() library function 589
translate 596
using with IMS 589

cin
C++ standard input stream 83
predefined stream, usage 47

CINET 446
clearenv() library function 474
clearing memory 400
client perspective 437
client/server

allocation with socket() 436
conversation 435
exchanging data 435
server perspective 436

clock() library function 589
clog

C++ standard error stream 83
predefined stream, usage 47

closing
HFS files 146
memory files 218
OS/390 Language Environment message file 226
OS I/O files 135
terminal files 206
VSAM data sets 185

clrmemf() library function
memory I/O files 219

COBOL
assembler user exit 540
using linkage specifications 239

code
independence 563
motion 403
point mapping 777

coded character set
CICS support 581
considerations with locale 749
conversion during compile 757
conversion utilities 721
converters supplied 722
IBM-1047

converting code from 801
converting code to 753

IBM-1047 vs. IBM-293 750

INDEX 877

coded character set (continued)
independence 755
related to compile-edit cycle 755

collating sequence difference, SAA and POSIX 719
common expression elimination 403
Common INET 446
Common Programming Interface (CPI) 651
communication, network basics 430
communications, interprocess

asynchronous signal delivery 378
TCP/IP for MVS considerations 449

COMPACT compiler option
optimization 407

compile-edit cycle related to coded character set 755
compiler options, locale 757
compiler restrictions 448
compiling

for a locale 757
include files 451
linking 447
procedures 447
restrictions 448
sockets programs 447
under batch

for Berkeley Sockets 452
for X/Open Sockets 453
with X Windows 453

using c89
for Berkeley Sockets 453
with X Windows 453

COMPRESS compiler option
optimization 407

computational independence 556, 563
concatenation

compatibility rules 112
in-stream data sets 113
sequential and partitioned 111

condition variable 322
conditional operators, decimal 348
configuration file access, TCP/IP for MVS 450
constant

fixed-point decimal 344
propagation 403

constants defined in idecimal.hpp 363
control characters

ASA text files 71
OS I/O text files 126
recognized by OS/390 C/C++ text files 33
terminal I/O files 204

conversation 435
conversions

code set 721
coding with optimizations 397
decimal objects 368
decimal types

decimal to decimal 350
decimal to float 353
decimal to integer 352
float to decimal 353
integer to decimal 352

hybrid code from IBM-1047 801

conversions (continued)
hybrid code to IBM-1047 753
IBinaryCodedDecimal objects 364, 369

converters, locale code set 722
cout

C++ standard output stream 83
predefined stream, usage 47

CPI (Common Programming Interface) 651
creat() library function 140
cs() library function 399
CSECT (control section)

CEESTART 490
csid() library function 662
csnap() library function 589
CSP (Cross System Product) 605
CSP/AD (Cross System Product/Application

Development) 605
CSP/AE (Cross System Product/Application

Execution) 605
csplist library function

passing parameters 605
ctdli() library function 589
ctrace() library function 589
CVFT compiler option

optimization 407
CXIT control block 541

D
DASD (Direct-Access Storage Device)

input and output 103
multivolume data sets, input and output 115
sequential and partitioned concatenation 111
striped data sets, input and output 115

data independence 556, 563
data sets

in-stream 113
multivolume 115
name

opening a memory file 210
opening an MVS data set 167
opening an OS/390 OS file 103

sequential vs. partitioned concatenation 111
striped 115
temporary 104

datagram
definition 430
sockets 433

DB2
application programming environment, OS/390

UNIX 833
locale support 764
with OS/390 C/C++ 621

DBCS (Double-Byte Character Support)
input and output functions 75
reading 76
shift in character 126
shift out character 126
writing 77

dbx 23

878 OS/390 V2R10.0 C/C++ Programming Guide

DCB (Data Control Block)
OS I/O 121
parameter on a DD statement 106
parameters, optimizing code 391

ddname
creating

description 57
in source code 58
under MVS batch 58
under TSO 58

opening an HFS I/O file under MVS 143
opening an OS I/O file under OS/390 105
restriction 59

dead code elimination 403
dead store elimination 403
debug tool 19
Debug Tool

CEEBINT and 551
debugging

dbx 23
debug tool 19

debugging I/O programs 227
DEC_DIG decimal constant

numerical limit 345
range of values 343, 366

DEC_EPSILON decimal constant 345
DEC_MAX decimal constant 345
DEC_MIN decimal constant 345
DEC_PRECISION decimal constant

numerical limit 345
range of values 343, 366

decchk() library function 360
decimal class 366

arithmetic operators 367
input and output 367
representation 366

decimal data type
absolute value 356
assignments 345
constants 344
constructing 366
conversions 350
declarations 343
error messages 361
exception handling 359, 369
fixing sign of 355
operators 345
printing with library functions 354
SPC restriction 360
validating 355
variables 344
viewing with library functions 354

decimal object
asBCD 369
asString 369
digitsof 369
precisionof 369

declarations
decimal 343, 366
extern, using for linkage to other languages 239
using optimization 398

default
C locales for POSIX, SAA, and S370 713
DCB attributes for SYSOUT data set 114
fopen() 55, 56
locales 713, 719
LRECL, fopen() 56
RECFM 56

definition side-deck 289
delete

HFS files 147
named module from storage 528
pipes with HFS 149
VSAM records 175

delimiter in JCL statements 113
delivery, signals

ANSI C rules 376
asynchronous 378
POSIX rules 376

differences among C, POSIX, and SAA locales 719
differences between SAA C and POSIX C 719
digitsof operator 349
direct processing 173
directories (HFS)

creating 140
deleting 147
using 139

disabled signals 380
disjoint pragma 401
DISP=MOD specification, DD statement

DDnames 58
OS I/O, fopen() modes 105

displaying variant characters 771
DL/I (Data Language I) 633
DLL code 295
DLL Rename Utility 279
DLLs (Dynamic Link Libraries)

applications 280
binding a DLL 289
binding a DLL application 289
C++ example 307
C example 303, 309, 310
C or C++ example 282
calling explicitly 282
calling implicitly 281
CICS 589
compatibility with non-DLL 299
Complex

assigning pointers 300
compatibility issues 299
creating 295
guidelines 296
modifying source 296

creating 286
#pragma export 287
C 286
description 286
exporting functions 287
guidelines 296

DLL Rename Utility 279
entry point 292
example 291

INDEX 879

DLLs (Dynamic Link Libraries) (continued)
freeing 286
load-on-call 281
loading 284
managing the use of 284
performance 293
restrictions 292
sharing among application executable files 286
using 290

domain
AF_INET 434
AF_UNIX 435

DSQCOMMC.H header file 651
DUMMY data set output 115
dumps

requesting in the CEEBXITA assembler user
exit 541, 545

duplicate alternate index keys
retrieval sequence 172
under VSAM 170

DWS (Data Window Services) 619
DXFR, transfer control 605
dynamic memory 408

E
EDCCB 452, 453

cataloged procedure 452, 453
changes for sockets 452, 453
sample 452, 453

EDCDPLNK macro 340
EDCDSAD macro 249, 251
EDCDXD macro 340
EDCEPIL macro 249, 250
EDCLA macro 340
EDCPRLG macro 249
EDCPROL macro 249
EDCRCINT routine 496
EDCX4KGT routine 525
EDCXABND routine 523
EDCXABRT module

using during link edit 493
EDCXABRT routine 496, 500
EDCXENV module 500
EDCXENVL module 500
EDCXEPLG 249
EDCXEPLG macro 251
EDCXEXIT module

exit(), system programming version 500, 505, 522
freestanding applications 496

EDCXFREE routine 526
EDCXGET routine 524
EDCXHOTC library function 531
EDCXHOTC routine 505
EDCXHOTL library function 532
EDCXHOTL routine 505
EDCXHOTT library function 532
EDCXHOTT routine 505
EDCXHOTU library function 533
EDCXHOTU routine 505

EDCXISA module
entry point 493
in freestanding applications 496

EDCXLANE module 528
EDCXLANK module 528
EDCXLANU module 528
EDCXLOAD routine 527
EDCXMEM module

freestanding applications 496
persistent environment 505
system programming memory management 500,

522
EDCXPRLG 249
EDCXPRLG macro 250
EDCXREGS library function 533
EDCXSACC library function 534
EDCXSACC routine

accepting a request for service 522
EDCXSPRT module

in freestanding applications 496
sprintf(), system programming version 505
sprintf(), system programming version of 500
System programming version of sprintf() 522

EDCXSRC routine
xsrvc library function 534

EDCXSRVC routine 522
EDCXSRVN routine

initiating a server request 521
EDCXSTRL module

in freestanding applications 496
usage 491

EDCXSTRT module
in freestanding applications 496
usage 491

EDCXSTRX module
in freestanding applications 496
usage 492

EDCXUNLD routine 528
EDCXUSR library function 535
EDCXUSR2 library function 535
ELPA (Extended Link Pack Area) 336
empty records

_EDC_ZERO_RECLEN 42, 480
enabled signals 380
enclave

terminating with CEEAUE_ABND 545
encoded offset 133
ENGLISH run-time messages 528
environment variables

_CEE_DMPTARG 481
_CEE_ENVFILE 481
_EDC_ADD_ERRNO2 476
_EDC_ANSI_OPEN_DEFAULT 476
_EDC_ANSI_OPEN_DEFAULT

_EDC_ANSI_OPEN_DEFAULT 121
_EDC_BYTE_SEEK 119, 133, 477
_EDC_CLEAR_SCREEN 204, 477
_EDC_COMPAT 477
_EDC_GLOBAL_STREAMS 478
_EDC_IP_CACHE_ENTRIES 479
_EDC_RRDS_HIDE_KEY 479

880 OS/390 V2R10.0 C/C++ Programming Guide

environment variables (continued)
_EDC_STOR_INCREMENT 479
_EDC_STOR_INITIAL 480
_EDC_ZERO_RECLEN 480
_ICONV_UCS2 745
_ICONV_UCS2_PREFIX 742
locale 472
naming conventions 475
using 474

EOF (end of file)
resetting terminal I/O 201

equality operators
decimal in C 347
decimal in C++ 368
IBinaryCodedDecimal in C++ 364

ERRCOUNT run-time option 376
errno values 835
errors, debugging 383
ESCON channels, striped data sets 115
ESDS (Entry-Sequenced Data Set)

alternate index keys 164
use of 161

established signals 379
examples

cbc3gas1 71
cbc3gca1 254
cbc3gca2 253, 254
cbc3gca3 255
cbc3gca5 253
cbc3gca6 261
cbc3gca7 264
cbc3gcc2 761
cbc3gch1 373
cbc3gch2 374
cbc3gci1 583
cbc3gci2 593
cbc3gci3 597
cbc3gcl1 708
cbc3gcl2 709
cbc3gcl3 710
cbc3gcp1 606
cbc3gcp2 608
cbc3gcp3 610
cbc3gcp4 611
cbc3gcp5 614
cbc3gcp6 614
cbc3gcp7 616
cbc3gdb1 621
cbc3gdc1 346
cbc3gdc2 347
cbc3gdc3 357
cbc3gdc4 359
cbc3gdi1 229
cbc3gdi2 234
cbc3gdl1 719
cbc3gdw1 620
cbc3gdw2 619
cbc3gec1 389
cbc3gev1 482
cbc3gev2 483
cbc3ggd1 628

examples (continued)
cbc3ggd2 630
cbc3ghc1 801
cbc3ghf1 148
cbc3ghf2 150
cbc3ghf3 153
cbc3ghf4 156
cbc3gim1 636
cbc3gim2 638
cbc3gim3 640
cbc3gip1 824
cbc3gip2 829
cbc3gis1 644
cbc3gis2 644
cbc3gis3 645
cbc3gis4 645, 649
cbc3gis5 646, 649
cbc3gis6 646
cbc3gis7 647
cbc3gis8 647
cbc3gis9 647
cbc3gisa 648
cbc3gisb 648
cbc3gmf1 214
cbc3gmf2 215
cbc3gmf3 220
cbc3gmf4 221
cbc3gmi1 811
cbc3gmi2 812
cbc3gmt1 570
cbc3gmt2 571
cbc3gmt3 572
cbc3gmv1 772
cbc3gmv2 775
cbc3gof1 53
cbc3gop1 404
cbc3gop2 405
cbc3gop3 397
cbc3gos1 108
cbc3gos2 109
cbc3gos3 130
cbc3gqm1 651
cbc3gqm2 654
cbc3gqm3 655
cbc3gre1 338
cbc3gre2 339
cbc3gre3 340
cbc3gre4 341
cbc3gsp1 493
cbc3gsp2 494
cbc3gsp3 498
cbc3gsp4 502
cbc3gsp5 503
cbc3gsp6 507
cbc3gsp7 508
cbc3gsp8 513
cbc3gsp9 515
cbc3gspa 524
cbc3gspb 525
cbc3gspc 527
cbc3gspd 516

INDEX 881

examples (continued)
cbc3gspe 518
cbc3gspf 520
cbc3gth1 327
cbc3gvs1 165
cbc3gvs2 187
cbc3gvs3 192
cbc3gvs4 195
cbc3gwt1 822
cbc3gwt2 823
machine-readable 9
naming of 9
softcopy 9

exception handling
C++-IMS 633
C exceptions under C++ 371
C-IMS 633
CEEBXITA assembler user exit 542
decimal type 359, 369
description 371
hardware exceptions under C++ 372

EXEC CICS commands
FREEMAIN 590
GETMAIN 590
how to use 582
LINK 589
RETURN 590
WRITEQ TD 233
XCTL 589

exec family of functions
data definition considerations 143
described 393

EXECUTE extended parameter list request 258
EXH compiler option

optimization 407
export pragma 401
EXPORTALL compiler option

optimization 407
exporting functions 280
exporting source to other sites 754
expressions, optimizing 396
extended parameter list 256
extern declaration

using for linkage to other languages 239
external

static 336
variables 396, 398

F
F-format records 36
families

address 433
socket 432

fclose() library function
_EDC_COMPAT environment variable 477

fcntl() library function 140
fdelrec() library function

using to delete records 166, 175
fetch() library function

and writable statics 332

fetch() library function (continued)
calling other OS/390 C/C++ modules in C 394
system programming C environment 489
under CICS 589

fflush() library function
_EDC_COMPAT environment variable 477
optimizing code 393

fgetpos() library function
_EDC_COMPAT environment variable 477
optimizing code 393

fgets() library function
optimizing code 392

fgetwc() library function 76
fgetws() library function 76
FIFO

mkfifo() 147, 149
special files

creating 140
using 139, 149

files
large support 155
memory

closing 218
extending 218
flushing 217
opening 210
positioning 218
reading 216
repositioning 218
writing 217

MVS, opening 103
named pipe 149
origin of OS attributes 121
OS

flushing 129
opening 103
reading from 123
removing 136
renaming 136
repositioning 132, 135
writing to 125

VSAM
closing 185
deleting a record 175
flushing 177
locating a record 175
reading a record 172
repositioning 175
updating a record 174
writing a record 173

filetag pragma 757
fixed-format records

overview 36
standard format 36

fldata() library function
HFS I/O 158
memory file I/O 219
OS I/O files 136
terminal I/O 206

floating-point registers 255

882 OS/390 V2R10.0 C/C++ Programming Guide

flocate() library function
VSAM data sets 164, 175

flushing
binary streams, wide character I/O 80
buffers for terminal files 205
HFS records 146
memory files 217
OS/390 Language Environment message file 226
OS I/O files 129
terminal files 205
text streams, wide character I/O 79
VSAM data sets 177, 183

fopen() library function
HFS files 140
list of parameters, for

HFS I/O 143
memory file I/O 211
OS/390 OS I/O 116
terminal I/O 200
VSAM I/O 169

restrictions 55
under MTF 576

for statement 398
fork() library function

data definition considerations 143
not thread-safe 332
using with memory files 393

form feed escape sequence \f 126
format-D files restriction, ISCII/ASCII 35
four k 535
fputc() library function

optimizing code 392
fputs() library function

optimizing code 392
fputwc() library function 77
fputws() library function 77
fread() library function

optimizing code 392, 393
FREE=CLOSE parameter, DD statement 105
freestanding applications

EDCXISA 493
EDCXSTRL 491
EDCXSTRT 491
EDCXSTRX 492

freopen() library function
HFS files 140
noseek parameter

in-stream data sets 113
under MTF 576
VSAM data sets 167
warning 58

fseek() library function
_EDC_COMPAT environment variable 477
optimizing code 392

fsetpos() library function
optimizing code 393

fstream class 48
ftell() library function

_EDC_COMPAT environment variable 477
full buffering 69

functions
arguments 396
descriptors 279
exported 280
imported 280

fupdate() library function 166, 174
fwrite() library function

optimizing code 392, 393

G
GDDM (Graphical Data Display Manager)

interface 627
with OS/390 C/C++ 627

GDG (Generation Data Group)
C++ example 109
C example 108
input and output 106

genxlt utility 721
getenv() library function 474
getsyntx() library function 662
getwc() library function 76
getwchar() library function 76
global assembler user exit 539
global variables 395
graph coloring register allocation 403
graphics support 627

H
hard-coding 751
hardware signals 380
HEAP run-time option

system programming C environment 489
HFS (Hierarchical File System)

character special 140
closing files 146
creating files 139
deleting 147
directory 140
example 153, 156
FIFO 140
file types 139
flushing records 146
I/O, description 52
I/O functions, example program 152
I/O Stream class library 139
input and output 139
link 140
naming files 140
reading streams and files 145
record I/O rules 144
regular 139
setting positions within files 146
writing to streams and files 145

high-level
language user exits

CEEBINT 538
qualifier

defaults 105, 210
running without RACF 105, 210

INDEX 883

high-level (continued)
setting the user prefix under TSO 105, 210

hiperspace memory files
I/O, description 52
input and output 209
POSIX restrictions 53
specifying buffer size, setvbuf() 209
thread affinity restrictions 331

horizontal tab escape sequence \t 126
hybrid coded character set, using 751

I
I/O

binary stream 34
card input and output 115
category descriptions

CICS data queues 53
HFS files 52
hiperspace memory files 52
memory files 52
OS/390 Language Environment message

files 54
OS files 52
terminal 52
VSAM files 52

CICS 223, 586
debugging 227
DUMMY data-set output 115
errors 227
Hierarchical File System (HFS) 139

functions 152
using with I/O 139

hiperspace memory files 209
in-stream data sets 113
low-level OS/390 UNIX 152
memory file 209
multivolume data sets 115
object-oriented 47
optical reader input 115
optimizing code 391
OS 103
OS/390 Language Environment message file 225
pipe 147
printer output 115
record

introduction 34
model 35
rules, HFS 144

restrictions in multithreaded applications 331
striped data sets 115
summary table 50
sysout data set 113
tapes 114
terminal 199
text stream 33
types, general information 33
wide characters 75

I/O Stream Library 83
I/O Streams File I/O 47
IBinaryCodedDecimal 363

IBinaryCodedDecimal 363 (continued)
arithmetic operators 364
constants 363
constructing objects 364
exceptions 366
input and output 364

IBinaryCodedDecimal class representation 363
IBinaryCodedDecimal object

digitsof 365
precisionof 366

IBM-1047 coded character set
converting code from 801
converting code to 753

iconv() library function 722
iconv utility

converting code sets 721
preparing source code for exporting 754

idecimal.hpp header file 363, 366
IEBGENER utility (TSO)

tape files 114
if statement 398
ifstream class 48
IGNERRNO compiler option

optimization 408
IMS (Information Management System)

default high-level qualifier 105, 210
error handling 633
opening files 105, 210
OS/390 UNIX 833
other considerations 634
redirecting standard streams 94
using with CICS 589
with OS/390 C/C++ 633

in-stream data sets
delimiter for data 113
input 113
noseek parameter 113

include files
with OS/390 UNIX sockets 451

INCLUDE statement, MVS 539
INIT token preinitialization 258
initialization

nested enclave
CEEBXITA’s function code for 543

using CEEBXITA 540
inlining

optimization 404
suggestions 405
under IPA 407

installation-wide assembler user exit 539
instruction scheduling 403
interface

CICS 581
DB2 621
DWS 619
GDDM 627
IMS 633
ISPF 643
locale-sensitive 662
preinitialized program 257

884 OS/390 V2R10.0 C/C++ Programming Guide

interlanguage calls
C or C++ and assembler 245
using linkage specifications 239

interleaving
standard streams I/O 84
without sync_with_stdio() 86

international enabling
for programming languages 661
OS/390 C/C++ support for 662

Internet address 434
internetworking concepts 429
interprocess communication

asynchronous signal delivery 378
TCP/IP for MVS considerations 449

INTRDR, using to create job stream within a
program 114

ios class 47
iostream.h header file 47
IPA

compiler option
optimization 408

date and time stamps 427
effect of LOCALE option 426
effects on your program 425
flow of processing

IPA 415
IPA Compile step 415
IPA Link step 417
non-IPA 414

invoking from the c89 utility 422
object record formats 420
partitioning 421
restrictions 426
specifying #pragmas under IPA 424
specifying compiler options under IPA 423
types of procedural analysis 413

isalnum() macro 399
isalpha() macro 399
ISAM data sets, restriction 103
ISASIZE run-time option

system programming C environment 489
iscics() library function 589
ISCII/ASCII format-D files, restriction 35
iscntrl() macro 399
isdigit() macro 399
isgraph() macro 399
islower() macro 399
isolated_call 401
ISPF (Interactive System Productivity Facility) 643
isprint() macro 399
ispunct() macro 399
isspace() macro 399
isupper() macro 399
isxdigit() macro 399

K
KANJI run-time messages 528
keyboard, mapping variant characters 771
KSDS (Key-Sequenced Data Set)

alternate index, under VSAM 164

KSDS (Key-Sequenced Data Set) (continued)
description 161

L
LC_ALL locale variable 673
LC_COLLATE locale variable 673
LC_CTYPE locale variable 673
LC_MONETARY locale variable 673
LC_NUMERIC locale variable 673
LC_SYNTAX locale variable 695
LC_TIME locale variable 673
LC_TOD locale category 711
LC_TOD locale variable 673
leaves pragma 401
LIBANSI compiler option

optimization 408
library extensions 394
line buffering 69
linear data sets 162
link() library function 140
link edit 452
link files (HFS), creating 140
linkage editor, CICS 581
linkage pragma for interlanguage calls 255
linking

kinds of linkage 240
sockets programs 447
syntax 239

listen(), network example 436
listings, locale sensitive 762
loading

named module into storage 527
VSAM data sets 173

local
constant propagation 403
expression elimination 403
variables 395

localdtconv() library function 662
locale

C 713
categories

LC_ALL 673
LC_COLLATE locale variable 673
LC_MONETARY locale variable 673
LC_NUMERIC locale variable 673
LC_SYNTAX locale variable 695
LC_TIME locale variable 673
LC_TOD locale variable 673
LC_TYPE locale variable 673

CICS support 581
compiler option examples 758
compiler options 757
converting existing work 753
customizing 705
environment variables 472
generating an object module 763
hybrid coded character set, using 751
library functions

localdtconv() 662
localeconv() 662

INDEX 885

locale (continued)
setlocale() 662

localeconv() library function 673
macros 760
overview of OS/390 C/C++ support 662
predefined 762
source-code functions summary 756
summary of support in compiler 759
tests for SAA or POSIX 719
TZ or _TZ environment variable 711
using with CICS 588

localeconv() library function 662
localedef utility

example 789
loop statements, optimizing 397
low-level OS/390 UNIX I/O 152
LPA (Link Pack Area) 336
LRECL (logical record length) parameter

defaults 56
fopen() library function

memory file I/O 212
OS/390 OS I/O 117
terminal I/O 200
VSAM data sets 169

lrecl=X, OS I/O 118

M
machine print-control codes 36
macros

EDCDSAD 249
EDCEPIL 249
EDCPRLG 249
EDCPROL 249
EDCXEPLG 249
EDCXPRLG 249
use with locale 760

main task for MTF 555
malloc() library function

system programming C environment 500, 505, 522
mapping variant characters 771
MB_CUR_MAX, effect on DBCS 75
member, PDS and PDSE 110
memcmp library function 399
memory files

automatic name generation 213
closing 218
example 53, 220
example program 220
extending 218
flushing 217
I/O, description 52
I/O Stream class library 209
in hiperspace 209
input and output 209
opening 210
positioning within 218
reading from 216
repositioning within 218
return values for fldata() 219

memory files (continued)
simulated partitioned data sets

description 213
example 214, 215

specifying asterisk as file name 213
support under CICS 587
text mode treated as binary 213
ungetc() considerations 217
using to optimize code 395
writing to 217

memset library function 400
mkdir() library function 140
mkfifo() library function

with HFS files 140, 147, 149
mknod() library function 140, 149
MSGCLASS, matching for SYSOUT data sets 114
MSGFILE (OS/390 Language Environment)

closing 226
default destination SYSOUT 92
flushing buffers 226
I/O Stream class library 225
opening files 225
output 225
reading from 225
repositioning within 226
writing to 225

MTF (multitasking facility)
coding for 563
compiling 572
concepts illustrated 558
DD statements 575
designing for 563
dynamic commons 569
EDCMTFS 573
examples 567
independence requirement 563
introduction to 555
Job Control Language (JCL) 573, 575
link-editing considerations 574
linking 572
load modules 572
modifying run-time options 574
multithreading 333
passing data 565
restrictions 575
rules 563
running under 574
tasks 555
with OS/390 C++ 485

multibyte characters 75
effect of MB_CUR_MAX 75
reading 76
writing 77

multiple buffering 120
multiple invocations, preinitialized program 256
multiple threads 321
multiplicative operators, decimal 346
multivolume data sets, opening 115
mutex 322
MVS (Multiple Virtual System)

alternative initialization routine 491

886 OS/390 V2R10.0 C/C++ Programming Guide

MVS (Multiple Virtual System) (continued)
building freestanding applications 493
Data Window Services (DWS) 619
file names 103
file names for memory files 210
listing PDS members 823
reentrant modules 494

N
named pipes

example 150
using 149

naming environment variables 475
natural reentrancy 335
NCP subparameter

multiple buffering 120
network, application example 440
network byte order 434
network communication basics 430
newline escape sequence \n 126
nl_langinfo() library function 662
NOARGPARSE run-time option

preinitialization 260
non-DASD devices, I/O 115
nonoverrideable run-time options in the user exit 545
NOSEEK parameter

in-stream data sets 113
memory file I/O 212
OS/390 OS I/O 119
sequential concatenations 112
terminal I/O 201
VSAM data sets 170

Notices 839

O
object-oriented model for I/O 47
ofstream class 48
open() library function

for low-level OS/390 UNIX files 140
HFS files 140
with pipes 149

Open Socket 429
opening

CICS data queues 53
determining type of file to open 50
files for I/O, overview 49
HFS files 52, 141
memory files

description 52
example 53

memory I/O files 210
multibyte character files 76
OS/390 Language Environment message files 54,

225
OS files 52
terminal files 199
terminal I/O files 52
VSAM data sets 52, 167

operators, decimal
arithmetic 346
assignment 349
cast 350
summary 350
unary 349

optica/reader input 115
optimization

additional compiler options 407
arithmetic constructions 397
code motion 403
common expression elimination 403
constant propagation 403
control constructs 397
conversions 397
dead code elimination 403
dead store elimination 403
declarations 398
dynamic memory 408
expressions 396
fixed standard format records 36
function arguments 396
graph coloring register allocation 403
inlining 404, 405
inlining under IPA 407
input/output 391
instruction scheduling 403
levels 391
library extensions 394
library functions 399
loop statements 397
noseek parameter for OS I/O 119
pointers 396
programming recommendations 36, 395
straightening 403
strength reduction 403
techniques 402
value numbering 403
variables 395
XPLINK 409

option_override 401
order, network byte 434
OS/390 Language Environment

message file I/O, description 54
message file output 225

OS/390 UNIX
application programming environment 833
I/O, low-level 152

OS I/O
acc= parameter 119
asis parameter 119
asynchronous reads 119, 120
asynchronous writes 119, 120
buffering 119
byteseek parameter 119
closing files 135
description 52
fgetpos() and ftell() values 133
flushing records

description 129
example 130

INDEX 887

OS I/O (continued)
I/O Stream class library 103
in-stream data sets 113
lrecl=X 118
multivolume data sets 115
opening files 103
overview 103
password= parameter 119
PDS and PDSE considerations

BLKSIZE values 118
LRECL values 118
overview 110
RECFM values 117

reading from files 123
repositioning within files 132
space= parameter 118
striped data sets 115
tapes 114
type= parameter 119
ungetc() considerations 131, 132
writing to files 125

OS linkage 239, 246, 255
os parameter, fopen()

memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM I/O 170

overlapped I/O 120
overrideable run-time options in the user exit 545

P
packed decimal

assignments 345
constructing 366
conversions 350
declarations 343
operators 345
using with CICS 588
variables 344

parallel functions 556
parameter list, OS 246
partitioned concatenation

compatibility rules 112
data sets 111

passing parameters
CSP 605
OS 246

passing streams across system calls 95
password= parameter

memory file I/O 212
OS/390 OS I/O 119
VSAM data sets 170

PATH, under VSAM 164
pathname, under POSIX.1 141
PDS (partitioned data set)

input and output 110
listing members 823
memory files simulation

description 213
example 214, 215

PDS (partitioned data set) (continued)
opening 117
OS I/O, restriction on opening 110

PDSE (partitioned data set extended)
input and output 110
opening 117
OS I/O, restriction on opening 110

performance
impact from BYTESEEK mode for OS files 133
improvements by using fixed standard format

records 36
memory files 209
noseek parameter for OS I/O 119
opening memory files 213
specifying FBS format 118

persistent C environments 500
pipe() library function 140
pipes

creating 140
I/O 147
named 149
unnamed 147

description 140
example 148

PL/I
using linkage specifications 239

PLIST
compiler option (C++)

OS 633
directive (IMS)

OS 633
system programming environment 489

plotters, Graphical Data Display Manager (GDDM) 627
pointers 300

assigning in DLLs 300
optimization 396

portability
VM/CMS and OS/390 filenames 105

portable character set 749
ports

description 434
locating 440

positioning
HFS files 146
memory files 218
OS/390 Language Environment message file 226
OS I/O files 132
terminal files 206

POSIX
character set 767
locale, defined 713
POSIX C locale and SAA C locale differences 719

pragmas
disjoint 401
environment 496, 499
export 401
filetag directive, ??=pragma 757
inline 401, 831
isolated_call 401
leaves 401
linkage 493

888 OS/390 V2R10.0 C/C++ Programming Guide

pragmas (continued)
noinline 401
option_override 401
reachable 401
runopts

description 528, 529
heap 574
IMS 633
plist 489
stack 574

strings 401
variable 402

NORENT 335
RENT 335

precisionof operator 349
predefined locale 762
preinitialization

argparse run-time option 260
CALL token 258
example 260
INIT token 258
OS/390 265
TERM token 258

presentation interface 627
printer output

Graphical Data Display Manager (GDDM) 627
protocols, transport 430
putc() library function

optimizing code 392
putwc() library function 77
putwchar() library function 77

Q
QMF (Query Management Facility)

with has SAA callable interface 651

R
RACF (Resource Access Control Facility)

no hyphens in names for 104
qualifier required in data-set name 105

raise() library function
error handling 375

RBA (Random Byte Address)
in VSAM 164

RDW (record descriptor word) 117
reachable pragma 401
read() library function

HFS files 145
with pipes 149

read-write lock 322
reading

from HFS files 145
from memory files 216
from OS I/O files 123
from terminal files 201
from the OS/390 Language Environment message

file 225
from VSAM data sets 172
multibyte characters 76

reading (continued)
using recfm=U 117

realloc() library function
system programming C environment 505, 522

reason codes
in user exits 544

RECFM (record format)
F (fixed-format) 36
memory file I/O 211
OS/390 OS I/O 117
overview 35
recfm=* extension 54, 117
recfm=A extension 117
RECFM defaults 56
restrictions 57
S (fixed standard) 36
S (variable spanned) 40
specifying 54
terminal I/O 200
U (undefined format)

overview 42
reading OS files 117

V (variable format)
overview 39

VSAM data sets 169
record

empty
_EDC_ZERO_RECLEN 42, 480

files, using fseek() and ftell() 135
fixed standard format 36
HFS I/O rules 144
I/O

byte stream behavior 44
fixed-format behavior 39
introduction 34
restriction 76
undefined-format behavior 44
variable-format behavior 42

spanned 40
specifying length 55
undefined-length 42
variable-length 39
zero-byte

_EDC_ZERO_RECLEN 42, 480
redirection

standard streams 83
introduction 92
to fully qualified data sets 92
using DD statements 92
using freopen() 92
using PARM 92

standard streams in a system programming C
environment 489

stderr, with OS/390 Language Environment
MSGFILE option 90

stream, using assignment 90
streams, using freopen() 90
streams under CICS 94
streams under IMS 94
streams under TSO

from the command line 94

INDEX 889

redirection (continued)
introduction 93

symbols 89
reentrancy

in OS/390 C/C++ 335
limitations 336
modified CEEBXITA must be reentrant 542

register
allocation 403
conventions 255
variables 396

regular HFS files 139
relational operators

decimal in C 347
decimal in C++ 368
IBinaryCodedDecimal in C++ 364

relative byte offset 133
remove() library function

memory I/O files 219
OS I/O files 136

rename() library function
OS I/O files 136

RENT compiler option 335
repositioning

binary streams, wide character I/O 81
HFS files 146
memory files 218
OS/390 Language Environment message file 226
OS I/O files 132
terminal files 206
text streams, wide character I/O 81
VSAM records 175

restrictions, compiler 448
retaining for multiple invocations

assembler to C repeatedly 256
preinitialized program 256

return
codes

__amrc structure 186
CEEAUE_RETC field of CEEBXITA and 543
in user exits 543

value under CICS 589
RMODE processing option

for CEEBXITA user exit 542
ROCONST compiler option

controlling external static 336
optimization 408

ROSTRING compiler option
controlling writable strings 337
optimization 408

RPC (Remote Procedure Call) 449
RRDS (Relative Record Data Set)

choosing whether key and data are contiguous 172
choosing whether key is returned with data on

read 173
key structure 171
related environment variable 479
use of 161

RRN (Relative Record Number)
under VSAM 165

run-time
messages

EDCXLANE 528
EDCXLANK 528
UENGLISH 528

options
in the user exit 540, 545
TRAP 541, 542, 545

user exits 537

S
S370 locale 713
SAA (Systems Application Architecture)

applications using QMF callable interface 651
differences between C and POSIX locales 719
locale 713

screen layouts 627
SEEK_CUR macro

effects of ungetc() 133
effects of ungetwc() 82

seeking
OS/390 Language Environment message file 226
OS I/O files 132
terminal files 206
within HFS files 146
within memory files 218

select(), network example 437
sequential

concatenation
compatibility rules 112
data sets 111
noseek parameter 112

processing 172, 173
server

allocation with socket() 436
locating the port 440
perspective 436

service routines 505
session

typical TCP socket 438
typical UDP socket 439

setenv() library function
setting environment variables 474

setlocale() library function
description 662
not thread-safe 332

setvbuf() library function
hiperspace memory files 69, 209
specifying size of buffer for hiperspace 209
usage 393

severity of a condition
CEEBXITA assembler user exit and 544

shared programs 335
shareoptions specification, VSAM

deleting records 174
opening a data set 168

shift-in character (DBCS) 126
shift-out character (DBCS) 126
SIGABND signal 380
SIGABRT signal 380

890 OS/390 V2R10.0 C/C++ Programming Guide

SIGFPE signal
error condition 380
under decimal 349

SIGILL signal 380
SIGINT signal 380
SIGIOERR signal 234, 380
signal

actions, defaults 383
delivery

ANSI C rules 376
asynchronous 378
POSIX rules 376

handling
default 383
disabled 380
enabled 380
established 379
hardware 380
raise 375
software 380
with OS/390 Language Environment 375
with signal() and raise() 375

SIGSEGV signal 380
SIGTERM signal 380
SIGUSR1 signal 380
SIGUSR2 signal 380
sizeof operator 349
socket

address 434
address families 433
addressing within 433
AF_INET domain 434
AF_UNIX domain 435
client perspective 437
compiling 447
data sets 451
datagram 433
defined 429, 431
domains 433
families 432
include files 451
Internet 429
linking 447
local 429
OS/390 UNIX specific 432
TCP/IP for MVS 449, 450
types

datagram 432
guidelines for using 433
stream 432

typical TCP session 438
typical UDP session 439
using over TCP/IP 429

software signals 380
space= parameter

memory file I/O 212
OS/390 OS I/O 118
terminal I/O 200
VSAM data sets 169

spanned records 40

SPILL compiler option
optimization 408

spool data sets 477
sprintf() library function

in freestanding routines 494
system programming C environment 500, 505, 522

square brackets ([and])
displaying on workstation or 3270 771
displaying square brackets 774
square brackets 774

sscanf() library function
character to integer conversions 400

stand-alone modules 490
standard

records 36
stream

association with ddnames 93
buffering 69
cerr 47
cin 47
clog 47
cout 47
default open modes 84
direct assignment 90
global behavior 98, 478
interleaving 84
interleaving without sync_with_stdio() 86
passing across a system() call 95
redirecting 83
redirection to fully qualified data sets 92
redirection under MVS 92
restrictions in threaded applications 331
stderr 83
stdin 83
stdout 83
support under CICS 586
using 83

standard error, redirecting 83
standard in, redirecting 83
standard out, redirecting 83
static variables 395
STDERR

redirecting with OS/390 Language Environment
MSGFILE option 90

stdin, C standard input stream 83
stdout, C standard output stream 83
STEPLIB DD statement 574
storage

allocating with the system programming C
environment 488

freeing with EDCXFREE 526
getting with EDCXGET 524
page-aligned, getting with EDCX4KGT 525
under CICS 590

straightening 403
strcat() library function 400
stream sockets 432
streambuf class 47
streams, orientation of 75
strength reduction 403

INDEX 891

STRICT_INDUCTION compiler option
optimization 408

strings
comparisons 399
pragma 401
processing 400

striped data sets 115
strlen library function 400
structure comparison 400
stub routines

in a user-server environment 522
svc99() library function 588
swprintf() library function 77
swscanf() library function 77
symbolic link (HFS) files, creating 140
symlink() library function 140
syntax diagrams, how to read 10
SYSERR data set

with stdout 84, 92
SYSIN data set for stdin

description of 84, 92
SYSOUT data set

DCB attributes, defaults 114
default destination for OS/390 Language

Environment MSGFILE 92
output 113

SYSPRINT data set
with stdout 84, 92

system
exit routines 496
functions

built-in 488
memory management 488

programming facilities
additional library routines 529
building persistent C environments 500, 501
building system exit routines 497
building user-server environments 522
freestanding applications 490
run-time messages 528
tailoring the environment 523
with OS/390 C++ 485

system() library function
CICS 589
library extension 395
programming C environment 489

SYSTERM data set
with stdout 84, 92

T
tab, horizontal 126
tab, vertical 126
tapes

input and output 114
multivolume data sets 115

TARGET compiler option (C++)
IMS 633

tasks, using MTF 555
TCP/IP for MVS

child process creation restrictions 450

TCP/IP for MVS (continued)
configuration file access 450
header file restrictions 449
interprocess communication 449
socket API restrictions 450

TCP socket session 438
templates

NOTEMPINC
example source code 468
programs without automatic template

generation 467
source code organization 468

TEMPINC
contents of the template-instantiation file 466
example 462
examples of source files 465
JCL to compile examples 465
regenerating the template-instantiation file 466
source code organization 464

terms
declaration 461
definition 461
function instantiation 464
generalization 461
instantiation 461
internal linkage 461, 463
specialization 461

using TEMPINC or NOTEMPINC
example of multipurpose header file 468
example source code 469
multipurpose header file 468

temporary data sets (MVS)
using & names 104

temporary files 209
TERM token preinitialization 258
terminals

closing 206
flushing 205
Graphical Data Display Manager (GDDM) 627
I/O

description 52
overview 199
reading from files 201
writing to files 203

I/O Stream class library 199
opening I/O files 199
positioning within 206
responses to fldata() 206

termination
enclave

as indicated in CEEAUE_ABND field of
CEEAUE_FLAGS 545

as indicated in CEEAUE_ABTERM field of
CEEAUE_FLAGS 544

CEEBXITA’s behavior during 540
CEEBXITA’s function codes for 543

process 541, 543
text files

ASA RECFM fixed-format behavior 39
ASA RECFM undefined-format behavior 43
ASA RECFM variable-format behavior 42

892 OS/390 V2R10.0 C/C++ Programming Guide

text files (continued)
non-ASA RECFM fixed-format behavior 37
non-ASA RECFM undefined-format behavior 43
non-ASA RECFM variable-format behavior 42
RECFM byte stream behavior 44
using fseek() and ftell() 134

text I/O 33
threads

cancel 329
cleanup 330
condition variable 322
create 321
functions 321
low-level OS/390 UNIX I/O 152
management 321
mutex 322
read-write lock 322
signals 327
thread-specific data 326
using in an OS/390 UNIX application 321
using with MVS files 331

throw 371
time zone

customizing 711
specifying 673

tolower() macro 399
toupper() macro 399
traceback 372
translation tables 721
transport protocols 430
TRAP run-time option

CEEBXITA assembler user exit and 541
how CEEAUE_ABND is affected by 545
IMS considerations 634

try 371
TSO (Time Sharing Option)

default high-level qualifier 105, 210
opening files 105, 210
redirecting standard streams 93
setting the user prefix 105, 210
variant characters 772

TUNE compiler option
optimization 407

type= parameter
memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM data sets 169

types, sockets 433
TZ environment variable 711
tzset() library function

not thread-safe 332

U
UDP socket session 439
unary operators, decimal data type

digitsof 349
precisionof 349
sizeof 349

unbuffered I/O
setvbuf() function 120

undefined format records 42
ungetc() library function

_EDC_COMPAT environment variable 477
memory file I/O, effect on fflush() 217
OS I/O, effect on fflush() 131
OS I/O, effect on fgetpos() and ftell() 132
SEEK_CUR 133

ungetwc() library function
effect on fflush(), wide character I/O 80
effect on fgetpos(), ftell() and fseek() 81
seek_cur 82

universal reference time 711
unlink() library function

using with named pipes 149
with HFS files 147

unnamed pipes
creating 140
example 148
using 147

updating VSAM records 174
user exit

for initialization 540
for termination 539, 540, 541
run-time options 545
under CICS 543, 545, 546

user-server stub routines 522
user words 535

V
V-format records 39
value numbering 403
variable-format records 39
variable pragma 402
variables

decimal 344
environment 471
exported 280
external 396
global 395
local 395
locale 472
register 396
static 395

variant characters
detail 749
mapping keyboard 771
mappings 750
use of 749

VB-format records 39
VBS-format records 39
vertical tab escape sequence \v 126
VS-format records 39
VSAM (Virtual Storage Access Method)

__amrc structure 186
closing a data set 185
example programs 186

KSDS 186
RRDS 194

INDEX 893

VSAM (Virtual Storage Access Method) (continued)
example showing how to access __amrc

structure 165
I/O operations

deleting a record 175
loading a data set 173
locating a record 175
opening a file 52
overview 161
reading a record 172
repositioning 175
specifying access mode 168
summary of binary I/O operations 184
summary of operations 165
summary of record I/O operations 178
summary of text I/O operations 183
updating a record 174
using fopen() 167
using freopen() 167
writing a record 173

I/O Stream class library 161
keys 164
KSDS example 187
linear data sets 162
naming MVS data sets 167
organization of data sets 161
Record Level Sharing 178
Relative Byte Addresses (RBA) 164
Relative Record Numbers (RRN) 165
return codes 186
RLS 178
RSDS example 195
types and advantages of data sets 163

vswprintf() library function 77

W
wcsid() library function 662
wide characters

effect of MB_CUR_MAX 75
input and output functions 75
reading streams and files 76
ungetwc() considerations 80
writing streams and files 77

windowing 627
writable static

assembler code 339
in reentrant programs 335

write() library function
HFS I/O 146
with pipes 149

writing
binary streams, wide character I/O 79
in coded character set IBM-1047 754
multibyte characters 77
text streams, wide character I/O 78
to HFS files 145
to memory files 217
to OS I/O files 125
to terminal files 203

writing (continued)
to the OS/390 Language Environment message

file 225
VSAM data sets 173

X
X/Open Socket 429
X/Open Transport Interface (XTI)

concepts 454
transport endpoints 454
transport providers 455

X Windows, TCP/IP for MVS 449
XFER, transfer control 605
xhotc library function 531
xhotl library function 532
xhott library function 532
xhotu library function 533
XITPTR, CXIT control block 542
XPLINK

assembler macros 247
register conventions 248
when to use 409

xregs library function 533
xsacc library function 534
xusr() library function 535
xusr2() library function 535

Z
zero-byte records, _EDC_ZERO_RECLEN 42, 480

894 OS/390 V2R10.0 C/C++ Programming Guide

����

Printed in the United States of America

SC09-2362-06

	Contents
	Part 1. Introduction
	Chapter 1. About This Book
	Who Should Use This Book
	A Note about Examples
	IBM OS/390 C/C++ and Related Publications
	Hardcopy Books
	PDF Books
	Softcopy Books
	Softcopy Examples
	OS/390 C/C++ on the World Wide Web
	How to Read the Syntax Diagrams

	Chapter 2. About IBM OS/390 C/C++
	Changes for Version 2 Release 10
	OS/390 Language Environment® Downward Compatibility

	The C/C++ Compilers
	The C Language
	The C++ Language
	Common Features of the OS/390 C and C++ Compilers
	OS/390 C Compiler Specific Features
	OS/390 C++ Compiler Specific Features

	Utilities
	Class Libraries
	Class Library Source

	The Debug Tool
	IBM C/C++ Productivity Tools for OS/390
	OS/390 Language Environment
	The Program Management Binder
	OS/390 UNIX System Services (OS/390 UNIX)
	OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions
	Input and Output
	I/O Interfaces
	File Types
	Additional I/O Features

	The System Programming C Facility
	Interaction with Other IBM Products
	Additional Features of OS/390 C/C++

	Part 2. Input and Output
	Chapter 3. Introduction to C and C++ Input and Output
	Types of C and C++ Input and Output
	Text Streams
	Binary Streams
	Record I/O

	Chapter 4. Understanding Models of C I/O
	The Record Model for C I/O
	Record Formats
	Fixed-Format Records
	Variable-Format Records
	Undefined-Format Records

	The Byte Stream Model for C I/O
	Mapping the C Types of I/O to the Byte Stream Model

	Chapter 5. Using the I/O Stream Class Library in C++
	Advantages to Using the C++ I/O Stream Class Library
	Predefined Streams for C++
	How C++ I/O Streams Relate to C Streams
	Specifying File Attributes
	Related Information

	Chapter 6. Opening Files
	Prototypes of functions
	Categories of I/O
	Specifying What Kind of File to Use
	OS Files
	HFS Files
	VSAM Data Sets
	Terminal Files
	Memory Files and Hiperspace Memory Files
	CBC3GOF1

	CICS Data Queues
	OS/390 Language Environment Message File
	How to Specify RECFM, LRECL, and BLKSIZE
	fopen() Defaults
	RECFM Defaults
	LRECL and BLKSIZE defaults

	DDnames

	How OS/390 C/C++ Determines What Kind of File to Open

	Chapter 7. Buffering of C Streams
	Chapter 8. Using ASA Text Files
	Example of Writing to an ASA File
	CBC3GAS1

	ASA File Control

	Chapter 9. OS/390 C Support for the Double-Byte CharacterSet
	Opening Files
	Reading Streams and Files
	Writing Streams and Files
	Writing Text Streams
	Writing Binary Streams

	Flushing Buffers
	Flushing Text Streams
	Flushing Binary Streams
	ungetwc() Considerations

	Setting Positions within Files
	Repositioning within Text Streams
	Repositioning within Binary Streams
	ungetwc() Considerations

	Closing Files
	Manipulating Wide Character Array Functions

	Chapter 10. Using C and C++ Standard Streams andRedirection
	Default Open Modes
	Interleaving the Standard Streams I/O with sync_with_stdio()
	Interleaving the Standard Streams I/O without sync_with_stdio()
	Redirecting Standard Streams
	Redirecting Streams from the Command Line
	Using the Redirection Symbols

	Assigning the Standard Streams
	Using the freopen() Library Function
	Redirecting Streams with the MSGFILE Option
	MSGFILE Considerations

	Redirecting Streams under OS/390
	Under MVS Batch
	Using the PARM Parameter of the EXEC Statement
	Using DD Statements

	Under TSO
	From the Command Line
	Using the Parameter List in a CALL Command

	Under IMS
	Under CICS

	Passing C and C++ Standard Streams Across a system() Call
	Passing Binary Streams
	Passing Text Streams
	C++ I/O Streams Considerations

	Passing Record I/O Streams

	Using Global Standard Streams
	Command Line Redirection
	Direct Assignment
	freopen()
	MSGFILE() Run-Time Option
	fclose()
	File Position and Visible Data
	C++ I/O Stream Class Library

	Chapter 11. Performing OS I/O Operations
	Opening Files
	Using fopen() or freopen()
	Using a Data Set Name
	Using a DDname

	Generation Data Group I/O
	CBC3GOS1
	CBC3GOS2

	Regular and Extended Partitioned Data Sets
	Partitioned and Sequential Concatenated Data Sets
	In-stream Data Sets
	SYSOUT Data sets
	Tapes
	Multivolume Data Sets
	Striped Data Sets
	Other Devices
	fopen() and freopen() Parameters

	Buffering
	Multiple Buffering

	DCB (Data Control Block) Attributes
	Reading from Files
	Reading from Binary Files
	Reading from Text Files
	Reading from Record I/O Files

	Writing to Files
	Writing to Binary Files
	Writing to Text Files
	Writing to Fixed-Format Text Files
	Writing to Variable-Format Text Files
	Writing to Undefined-Format Text Files
	Truncation Versus Splitting

	Writing to Record I/O Files

	Flushing Buffers
	Updating Existing Records
	Reading Updated Records
	CBC3GOS3

	Writing New Records
	Binary Streams
	Text Streams
	Record I/O

	ungetc() Considerations

	Repositioning within Files
	ungetc() Considerations
	How Long fgetpos() and ftell() Values Last
	Using fseek() and ftell() in Binary Files
	Relative Byte Offsets
	Encoded Offsets

	Using fseek() and ftell() in Text Files (ASA and Non-ASA)
	Using fseek() and ftell() in Record Files
	Porting Old C Code That Uses fseek() or ftell()

	Closing Files
	Renaming and Removing Files
	fldata() Behavior

	Chapter 12. Performing Hierarchical File System I/OOperations
	Creating Files
	Regular Files
	Link and Symbolic Link Files
	Directory Files
	Character Special Files
	FIFO Files

	Opening Files
	Using fopen() or freopen()
	File Naming Considerations
	Opening a File by Name
	Opening a File by DDname
	fopen() and freopen() Parameters

	Reading from HFS Files
	Opening and Reading from HFS Directory Files
	Writing to HFS Files
	Flushing Records
	Setting Positions within Files
	Closing Files
	Deleting Files
	Pipe I/O
	Using Unnamed Pipes
	CBC3GHF1

	Using Named Pipes
	CBC3GHF2

	Character Special File I/O

	Low-Level OS/390 UNIX I/O
	Example of HFS I/O Functions
	CBC3GHF3
	CBC3GHF4

	fldata() Behavior

	Chapter 13. Performing VSAM I/O Operations
	VSAM Types (Data Set Organization)
	Access Method Services

	Choosing VSAM Data Set Types
	Keys, RBAs and RRNs
	Keys for Indexed VSAM Data Sets
	Relative Byte Addresses
	CBC3GVS1
	Relative Record Numbers

	Summary of VSAM I/O Operations

	Opening VSAM Data Sets
	Using fopen() or freopen()
	File Names for MVS Data Sets: Using a Data Set Name
	File Names for MVS Data Sets: Using a DDname
	Specifying fopen() and freopen() Keywords
	fopen() and freopen() Keywords
	Keyword Descriptions

	Buffering

	Record I/O in VSAM
	RRDS Record Structure
	Reading Record I/O Files
	Writing to Record I/O Files
	Updating Record I/O Files
	Deleting Records
	Repositioning within Record I/O Files
	flocate()
	fgetpos() and fsetpos()
	ftell() and fseek()
	rewind()

	Flushing Buffers
	Summary of VSAM Record I/O Operations

	VSAM Record Level Sharing
	Error Reporting

	Text and Binary I/O in VSAM
	Reading from Text and Binary I/O Files
	Writing to and Updating Text and Binary I/O Files
	Deleting Records in Text and Binary I/O Files
	Repositioning within Text and Binary I/O Files
	flocate()
	fgetpos() and fsetpos()
	ftell() and fseek()

	Flushing Buffers
	Summary of VSAM Text I/O Operations
	Summary of VSAM Binary I/O Operations

	Closing VSAM Data Sets
	VSAM Return Codes
	VSAM Examples
	KSDS Example
	CBC3GVS2
	CBC3GVS3

	RRDS Example
	CBC3GVS4

	fldata() Behavior

	Chapter 14. Performing Terminal I/O Operations
	Opening Files
	Using fopen() and freopen()
	Opening a File by Data Set Name
	Opening a File by DD Name
	fopen() and freopen() Keywords
	Opening a Terminal File Under a Shell

	Buffering

	Reading from Files
	Reading from Binary Files
	Reading from Fixed Binary Files
	Reading from Variable or Undefined Binary Files

	Reading from Text Files
	Reading from Fixed Text Files
	Reading from Variable or Undefined Text Files

	Reading from Record I/O Files
	Reading from Fixed Record I/O Files
	Reading from Variable or Undefined Record I/O Files

	Writing to Files
	Writing to Binary Files
	Writing to Fixed Binary Files
	Writing to Variable or Undefined Binary Files

	Writing to Text Files
	Writing to Fixed Text Files
	Writing to Variable or Undefined Text Files

	Writing to Record I/O Files
	Writing to Fixed Record I/O Files
	Writing to Variable or Undefined Record I/O Files

	Flushing Records
	Text Streams
	Binary Streams
	Record I/O

	Repositioning within Files
	Closing Files
	fldata() Behavior

	Chapter 15. Performing Memory File and Hiperspace I/OOperations
	Using Hiperspace Operations
	Opening Files
	Using fopen() or freopen()
	File-Naming Considerations
	fopen() and freopen() Keywords
	Opening Hiperspace Files

	Simulating Partitioned Data Sets
	CBC3GMF1
	CBC3GMF2

	Buffering

	Reading from Files
	Writing to Files
	Flushing Records
	ungetc() Considerations

	Repositioning within Files
	Closing Files
	Performance Tips

	Removing Memory Files
	fldata() Behavior
	Example Program
	CBC3GMF3
	CBC3GMF4

	Chapter 16. Performing CICS I/O Operations
	Chapter 17. Language Environment Message File Operations
	Opening Files
	Reading from Files
	Writing to Files
	Flushing Buffers
	Repositioning within Files
	Closing Files

	Chapter 18. Debugging I/O Programs
	Using the __amrc Structure
	CBC3GDI1

	Using the __amrc2 Structure
	Using __last_op Codes
	Using the SIGIOERR Signal
	CBC3GDI2

	Part 3. Interlanguage Calls with OS/390 C/C++
	Chapter 19. Using Linkage Specifications in C or C++
	Syntax for Linkage in C or C++
	Syntax for Linkage in C
	Syntax for Linkage in C++

	Kinds of Linkage used by C or C++ Interlanguage Programs
	Using Linkage Specifications in C++

	Chapter 20. Combining C or C++ and Assembler
	Establishing the OS/390 C/C++ Environment
	Specifying Linkage for C or C++ to Assembler
	Parameter List for OS Linkage
	XPLINK Assembler
	Using Standard Macros
	Non-XPLINK Assembler Prolog
	Non-XPLINK Assembler Epilog
	XPLINK Assembler Prolog
	XPLINK Assembler Epilog
	Accessing Automatic Memory in the Non-XPLINK Stack

	Calling Run-Time Library Routines from Assembler — C Example
	CBC3GCA4
	CBC3GCA2
	CBC3GCA5

	Calling Run-Time Library Routines from Assembler — C++ Example
	CBC3GCA1
	CBC3GCA2
	CBC3GCA3

	Register Content at Entry to a Non-XPLINK ASM Routine Using OSlinkage
	Register Content at Exit from a Non-XPLINK ASM Routine to OS/390C/C++
	Retaining the C Environment Using Preinitialization
	Setting Up the Interface for Preinitializable Programs
	Preinitializing a C Program
	CBC3GCA6
	CBC3GCA7
	CBC3GCA8
	Return Codes
	User Exits in Preinitializable Programs
	Run-Time Options
	Calling a Preinitializable Program

	Multiple Preinitialization Compatibility Interface C Environments
	Request Modifier 4 Environment Characteristics
	Request Modifier 5 Environment Characteristics
	Restrictions on Using batch Environments with PreinitializationCompatibility Interface C Environments
	Behaviors When Mixing Request Modifier 4 and Request Modifier5

	Using the Service Vector and Associated Routines
	Using the Service Vector
	Load Service Routine
	Delete Service Routine
	Get-Storage Service Routine
	Free-Storage Service Routine
	Exception Router Service Routine
	Attention Router Service Routine
	Message Router Service Routine

	Part 4. Coding: Advanced Topics
	Chapter 21. Building and Using Dynamic Link Libraries (DLLs)
	Support for DLLs
	DLL Concepts and Terms
	Loading a DLL
	Loading a DLL Implicitly
	Loading a DLL Explicitly
	Explicit Use of a DLL in an Application

	Managing the Use of DLLs When Running DLL Applications
	Loading DLLs
	Sharing DLLs
	Freeing DLLs

	Creating a DLL or a DLL Application
	Building a Simple DLL
	Writing Your C Code
	Writing Your C++ Code

	Compiling Your Code
	Binding Your Code
	Building a Simple DLL Application
	Creating and Using DLLs
	DLL Restrictions
	Improving Performance

	Chapter 22. Building Complex DLLs
	Rules for Compiling Source Code
	XPLINK Applications
	Modifying Noncompliant Source

	Non-XPLINK Applications
	Modifying Noncompliant Source

	Compatibility Issues Between DLL and Non-DLL Code
	Pointer Assignment
	Function Pointers

	DLL Function Pointer Call in Non-DLL Code
	C Example
	Non-DLL Function Pointer Call in DLL(CBA) Code
	Non-DLL Function Pointer Call in DLL Code
	C and C++ Example

	Function Pointer Comparison in Non-DLL Code
	Comparing a DLL function pointer to a non-DLL function pointer
	C Example
	Comparing a DLL function pointer to another DLL functionpointer
	C Example
	Comparison of Two DLL Function Pointers in Non-DLL code
	Comparing a DLL function pointer to a constant functionaddress other than NULL

	Function Pointer Comparison in DLL Code

	Using DLLs That Call Each Other

	Chapter 23. Using Threads in an OS/390 UNIX Application
	Models and Requirements
	Functions
	Creating a Thread
	Synchronization Primitives
	Models
	Functions
	Creating a Mutex
	Creating a Condition Variable
	Creating a Read-Write Lock

	Thread-specific Data
	Model
	Functions
	Creating Thread-specific Data

	Signals
	Generating a Signal
	sigaction()
	sigprocmask()

	Thread Cancellation
	Functions
	Cancelling a Thread

	Cleanup for Threads
	Functions

	Behaviors and Restrictions in an OS/390 UNIX Application
	Using Threads with MVS Files
	Thread-Scoped Functions
	Unsafe Thread Functions
	Fetched Functions and Writable Statics
	MTF and OS/390 UNIX Threading
	Thread Queuing Function
	Thread Scheduling
	iconv() Family of Functions

	Chapter 24. Reentrancy in OS/390 C/C++
	Natural or Constructed Reentrancy
	Limitations of Constructed Reentrancy for C Programs

	Controlling External Static in C Programs
	Controlling Writable Strings
	CBC3GRE1

	Controlling the Memory Area in C++

	Controlling Where String Literals Exist in C++ Code
	CBC3GRE2

	Using Writable Static in Assembler Code
	CBC3GRE3
	CBC3GRE4

	Chapter 25. Using the Decimal Data Type in C
	Declaring Decimal Types
	Declaring Fixed-Point Decimal Constants
	Declaring Decimal Variables

	Defining Decimal-Related Constants
	Using Operators
	Arithmetic Operators
	CBC3GDC1
	Additive Operators
	Relational Operators
	CBC3GDC2
	Equality Operators
	Conditional Operators
	Intermediate Results

	Assignment Operators
	Unary Operators
	sizeof Operator
	digitsof Operator
	precisionof Operator

	Cast Operator
	Summary of Operators Used With Decimal Types

	Converting Decimal Types
	Converting Decimal Types to Decimal Types
	Examples

	Converting Decimal Types to and from Integer Types
	Conversion to Integer Types
	Example of Conversion to Integer Type
	Conversion from Integer Types
	Example of Conversion from Integer Type

	Converting Decimal Types to and from Floating Types
	Conversion to Floating Types
	Conversion from Floating Types
	Example of Conversion from Floating Type

	Calling Functions
	Using Library Functions
	Using Variable Arguments with Decimal Types

	Formatting Input and Output Operations
	Validating Values
	Fix Sign
	Decimal Absolute Value
	Programming Example
	CBC3GDC3
	Output from Programming Example One
	CBC3GDC4
	Output from Programming Example Two

	Decimal Exception Handling
	System Programming Calls Restrictions
	printf() and scanf() Restrictions
	Additional Considerations
	Error Messages
	Decimal Exceptions and Assembler Interlanguage Calls

	Chapter 26. Using the Decimal Data Type in C++
	The IBinaryCodedDecimal Class
	Header File and Constants for IBinaryCodedDecimal
	Constants Defined in idecimal.hpp

	Constructing IBinaryCodedDecimal Objects
	IBinaryCodedDecimal Input and Output
	Arithmetic Operators for IBinaryCodedDecimal
	Relational Operators
	Equality Operators

	Converting IBinaryCodedDecimal Objects
	An IBinaryCodedDecimal Object to an IBinaryCodedDecimal Object

	Number of Digits in an IBinaryCodedDecimal Object
	Precision of a IBinaryCodedDecimal Object
	IBinaryCodedDecimal Object Exceptions
	The Decimal Class
	Header File for the Decimal Class
	Constructing Decimal Objects
	Decimal Class Input and Output
	Operators for Decimal Class
	Arithmetic Operators
	Relational Operators
	Equality Operators

	Converting Decimal Objects
	Decimal Object to a Decimal Object
	Decimal Object to an IString Object
	Decimal Object From a char * Type
	Decimal Object From an Integer Type
	Decimal Object to and from an IBinaryCodedDecimal Object

	Number of Digits in an Decimal Object
	Precision of a Decimal Object
	Decimal Object Exceptions

	Chapter 27. Handling Exceptions, Error Conditions, andSignals
	Handling C Software Exceptions under C++
	Handling Hardware Exceptions under C++
	Tracebacks under C++
	CBC3GCH1
	CBC3GCH2

	Handling Signals with POSIX(OFF) Using signal() and raise()
	Handling Signals Using Language Environment Callable Services
	Handling Signals Using OS/390 UNIX with POSIX(ON)
	Asynchronous Signal Delivery under OS/390 UNIX
	C Signal Handling Features under OS/390 C/C++
	Establishing a Signal Handler
	Enabling a Signal
	Interrupting a Program
	Raising a Signal
	Identifying Hardware and Software Signals
	SIGABND Considerations
	SIGIOERR Considerations
	Default Handling of Signals
	Using OS/390 UNIX
	Signal Considerations using OS/390 UNIX

	Example of C Signal Handling under OS/390 C or OS/390 C++
	CBC3GEC1

	Chapter 28. Optimizing Code
	Input/Output Considerations
	When Accessing MVS Data Sets
	When Accessing HFS Files
	When Using the I/O Stream Class Library with C++
	Using Library Extensions

	Programming Recommendations
	Using Variables
	Passing Function Arguments
	Coding Expressions
	Coding Conversions
	CBC3GOP3

	Arithmetic Considerations
	Using Loops and Control Constructs
	Choosing a Data Type
	Using Built-In Library Functions and Macros
	Using pragmas to Improve Performance
	#pragma disjoint
	#pragma export
	#pragma inline
	#pragma isolated_call
	#pragma leaves
	#pragma noinline
	#pragma option_override
	#pragma reachable
	#pragma strings
	#pragma variable

	Compiler Options to Improve Performance
	Using the OPTIMIZE Option
	Optimizations Performed by the Compiler

	Inlining
	CBC3GOP1
	CBC3GOP2
	Selective Mode
	Automatic Mode in C
	Automatic Mode in C++
	Improving Your Performance
	Inline defaults
	Inlining under IPA

	Additional Compiler Options that Affect Performance
	ANSIALIAS
	ARCHITECTURE and TUNE
	COMPRESS
	COMPACT
	CVFT (C++ Only)
	EXH (C++ Only)
	EXPORTALL
	IGNERRNO
	IPA
	LIBANSI
	ROCONST
	ROSTRING
	SPILL
	STRICT_INDUCTION

	Memory Optimization
	Using XPLINK
	When You Should Not Use XPLINK

	Compile Time Considerations
	Programmer Tips
	System Programmer Tips

	Chapter 29. Optimizing Your C/C++ Code with InterproceduralAnalysis
	Types of Procedural Analysis
	Compiler Processing Flow
	Regular Compiler Execution
	Compiler Execution with IPA
	IPA Compile Step Processing
	IPA Link Step Processing
	Object File Formats
	Object Record Formats
	Creating IPA Link Control Statements in Makefiles
	Partitioning

	Invoking IPA from the c89 Utility
	Specifying Options
	Other Considerations

	Controlling IPA Execution
	Specifying Compiler Options with IPA
	Specifying Pragmas under IPA

	Effects of IPA on Your Program
	Restrictions
	Locale Support
	Date and Time Stamps Within IPA Objects

	Chapter 30. Network Communications under UNIX SystemServices
	Understanding OS/390 UNIX Sockets and Internetworking
	The Basics of Network Communication
	Transport Protocols for Sockets

	What Is a Socket?
	OS/390 UNIX Socket Families
	OS/390 UNIX Socket Types
	Stream Sockets
	Datagram Sockets

	Guidelines for Using Socket Types
	Addressing within Sockets
	Address Families
	Socket Address
	Internet Addresses
	Ports
	Network Byte Order
	Addressing within the AF_INET Domain
	Addressing within the AF_UNIX Domain

	The Conversation
	The Server Perspective
	Allocation with socket()
	bind()
	listen()
	accept()
	select()

	The Client Perspective
	A Typical TCP Socket Session

	A Typical UDP Socket Session
	A Typical Datagram Socket Session

	Locating the Server's Port
	Network Application Example
	Using Common INET
	Compiling and Binding
	Using TCP/IP APIs
	Restrictions for Using MVS TCP/IP API with OS/390 UNIX

	Using OS/390 UNIX Sockets
	Compiling under MVS Batch for Berkeley Sockets
	Sample EDCC Cataloged Procedure Additions and Changes
	Compiling under MVS Batch with X Windows for BerkeleySockets
	Compiling Using the c89 Utility for Berkeley Sockets
	Compiling Using c89 with X Windows

	Compiling under MVS Batch for X/Open Sockets
	Sample EDCC Cataloged Procedure Additions and Changes
	Using API Data Sets and Files for Open Sockets

	Understanding The X/Open Transport Interface (XTI)
	Transport endpoints
	Transport providers for X/Open Transport Interface
	General Restrictions for OS/390 UNIX

	Chapter 31. Interprocess Communication Using OS/390 UNIX
	Message Queues
	Semaphores
	Shared Memory
	Memory Mapping
	TSO Commands from a Shell

	Chapter 32. Structuring a Program That Uses C++ Templates
	Template Terms
	Generating Template Functions
	Class Template Example
	Template Declaration
	Template Function Definition
	Use of the Stack Template
	Template Functions with Internal Linkage
	Generation of Template Function Instantiations
	Resolving Multiple Definitions of the Same Function

	Using TEMPINC
	Organizing Source Code for the TEMPINC option
	Instantiating the Functions
	Examples of Source Files
	stackadd.cpp
	stackops.cpp
	stackops.h
	JCL to Compile Examples
	Syntax to Compile under the OS/390 Shell
	Regenerating the Template-Instantiation File
	Contents of Template-Instantiation Files

	Using the NOTEMPINC Option
	Organizing Source Code for the NOTEMPINC Option
	Example of Source Code Organized for the NOTEMPINC Option

	Using TEMPINC or NOTEMPINC
	Example of a Multipurpose Header File
	Example of Source Code with Multipurpose Header File

	Template Considerations for Shared Libraries

	Chapter 33. Using Environment Variables
	Working with Environment Variables
	Naming Conventions

	Environment Variables Specific to the OS/390 C/C++ Library
	_EDC_ADD_ERRNO2
	_EDC_ANSI_OPEN_DEFAULT
	_EDC_BYTE_SEEK
	_EDC_CLEAR_SCREEN
	_EDC_COMPAT
	_EDC_GLOBAL_STREAMS
	_EDC_IP_CACHE_ENTRIES
	_EDC_RRDS_HIDE_KEY
	_EDC_STOR_INCREMENT
	_EDC_STOR_INITIAL
	_EDC_ZERO_RECLEN
	_CEE_DMPTARG
	_CEE_ENVFILE

	Example
	CBC3GEV1
	CBC3GEV2

	Part 5. OS/390 C/C++ Environments
	Chapter 34. Using the System Programming C Facilities
	Using Functions in the System Programming C Environment
	System Programming C Facility Considerations and Restrictions
	Creating Freestanding Applications
	Creating Modules without CEESTART
	Including an Alternative Initialization Routine under OS/390
	Initializing a Freestanding Application without Language Environment.
	EDCXSTRT

	Initializing a Freestanding Application Using C Functions
	EDCXSTRL

	Setting up a C Environment with Preallocated Stack and Heap
	EDCXSTRX

	Determining ISA requirements
	EDCXISA

	Building Freestanding Applications to Run under OS/390
	CBC3GSP1
	Special Considerations for Reentrant Modules
	CBC3GSP2
	JCL Required

	Parts Used for Freestanding Applications

	Creating System Exit Routines
	Building System Exit Routines under OS/390
	An Example of a System Exit
	CBC3GSP3

	Creating and Using Persistent C Environments
	Building Applications That Use Persistent C Environments
	An Example of Persistent C Environments
	CBC3GSP4
	CBC3GSP5

	Developing Services in the Service Routine Environment
	Using Application Service Routine Control Flow
	Service Routine User Perspective
	Service Routine Perspective

	Understanding the Stub Perspective
	CBC3GSP8
	CBC3GSP9
	CBC3GSPD
	CBC3GSPE
	CBC3GSPF

	Establishing a Server Environment
	EDCXSRVI

	Initiating a Server Request
	EDCXSRVN

	Accepting a Request for Service
	EDCXSACC

	Returning Control from Service
	EDCXSRVC

	Constructing User-Server Stub Routines
	Building User-Server Environments

	Tailoring the System Programming C Environment
	Generating Abends
	EDCXABND

	Getting Storage
	EDCXGET
	CBC3GSPB

	Getting Page-Aligned Storage
	EDCX4KGT

	Freeing Storage
	EDCXFREE

	Loading a Module
	EDCXLOAD

	Deleting a Module
	EDCXUNLD

	Including a Run-Time Message File
	Additional Library Routines
	Summary of Application Types

	Chapter 35. Library Functions for System Programming C
	__xhotc() — Set Up a Persistent C Environment (No Library)
	Format
	Description
	Returned Value
	Example
	__xhotl() — Set Up a Persistent C Environment (With Library)
	Format
	Description
	Returned Value
	Example

	__xhott() — Terminate a Persistent C Environment
	Format
	Description
	Example

	__xhotu() — Run a Function in a Persistent C Environment
	Format
	Description
	Returned Value
	Example

	__xregs() — Get Registers on Entry
	Format
	Description
	Returned Value

	__xsacc() — Accept Request for Service
	Format
	Description
	Returned Value

	__xsrvc() — Return Control from Service
	Format
	Description

	__xusr() - __xusr2() — Get Address of User Word
	Format
	Description
	Returned Value

	__24malc() — Allocate Storage below 16MB Line
	Format
	Description

	__4kmalc() — Allocate Page-Aligned Storage
	Format
	Description

	Chapter 36. Using Run-Time User Exits
	Using Run-Time User Exits in OS/390 Language Environment
	Understanding the Basics
	PL/I and C/370 Compatibility
	User Exits Supported under OS/390 Language Environment
	Order of Processing of User Exits
	Using Installation-Wide or Application-Specific User Exits
	Using the Assembler User Exit
	Using Sample Assembler User Exits
	CEEBXITA Behavior during Enclave Initialization
	CEEBXITA Behavior during Enclave Termination
	CEEBXITA Behavior during Process Termination
	Specifying Abend Codes to Be Percolated by OS/390 LanguageEnvironment
	Actions Taken for Errors that Occur within the Assembler UserExit

	Assembler User Exit Interface
	Parameter Values in the Assembler User Exit
	First Enclave within Process Initialization—Entry
	First Enclave within Process Initialization—Return
	First Enclave within Process Termination—Entry
	First Enclave within Process Termination—Return
	Nested Enclave Initialization—Entry
	Nested Enclave Initialization—Return
	Nested Enclave Termination—Entry
	Nested Enclave Termination—Return
	Process Termination—Entry
	Process Termination—Return

	PL/I and C/370 Compatibility
	High Level Language User Exit Interface
	Usage Requirements

	Chapter 37. Using The OS/390 C MultiTasking Facility
	Organizing a Program with MTF
	Ensuring Computational Independence
	Running a C Program without MTF
	Running a C Program with MTF
	Running a C Program with One Parallel Function
	Processor Use
	Sample Program

	Running a C Program with Two Different Parallel Functions
	Processor Use
	Sample Program

	OS/390 C with Multiple Instances of the Same Parallel Function
	Processor Use
	Sample Program

	Designing and Coding Applications for MTF
	Step 1: Identifying Computationally-Independent Code
	Step 2: Creating Parallel Functions
	Parallel Functions
	Calling Other Functions
	Separate Storage for Separate Modules
	Passing Data
	Input/Output
	Exception/Signal Handling
	Function Termination

	Step 3: Inserting Calls to Parallel Functions
	Changing an Application to Use MTF
	Example 1
	Create Parallel Functions
	Insert Calls to Parallel Functions
	Example 2
	Create Parallel Functions

	Compiling and Linking Programs That Use MTF
	Creating the Main Task Program Load Module
	Creating the Parallel Functions Load Module
	Specifying the Linkage-Editor Option
	Modifying Run-Time Options

	Running Programs That Use MTF
	STEPLIB DD Statement
	DD Statements for Standard Streams
	Example of JCL
	Debugging Programs That Use MTF
	Avoiding Undesirable Results when Using MTF

	Part 6. Programming with Other Products
	Chapter 38. Using the Customer Information Control System(CICS)
	Developing C and C++ Programs for the CICS Environment
	Preparing CICS for Use with OS/390 Language Environment
	Designing and Coding for CICS
	Using the CICS Command-Level Interface
	CBC3GCI1

	Using Input and Output
	Standard Stream Support
	Full Memory File Support
	Support for Disk Files and Other Devices

	Using OS/390 C/C++ Library Support
	Arguments to C or C++ main()
	Run-Time Options
	Using Packed Decimal with CICS
	Locales
	Code Set Conversion Tables
	POSIX
	Multitasking Facility
	System Programming C Facilities
	SVC99 and Dynamic Allocation Functions
	IMS
	Dump Functions
	Dynamic Linked Libraries (DLL)
	fetch()
	release()
	system()
	Time Functions
	iscics()
	Floating Point Arithmetic
	Program Termination

	Storage Management
	Using Interlanguage Support
	Exception Handling
	Example of Error Handling in CICS
	CBC3GCI2

	ABEND Codes and Error Messages under OS/390 C/C++
	Coding Hints and Tips

	Translating and Compiling for Reentrancy
	Translating
	Translating Example
	CBC3GCI3

	Compiling
	Sample JCL to Translate and Compile

	Prelinking and Linking All Object Modules
	Defining and Running the CICS Program
	Program Processing
	Link Considerations for C Programs
	CSD Considerations
	Sample JCL to Install OS/390 C/C++ Application Programs

	Chapter 39. Using Cross System Product (CSP)
	Common Data Types
	Passing Control
	Running CSP under MVS
	Calling CSP Applications from OS/390 C
	Examples
	CBC3GCP1
	CBC3GCP2

	Calling OS/390 C from CSP
	Examples
	CBC3GCP3
	CBC3GCP4

	Running under CICS Control
	Examples
	CBC3GCP5
	CBC3GCP6
	CBC3GCP7

	Chapter 40. Using Data Window Services (DWS)
	CBC3GDW2
	Example

	CBC3GDW1

	Chapter 41. Using DB2 Universal Database
	C++ Example
	CBC3GDB1
	CBC3GDB2

	C Example
	CBC3GDB4

	Chapter 42. Using Graphical Data Display Manager (GDDM)
	Example
	CBC3GGD1
	CBC3GGD2

	Chapter 43. Using the Information Management System (IMS)
	Handling Errors
	Other Considerations
	Examples
	CBC3GIM1
	CBC3GIM2
	CBC3GIM3

	Chapter 44. Using the Interactive System Productivity Facility(ISPF)
	Examples
	CBC3GIS1
	CBC3GIS2
	CBC3GIS3
	CBC3GIS4
	CBC3GIS5
	CBC3GIS6
	CBC3GIS7
	CBC3GIS8
	CBC3GIS9
	CBC3GISA
	CBC3GISB
	CBC3GIS4
	CBC3GIS5

	Chapter 45. Using the Query Management Facility (QMF)
	Example
	CBC3GQM1
	CBC3GQM2
	CBC3GQM3

	Part 7. Internationalization: Locales and Character Sets
	Chapter 46. Introduction to Locale
	Internationalization in Programming Languages
	Elements of Internationalization
	OS/390 C/C++ Support for Internationalization
	Locales and Localization
	Locale-Sensitive Interfaces

	Chapter 47. Building a Locale
	Using the charmap File
	The CHARMAP Section
	The CHARSETID Section

	Locale Source Files
	LC_CTYPE Category
	LC_COLLATE Category
	Collating Rules
	Collating Keywords
	Comparison of Strings

	LC_MONETARY Category
	LC_NUMERIC Category
	LC_TIME Category
	LC_MESSAGES Category
	LC_TOD Category
	LC_SYNTAX Category

	Using the localedef Utility
	Locale Naming Conventions

	Chapter 48. Customizing a Locale
	Using the Customized Locale
	Referring Explicitly to a Customized Locale
	CBC3GCL1

	Referring Implicitly to a Customized Locale
	CBC3GCL2
	CBC3GCL3

	Chapter 49. Customizing a Time Zone
	Using the TZ or _TZ Environment Variable to Specify Time Zone
	Relationship Between TZ or _TZ and LC_TOD

	Chapter 50. Definition of S370 C, SAA C, and POSIX CLocales
	Differences between SAA C and POSIX C Locales
	CBC3GDL1

	Chapter 51. Code Set Conversion Utilities
	The genxlt Utility
	The iconv Utility
	Code Conversion Functions
	Code Set Converters Supplied
	Universal Coded Character Set Converters
	Codeset Conversion Using UCS-2
	UCMAP Source Format

	Chapter 52. Coded Character Set Considerations with LocaleFunctions
	Variant Character Detail
	Mappings of 13 PPCS Variant Characters
	Mappings of Hex Encoding of 13 PPCS Variant Characters

	Alternate Code Points
	Coding without Locale Support
	Using a Hybrid Coded Character Set

	Converting Existing Work
	Converting Hybrid Code

	Writing Source Code in Coded Character Set IBM-1047
	Exporting Source Code to Other Sites

	Coded Character Set Independence in Developing Applications
	Coded Character Set of Source Code and Header Files
	The pragma filetag Directive

	Converting Coded Character Sets at Compile Time
	Examples
	Usage
	Summary of Source and Compile Use
	Using Predefined Macros
	Using a Predefined Locale

	Working With Listings and Output Files
	Object Modules

	Considerations With Other Products and Tools

	Part 8. Appendixes
	Appendix A. POSIX Character Set
	Appendix B. Mapping Variant Characters for OS/390 C/C++
	Displaying Hexadecimal Values
	Example
	CBC3GMV1

	Using pragma Filetag To Specify Code Page in C
	Displaying Square Brackets When Using ISPF
	CBC3GMV2
	Using The CBC3GMV2 Macro

	Procedure for Mapping on 3279

	Appendix C. OS/390 C/C++ Code Point Mappings
	Appendix D. Locales Supplied with OS/390 C/C++
	Compiled Locales
	Locale Source Files

	Appendix E. Charmap Files Supplied with OS/390 C/C++
	Appendix F. Examples of Charmap and Locale DefinitionSource
	Charmap File
	Locale Definition Source File

	Appendix G. Converting Code from Coded Character SetIBM-1047
	CBC3GHC1

	Appendix H. Additional Examples
	Memory Management
	CBC3GMI1
	CBC3GMI2

	Calling MVS WTO routines from C
	CBC3GWT1
	CBC3GWT2

	Listing Partitioned Data Set Members
	CBC3GIP1
	CBC3GIP2

	Appendix I. Using Built-In Functions
	Appendix J. Application Considerations for OS/390 UNIXC/C++
	Relationship to DB2 Universal Database
	Application Programming Environments Not Supported
	Support for the Curses Library

	Appendix K. External Variables
	errno
	daylight
	getdate_err
	h_errno
	__loc1
	loc1
	loc2
	locs
	optarg
	opterr
	optind
	optopt
	signgam
	stdin
	stderr
	stdout
	t_errno
	timezone
	tzname

	Notices
	Programming Interface Information
	Trademarks
	Standards

	Glossary
	Bibliography
	OS/390
	OS/390 C/C++
	OS/390 Language Environment
	Assembler
	COBOL
	PL/I
	VS FORTRAN
	CICS
	DB2
	IMS/ESA
	QMF
	DFSMS

	INDEX

